1
|
Hervø-Hansen S, Polák J, Tomandlová M, Dzubiella J, Heyda J, Lund M. Salt Effects on Caffeine across Concentration Regimes. J Phys Chem B 2023; 127:10253-10265. [PMID: 38058160 DOI: 10.1021/acs.jpcb.3c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Salts affect the solvation thermodynamics of molecules of all sizes; the Hofmeister series is a prime example in which different ions lead to salting-in or salting-out of aqueous proteins. Early work of Tanford led to the discovery that the solvation of molecular surface motifs is proportional to the solvent accessible surface area (SASA), and later studies have shown that the proportionality constant varies with the salt concentration and type. Using multiscale computer simulations combined with vapor-pressure osmometry on caffeine-salt solutions, we reveal that this SASA description captures a rich set of molecular driving forces in tertiary solutions at changing solute and osmolyte concentrations. Central to the theoretical work is a new potential energy function that depends on the instantaneous surface area, salt type, and concentration. Used in, e.g., Monte Carlo simulations, this allows for a highly efficient exploration of many-body interactions and the resulting thermodynamics at elevated solute and salt concentrations.
Collapse
Affiliation(s)
- Stefan Hervø-Hansen
- Division of Computational Chemistry, Department of Chemistry, Lund University, Lund SE 221 00, Sweden
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Jakub Polák
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Praha 6, Prague CZ-16628, Czech Republic
| | - Markéta Tomandlová
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Praha 6, Prague CZ-16628, Czech Republic
| | - Joachim Dzubiella
- Physikalisches Institut, Albert-Ludwigs Universität Freiburg, Hermann-Herder-Straße 3, Freiburg Im Breisgau D-79104, Germany
| | - Jan Heyda
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Praha 6, Prague CZ-16628, Czech Republic
| | - Mikael Lund
- Division of Computational Chemistry, Department of Chemistry, Lund University, Lund SE 221 00, Sweden
- Lund Institute of Advance Neutron and X-ray Science (LINXS), Lund SE 223 70, Sweden
| |
Collapse
|
2
|
Moral R, Paul S. Influence of salt and temperature on the self-assembly of cyclic peptides in water: a molecular dynamics study. Phys Chem Chem Phys 2023; 25:5406-5422. [PMID: 36723368 DOI: 10.1039/d2cp05160e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It is found in the literature that cyclic peptides (CPs) are able to self-assemble in water to form cyclic peptide nanotubes (CPNTs) and are used extensively in the field of nanotechnology. Several factors influence the formation and stability of these nanotubes in water. However, an extensive study of the contribution of several important factors is still lacking. The purpose of this study is to explore the effect of temperature and salt (NaCl) on the association tendency of CPs. Furthermore, the self-association behavior of CPs in aqueous solutions at various temperatures is also thoroughly discussed. Cyclo-[(Asp-D-Leu-Lys-D-Leu)2] is considered for this study and a series of classical molecular dynamics (MD) simulations at three different temperatures, viz. 280 K, 300 K, and 320 K, both in pure water and in NaCl solutions of different concentrations are carried out. The calculations of radial distribution functions, preferential interaction parameters, cluster formation and hydrogen bonding properties suggest a strong influence of NaCl concentration on the association propensity of CPs. Low NaCl concentration hinders CP association while high NaCl concentration facilitates the association of CPs. Besides this, the association of CPs is found to be enhanced at low temperature. Furthermore, the thermodynamics of CP association is predominantly found to be enthalpy driven in both the presence and absence of salt. No crossover between enthalpy and entropy in CP association is observed. In addition, the MM-GBSA method is used to investigate the binding free energies of the CP rings that self-assembled to form nanotube like structures at all three temperatures.
