1
|
Drehwald MS, Jamali A, Vargas-Hernández RA. MOLPIPx: An end-to-end differentiable package for permutationally invariant polynomials in Python and Rust. J Chem Phys 2025; 162:084115. [PMID: 40019201 DOI: 10.1063/5.0250837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
In this work, we present MOLPIPx, a versatile library designed to seamlessly integrate permutationally invariant polynomials with modern machine learning frameworks, enabling the efficient development of linear models, neural networks, and Gaussian process models. These methodologies are widely employed for parameterizing potential energy surfaces across diverse molecular systems. MOLPIPx leverages two powerful automatic differentiation engines-JAX and EnzymeAD-Rust-to facilitate the efficient computation of energy gradients and higher-order derivatives, which are essential for tasks such as force field development and dynamic simulations. MOLPIPx is available at https://github.com/ChemAI-Lab/molpipx.
Collapse
Affiliation(s)
- Manuel S Drehwald
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 2E4, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Asma Jamali
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- School of Computational Science and Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Rodrigo A Vargas-Hernández
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- School of Computational Science and Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
2
|
Liu Y, Ončák M, Lewis TWR, Meta M, Ard SG, Shuman NS, Meyer J, Viggiano AA, Guo H. Insights into facile methane activation by a spin forbidden reaction with Ta + ions in the gas phase. Chem Sci 2025:d4sc08457h. [PMID: 39968284 PMCID: PMC11832034 DOI: 10.1039/d4sc08457h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
The activation of methane (CH4) by transition-metal cations in the gas phase provides a model for understanding the impact of electronic spin on reactivity, with implications in single atom catalysis. In this work, we present a mixed quantum-classical trajectory surface hopping study on the nominally spin-forbidden reaction Ta+ + CH4 → TaCH2 + + H2. To facilitate the dynamics calculations, full twelve-dimensional PESs for three low-lying spin (quintet, triplet, and singlet) states are constructed using a machine learning method from density functional theory data. Furthermore, we report the temperature dependence of the rate coefficients for the Ta+ + CH4 → TaCH2 + + H2 reaction measured using the selected ion flow tube (SIFT) technique. The measured rate coefficient has a near zero temperature dependence and is approximately 50% of the capture limit at room temperature. Our theoretical results with a Gaussian-binning treatment of the product zero-point energy reproduced the experimental rate coefficient and the temperature dependence. Satisfactory agreement is also obtained between theory and differential cross sections measured recently using molecular beams combined with velocity map imaging. Specifically, our multi-state calculations confirm the indirect mechanism of this reaction with long-lived reaction intermediate after passing through the initial barrier and reveal that the kinetic bottleneck in this reaction is intersystem crossing between the quintet and triplet states. Furthermore, the energy disposal in the TaCH2 + (both singlet and triplet) and H2 products is found to be largely statistical due to the long lifetime of the exit-channel complex.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico Albuquerque New Mexico 87131 USA
| | - Milan Ončák
- Universität Innsbruck, Institut für Ionenphysik und Angewandte Physik Technikerstraße 25 6020 Innsbruck Austria
| | - Tucker W R Lewis
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base New Mexico 87117 USA
| | - Marcel Meta
- RPTU Kaiserslautern-Landau, Fachbereich Chemie and Forschungszentrum OPTIMAS Erwin-Schrödinger Str. 52 67663 Kaiserslautern Germany
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base New Mexico 87117 USA
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base New Mexico 87117 USA
| | - Jennifer Meyer
- RPTU Kaiserslautern-Landau, Fachbereich Chemie and Forschungszentrum OPTIMAS Erwin-Schrödinger Str. 52 67663 Kaiserslautern Germany
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base New Mexico 87117 USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico Albuquerque New Mexico 87131 USA
| |
Collapse
|
3
|
DeRosa JR, Subotnik JE, Pei Z, Shao Y, Shuman NS, Ard SG, Viggiano AA, Cofer-Shabica DV. Revisiting the Discrepancy between Experimental and Theoretical Predictions of the Adiabaticity of Ti + + CH 3OH. J Phys Chem A 2025; 129:596-606. [PMID: 39757477 DOI: 10.1021/acs.jpca.4c06834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
We revisit the naked transition metal cation (Ti+) and methanol reaction and go beyond the standard Landau-Zener (LZ) picture when modeling the intersystem crossing (ISC) rate between the lowest doublet and quartet states. We use both (i) unconstrained Born-Oppenheimer molecular dynamics (BOMD) calculations with an approximate two-state method to estimate population transfer between spin diabats and (ii) constrained dynamics to explore energetically accessible portions of the NDOF - 1 crossing seam, where NDOF is the total number of internal degrees of freedom. Whereas previous LZ calculations (that necessarily relied on the Condon approximation to be valid) fell short and predicted much slower crossing probabilities than shown in experiment, we show that ISC can occur rapidly because the spin-orbit coupling (SOC) between the doublet and quartet surfaces can vary by 2 orders of magnitude (depending on where in the seam the crossing occurs during dynamics) and the crossing region is revisited multiple times during a dynamics run of a few hundred femtoseconds. We further isolate the two important nuclear coordinates that tune the SOC and modulate the transition, highlighting exactly how and why organometallic ISC can occur rapidly for small systems with floppy internal nuclear vibrational modes.