Collapse
Affiliation(s)
- Rimjhim Moral
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, 781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, 781039, India.
| |
Collapse
|
3
|
Devi M, Paul S. The chaotropic effect of ions on the self-aggregating propensity of Whitlock's molecular tweezers. Phys Chem Chem Phys 2022; 24:14452-14471. [PMID: 35661176 DOI: 10.1039/d2cp00033d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular tweezers feature the first class of artificial receptors to pique the interest of researchers and emerge as an effective therapeutic candidate. The exceptional structure and exquisite binding specificity of tweezers establish this overall class of receptors as a promising tool, with abundant applications. However, their inclination to self-aggregate by mutual π-π stacking interactions of their aromatic arms diminishes their efficacy as a therapeutic candidate. Therefore, following up on sporadic studies, since the discovery of the Hofmeister series, on the ability of ions to either solvate (salting-in) or induce aggregation (salting-out) of hydrophobic solutes, the notions of ion-specificity effects are utilized on tweezer moieties. The impacts of three different aluminum salts bearing anions Cl-, ClO4- and SCN- on the self-association propensity of Whitlock's caffeine-pincered molecular tweezers are investigated, with a specific emphasis placed on elucidating the varied behavior of the ions on the hydration ability of tweezers. The comparative investigation is conducted employing a series of all-atom molecular dynamics simulations of five tweezer molecules in pure water and three salt solutions, at two different concentrations each, maintaining a temperature of 300 K and a pressure of 1 atm, respectively. Radial distribution functions, coordination numbers, and SASA calculations display a steady reduction in the aggregation proclivity of the receptor molecules with an increase in salt concentration, as progressed along the Hofmeister series. Orientational preferences between the tweezer arms reveal a disruptive effect in the regular π-π stacking interactions, in the presence of high concentrations of ClO4- and SCN- ions, while preferential interactions and tetrahedral order parameters unveil the underlying mechanism, by which the anions alter the solubility of the hydrophobic molecules. Overall, it is observed that SCN- exhibits the highest salting-in effect, followed by ClO4-, with both anions inhibiting tweezer aggregation through different mechanisms. ClO4- ions impart an effect by moderately interacting with the solute molecules as well as modifying the water structure of the bulk solution promoting solvation, whereas, SCN- ions engage entirely in interaction with specific tweezer sites. Cl- being the most charge-dense of the three anionic species experiences stronger hydration and therefore, imparts a very negligible salting-in effect.
Collapse
Affiliation(s)
- Madhusmita Devi
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, 781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, 781039, India.
| |
Collapse
|
4
|
De Marchi L, Vieira LR, Intorre L, Meucci V, Battaglia F, Pretti C, Soares AMVM, Freitas R. Will extreme weather events influence the toxic impacts of caffeine in coastal systems? Comparison between two widely used bioindicator species. CHEMOSPHERE 2022; 297:134069. [PMID: 35218782 DOI: 10.1016/j.chemosphere.2022.134069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
In the recent years, marine heatwaves (MHWs) have caused devastating impacts on marine life. The understanding of the combined effects of these extreme events and anthropogenic pollution is a vital challenge. In particular, the combined effect of MHWs on the toxicity of pharmaceuticals to aquatic life remains unclear. To contribute to these issues, the main goal of the present investigation was to evaluate how MHWs may increase caffeine (CAF) toxicity on the clam Ruditapes philippinarum and the mussel Mytilus galloprovincialis. Bioaccumulation levels and changes on oxidative stress, metabolic capacity and neurotoxic status related biomarkers were investigated. The obtained results revealed the absence of CAF accumulation in both species. However, the used contaminant generated in both bivalve species alteration on neurotransmission, detoxification mechanisms induction as well as cellular damage. The increase of antioxidant defence mechanisms was complemented by an increase of metabolic activity and decrease of energy reserves. The obtained results seemed magnified under a simulated MHWs, suggesting to a climate-induced toxicant sensitivities' response. On this perspective, understanding of how toxicological mechanisms interact with climate-induced stressors will provide a solid platform to improve effect assessments for both humans and wildlife.
Collapse
Affiliation(s)
- L De Marchi
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - L R Vieira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - L Intorre
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI, 56122, Italy
| | - V Meucci
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI, 56122, Italy
| | - F Battaglia
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI, 56122, Italy
| | - C Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, PI, 56122, Italy
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - R Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
5
|
Paul R, Mitra A, Paul S. Phase separation property of a hydrophobic deep eutectic solvent-water binary mixture: A molecular dynamics simulation study. J Chem Phys 2021; 154:244504. [PMID: 34241334 DOI: 10.1063/5.0052200] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the past decade, deep eutectic solvents (DESs) have earned applicability in numerous fields as non-flammable, non-volatile, and greener alternatives to conventional organic solvents. In a first of its kind, a hydrophobic DES composed of a 1:1 mixture of oleic acid and lidocaine was recently reported, possessing a lower critical solution temperature in water. The thermoreversible phase property of this DES-water system was utilized to sequester out dye molecules from their aqueous solutions. In this article, we explore the phase separation phenomena for this particular DES in its aqueous solution using an all-atom molecular dynamics simulation. A 50 wt. % solution of the DES in water was studied at three different temperatures (253, 293, and 313 K) to understand the various molecular interactions that dictate the phase segregation property of these systems. In this work, we have elaborated on the importance of hydrogen bonding interactions and the non-bonding interactions between the components and the competition between the two that leads to phase separation. Overall, we observe that the increase in unfavorable interaction between the DES components and water with increasing temperature determines the phase separation behavior. We have also studied the modification in the dynamical properties of water molecules close to the phase boundary. Such molecular insights would be beneficial for designing novel solvent systems that can be used as extraction-based media in industries.
Collapse
Affiliation(s)
- Rabindranath Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Aritra Mitra
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
6
|
Chattaraj KG, Paul R, Paul S. Switching of Self-Assembly to Solvent-Assisted Assembly of Molecular Motor: Unveiling the Mechanisms of Dynamic Control on Solvent Exchange. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1773-1792. [PMID: 32024360 DOI: 10.1021/acs.langmuir.9b03718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Natural biological molecular motors are capable of performing several biological functions, such as fuel production, mobility, transport, and many other dynamic features. Inspired by these biological motors, scientists effectively synthesized artificial molecular motors to mimic several biological functionalities. Several molecular systems, from sensitive materials to molecular motors, are essential for controlling dynamic processes in larger assemblies. In this work, we discuss the self-assembly of molecular motors in water and how this self-assembly switches to the solvent-assisted assembly as solvent changes to a water-THF (tetrahydrofuran) mixture. We present an elaborate description of the morphological changes of molecular motor assemblies from pure water to a water-THF mixture to pure THF. Under the influence of THF solvent, molecular motors form an assembled structure by taking a sufficient number of THF molecules in between themselves, resulting in an assembled molecular motor with a softened core. So, molecular motor assembly swells in the water-THF mixture, and in pure water, it shrinks. This solvent-assisted assembled structure has a specific shape. We have confirmed this assembly as a solvent-assisted assembly with the help of molecular dynamics simulation and quantum chemical analysis. Molecular motor-THF and THF-THF interactions are the main responsible interactions for solvent-assisted assembly over self-assembly. This work is a perfect example of conversion between self-assembly (shrinking) and solvent-assisted assembly (swelling) of molecular motors by adding THF into water or vice versa. A spectacular check on the shrinking and swelling by merely altering solvents illustrates so many intriguing possibilities for an alteration of dynamic processes at the nanoscale.
Collapse
Affiliation(s)
| | - Rabindranath Paul
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| | - Sandip Paul
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| |
Collapse
|
7
|
Reddy V, Saharay M. Solubility of Caffeine in Supercritical CO 2: A Molecular Dynamics Simulation Study. J Phys Chem B 2019; 123:9685-9691. [PMID: 31617358 DOI: 10.1021/acs.jpcb.9b08351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The extraction of caffeine from green tea leaves and cocoa beans is a common industrial process for the production of decaffeinated beverages and pharmaceuticals. The choice of the solvent critically determines the yield of this extraction process. Being an environmentally benign and recyclable solvent, supercritical carbon dioxide (scCO2) has emerged as the most desirable green solvent for caffeine extraction. The present study investigates the solvation properties of caffeine in scCO2 at two different temperatures (318 and 350 K) using molecular dynamics simulations. Unlike in water, the caffeine molecules in scCO2 do not aggregate to form clusters due to relatively stronger caffeine-CO2 interactions. A well-structured scCO2 solvent shell envelops each caffeine molecule as a result of strong electron-donor-acceptor (EDA) and hydrogen-bonding interactions between these two species. Upon heating, although marginal site-specific changes in the distribution of nearest CO2 around caffeine are observed, the overall distribution is retained. At a higher temperature, the caffeine-CO2 hydrogen-bonding interactions are weakened, while their EDA interactions become relatively stronger. The results underscore the importance of the interplay of these interactions in determining stable solvent structures and solubility of caffeine in scCO2.
Collapse
Affiliation(s)
- Vishwanath Reddy
- Department of Physics, University College of Science , Osmania University , Hyderabad 500007 , Telangana , India
| | - Moumita Saharay
- Department of Physics, University College of Science , Osmania University , Hyderabad 500007 , Telangana , India
| |
Collapse
|
8
|
Chattaraj KG, Paul S. Inclusion of Theobromine Modifies Uric Acid Aggregation with Possible Changes in Melamine–Uric Acid Clusters Responsible for Kidney Stones. J Phys Chem B 2019; 123:10483-10504. [DOI: 10.1021/acs.jpcb.9b08487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India-781039
| |
Collapse
|
9
|
Chattaraj KG, Paul S. Underlying mechanistic insights into the structural properties of melamine and uric acid complexes with compositional variation under ambient conditions. J Chem Phys 2019. [DOI: 10.1063/1.5094220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
10
|
Chattaraj KG, Paul S. How does temperature modulate the structural properties of aggregated melamine in aqueous solution—An answer from classical molecular dynamics simulation. J Chem Phys 2019; 150:064501. [DOI: 10.1063/1.5066388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| |
Collapse
|
11
|
Gurina DL, Golubev VA. Features of Structural Solvation of Methylxanthines in Carbon Tetrachloride–Methanol Binary Mixtures: Molecular Dynamics Simulation. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419010102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Beri A, Banipal PK, Banipal TS. Effect of potassium chloride on the solvation behavior of caffeine, theophylline and theobromine: Volumetric, viscometric, calorimetry and spectroscopic approach. Food Chem 2018; 266:110-118. [DOI: 10.1016/j.foodchem.2018.05.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/07/2022]
|
13
|
Zeindlhofer V, Berger M, Steinhauser O, Schröder C. A shell-resolved analysis of preferential solvation of coffee ingredients in aqueous mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate. J Chem Phys 2018; 148:193819. [PMID: 30307218 DOI: 10.1063/1.5009802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ionic liquids increase the solubility of various coffee ingredients in aqueous solution but little is known about the underlying mechanism. Kirkwood-Buff integrals as well as the potential of mean force indicate that the imidazolium cations are accumulated at the surface of the solutes, removing water molecules from the solute surface. Although hydrogen bonding of the anions to hydroxy groups of the solutes can be detected, their concentration at the surface is less enhanced compared to the cations. The decomposition into solvation shells by Voronoi tessellation reveals that structural features are only observed in the first solvation shell. Nevertheless, the depletion of water and the excess concentration of the ions and, in particular, of the cations are visible in the next solvation shells as well. Therefore, classical arguments of hydrotropic theory fail to explain this behavior.
Collapse
Affiliation(s)
- Veronika Zeindlhofer
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Magdalena Berger
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Othmar Steinhauser
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Christian Schröder
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Vienna A-1090, Austria
| |
Collapse
|
14
|
Johnson NO, Light TP, MacDonald G, Zhang Y. Anion–Caffeine Interactions Studied by 13C and 1H NMR and ATR–FTIR Spectroscopy. J Phys Chem B 2017; 121:1649-1659. [DOI: 10.1021/acs.jpcb.6b12150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nicolas O. Johnson
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Taylor P. Light
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Gina MacDonald
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Yanjie Zhang
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| |
Collapse
|
15
|
Zeindlhofer V, Khlan D, Bica K, Schröder C. Computational analysis of the solvation of coffee ingredients in aqueous ionic liquid mixtures. RSC Adv 2017; 7:3495-3504. [PMID: 28496974 PMCID: PMC5361174 DOI: 10.1039/c6ra24736a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/29/2016] [Indexed: 12/19/2022] Open
Abstract
In this paper, we investigate the solvation of coffee ingredients including caffeine, gallic acid as representative for phenolic compounds and quercetin as representative for flavonoids in aqueous mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate [C2mim][OAc] at various concentrations. Due to the anisotropy of the solutes we show that classical Kirkwood-Buff theory is not appropriate to study solvation effects with increasing ionic liquid content. However, excess coordination numbers as well as the mean residence time of solvent molecules at the surface of the solutes can be determined by Voronoi tessellation. Since the volume of the hydration shells is also available by this method, solvation free energies will be discussed as a function of the ionic liquid concentration to yield a physical meaningful picture of solvation for the anisotropic solutes. Hydrogen bonding capabilities of the solutes and their relevance for experimental extraction yields from spent coffee grounds are also discussed.
Collapse
Affiliation(s)
- Veronika Zeindlhofer
- University of Vienna , Faculty of Chemistry , Department of Computational Biological Chemistry , Währingerstraße 19 , 1090 Vienna , Austria . ; Tel: +43 14277 52711
| | - Diana Khlan
- Institute of Applied Synthetic Chemistry , Vienna University of Technology , Getreidemarkt 9/163 , 1060 Vienna , Austria
| | - Katharina Bica
- Institute of Applied Synthetic Chemistry , Vienna University of Technology , Getreidemarkt 9/163 , 1060 Vienna , Austria
| | - Christian Schröder
- University of Vienna , Faculty of Chemistry , Department of Computational Biological Chemistry , Währingerstraße 19 , 1090 Vienna , Austria . ; Tel: +43 14277 52711
| |
Collapse
|
16
|
Rogers BA, Thompson TS, Zhang Y. Hofmeister Anion Effects on Thermodynamics of Caffeine Partitioning between Aqueous and Cyclohexane Phases. J Phys Chem B 2016; 120:12596-12603. [DOI: 10.1021/acs.jpcb.6b07760] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bradley A. Rogers
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Tye S. Thompson
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Yanjie Zhang
- Department of Chemistry and
Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| |
Collapse
|
17
|
Role of caffeine as an inhibitor in aggregation of hydrophobic molecules: A molecular dynamics simulation study. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.10.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Sharma B, Paul S. Action of Caffeine as an Amyloid Inhibitor in the Aggregation of Aβ16–22 Peptides. J Phys Chem B 2016; 120:9019-33. [DOI: 10.1021/acs.jpcb.6b03892] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bhanita Sharma
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| |
Collapse
|
19
|
Deol H, Pramanik S, Kumar M, Khan IA, Bhalla V. Supramolecular Ensemble of a TICT-AIEE Active Pyrazine Derivative and CuO NPs: A Potential Photocatalytic System for Sonogashira Couplings. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00393] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Harnimarta Deol
- Department of Chemistry,
UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Subhamay Pramanik
- Department of Chemistry,
UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Manoj Kumar
- Department of Chemistry,
UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Imran A. Khan
- Department of Chemistry,
UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Vandana Bhalla
- Department of Chemistry,
UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
20
|
Sharma B, Kalita S, Paul A, Mandal B, Paul S. The role of caffeine as an inhibitor in the aggregation of amyloid forming peptides: a unified molecular dynamics simulation and experimental study. RSC Adv 2016. [DOI: 10.1039/c6ra17602j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
10 : 1 or more caffeine to SwP ratio can prevent the formation of β-sheet conformation.
Collapse
Affiliation(s)
- Bhanita Sharma
- Department of Chemistry
- Indian Institute of Technology
- Guwahati
- India
| | - Sourav Kalita
- Department of Chemistry
- Indian Institute of Technology
- Guwahati
- India
| | - Ashim Paul
- Department of Chemistry
- Indian Institute of Technology
- Guwahati
- India
| | | | - Sandip Paul
- Department of Chemistry
- Indian Institute of Technology
- Guwahati
- India
| |
Collapse
|
21
|
Shestopalova AV, Pesina DA, Kashpur VA, Khorunzhaya OV. Hydration of DNA-binding biological active compounds: EHF dielectrometry and molecular modeling results. Struct Chem 2015. [DOI: 10.1007/s11224-015-0695-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Hazra MK, Roy S, Bagchi B. Hydrophobic hydration driven self-assembly of curcumin in water: similarities to nucleation and growth under large metastability, and an analysis of water dynamics at heterogeneous surfaces. J Chem Phys 2015; 141:18C501. [PMID: 25399166 DOI: 10.1063/1.4895539] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
As the beneficial effects of curcumin have often been reported to be limited to its small concentrations, we have undertaken a study to find the aggregation properties of curcumin in water by varying the number of monomers. Our molecular dynamics simulation results show that the equilibrated structure is always an aggregated state with remarkable structural rearrangements as we vary the number of curcumin monomers from 4 to 16 monomers. We find that the curcumin monomers form clusters in a very definite pattern where they tend to aggregate both in parallel and anti-parallel orientation of the phenyl rings, often seen in the formation of β-sheet in proteins. A considerable enhancement in the population of parallel alignments is observed with increasing the system size from 12 to 16 curcumin monomers. Due to the prevalence of such parallel alignment for large system size, a more closely packed cluster is formed with maximum number of hydrophobic contacts. We also follow the pathway of cluster growth, in particular the transition from the initial segregated to the final aggregated state. We find the existence of a metastable structural intermediate involving a number of intermediate-sized clusters dispersed in the solution. We have constructed a free energy landscape of aggregation where the metatsable state has been identified. The course of aggregation bears similarity to nucleation and growth in highly metastable state. The final aggregated form remains stable with the total exclusion of water from its sequestered hydrophobic core. We also investigate water structure near the cluster surface along with their orientation. We find that water molecules form a distorted tetrahedral geometry in the 1st solvation layer of the cluster, interacting rather strongly with the hydrophilic groups at the surface of the curcumin. The dynamics of such quasi-bound water molecules near the surface of curcumin cluster is considerably slower than the bulk signifying a restricted motion as often found in protein hydration layer.
Collapse
Affiliation(s)
- Milan Kumar Hazra
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Susmita Roy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
23
|
Abstract
Sugars and salts strongly affect the dimerization of caffeine in water. Such a change of dimerization, considered to be crucial for bitter taste suppression, has long been rationalized by the change of "water structure" induced by the additives; "kosmotropic" (water structure enhancing) salts and sugars promote dimerization, whereas "chaotropic" (water structure breaking) salts suppress dimerization. Based on statistical thermodynamics, here we challenge this consensus; we combine the rigorous Kirkwood-Buff theory of solution with the classical isodesmic model of caffeine association. Instead of the change of water structure, we show that the enhancement of caffeine dimerization is due to the exclusion of additives from caffeine, and that the weakening of dimerization is due to the binding of additives on caffeine.
Collapse
Affiliation(s)
- Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
24
|
Sharma B, Paul S. Understanding the Role of Temperature Change and the Presence of NaCl Salts on Caffeine Aggregation in Aqueous Solution: From Structural and Thermodynamics Point of View. J Phys Chem B 2015; 119:6421-32. [DOI: 10.1021/jp512336n] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bhanita Sharma
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
25
|
|
26
|
Das S, Paul S. Exploring Molecular Insights into Aggregation of Hydrotrope Sodium Cumene Sulfonate in Aqueous Solution: A Molecular Dynamics Simulation Study. J Phys Chem B 2015; 119:3142-54. [DOI: 10.1021/jp512282x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shubhadip Das
- Department of Chemistry, Indian Institute of Technology,Guwahati 781039, Assam, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology,Guwahati 781039, Assam, India
| |
Collapse
|