Collapse
Affiliation(s)
- Jennifer R DeRosa
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Zheng Pei
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - D Vale Cofer-Shabica
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Li J, Li J, Li J. Full-dimensional accurate potential energy surface and dynamics for the unimolecular isomerization reaction CH3NC ⇌ CH3CN. J Chem Phys 2025; 162:014305. [PMID: 39777509 DOI: 10.1063/5.0245188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The reaction CH3NC ⇌ CH3CN, a model reaction for the study of unimolecular isomerization, is important in astronomy and atmospheric chemistry and has long been studied by numerous experiments and theories. In this work, we report the first full-dimensional accurate potential energy surface (PES) of this reaction by the permutation invariant polynomial-neural network method based on 30 974 points, whose energies are calculated at the CCSD(T)-F12a/AVTZ level. Then, ring polymer molecular dynamics is used to derive the free energy barrier of the reaction at the experimental temperature range of 472.55-532.92 K. Reaction kinetics are studied at the high-pressure limit and in the fall-off region by standard transition state theory and the master equation, respectively. The calculated temperature- and pressure-dependent rate coefficients are in good agreement with previous experimental and theoretical results. Furthermore, quasi-classical trajectory simulations are performed on this PES to study the intramolecular energy transfer dynamics at initial vibrational energies of 4.336, 5.204, and 6.505 eV.
Collapse
Affiliation(s)
- Junlong Li
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Junhong Li
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Jun Li
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| |
Collapse
|
5
|
Li J, Vindel-Zandbergen P, Li J, Felker PM, Bačić Z. HF Trimer: A New Full-Dimensional Potential Energy Surface and Rigorous 12D Quantum Calculations of Vibrational States. J Phys Chem A 2024; 128:9707-9720. [PMID: 39484697 DOI: 10.1021/acs.jpca.4c03771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
HF trimer, as the smallest and the lightest cyclic hydrogen-bonded (HB) cluster, has long been a favorite prototype system for spectroscopic and theoretical investigations of the structure, energetics, spectroscopy, and dynamics of hydrogen-bond networks. Recently, rigorous quantum 12D calculations of the coupled intra- and intermolecular vibrations of this fundamental HB trimer (J. Chem. Phys. 2023, 158, 234109) were performed, employing an older ab initio-based many-body potential energy surface (PES). While the theoretical results were found to be in reasonably good agreement with the available spectroscopic data, it was also evident that it is highly desirable to develop a more accurate 12D PES of HF trimer. Motivated by this, here we report a new, and the first fully ab initio 12D PES of this paradigmatic system. Approximately 42,540 geometries were sampled and calculated at the level of CCSD(T)-F12a/AVTZ. The permutationally invariant polynomial-neural network based Δ-machine learning approach (J. Phys. Chem. Lett. 2022, 13, 4729) was employed to perform cost-efficient calculations of the basis-set-superposition error (BSSE) correction. By strategically selecting data points, this approach facilitated the construction of a high-precision PES with BSSE correction, while requiring only a minimal number of BSSE value computations. The fitting error of the final PES is only 0.035 kcal/mol. To assess its performance, the 12D fully coupled quantum calculations of excited intra- and intermolecular vibrational states of HF trimer are carried out using the rigorous methodology developed by us earlier. The results are found to be in a significantly better agreement with the available spectroscopic data than those obtained with the previously existing semiempirical 12D PES.
Collapse
Affiliation(s)
- Jia Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Patricia Vindel-Zandbergen
- Department of Chemistry, New York University, New York, New York 10003, United States
- Simons Center for Computational Physical Chemistry, New York University, New York, New York 10003, United States
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Peter M Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, United States
- Simons Center for Computational Physical Chemistry, New York University, New York, New York 10003, United States
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| |
Collapse
|
6
|
Zhu Y, Song H. Rate Constants of the H + HCF 3 → H 2 + CF 3 Reaction from Ring Polymer Molecular Dynamics on a Highly Accurate Potential Energy Surface. J Phys Chem A 2024; 128:9606-9613. [PMID: 39469741 DOI: 10.1021/acs.jpca.4c05352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The reaction between H and HCF3 is the primary consumption pathway of HCF3 in the atmosphere and combustion. In this work, ring polymer molecular dynamics (RPMD) calculations are performed to calculate the rate constants of the reaction on a recently developed accurate potential energy surface. 36, 20, and 8 beads are used to compute the rate constants at 350 K ≤ T < 800 K, 800 K ≤ T ≤ 1000 K, and T > 1000 K, respectively. The obtained RPMD rate constants agree well with the experimental measurements. In addition, a detailed analysis of the free-energy curves and transmission coefficients reveals that the quantum tunneling significantly affects the reaction dynamics, even at high temperatures.
Collapse
Affiliation(s)
- Yongfa Zhu
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Hongwei Song
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
7
|
Gutierrez-Cardenas J, Gibbas BD, Whitaker K, Kaledin M, Kaledin AL. A Low-Order Permutationally Invariant Polynomial Approach to Learning Potential Energy Surfaces Using the Bond-Order Charge-Density Matrix: Application to C n Clusters for n = 3-10, 20. J Phys Chem A 2024; 128:7703-7713. [PMID: 39205486 PMCID: PMC11407436 DOI: 10.1021/acs.jpca.4c04281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A representation for learning potential energy surfaces (PESs) in terms of permutationally invariant polynomials (PIPs) using the Hartree-Fock expression for electronic energy is proposed. Our approach is based on the one-electron core Hamiltonian weighted by the configuration-dependent elements of the bond-order charge density matrix (CDM). While the previously reported model used an s-function Gaussian basis for the CDM, the present formulation is expanded with p-functions, which are crucial for describing chemical bonding. Detailed results are demonstrated on linear and cyclic Cn clusters (n = 3-10) trained on extensive B3LYP/aug-cc-pVTZ data. The described method facilitates PES learning by reducing the root mean squared error (RMSE) by a factor of 5 relative to the s-function formulation and by a factor of 20 relative to the conventional PIP approach. This is equivalent to using CDM and an sp basis with a PIP of order M to achieve the same RMSE as with the conventional method with a PIP of order M + 2. Implications for large-scale problems are discussed using the case of the PES of the C20 fullerene in full permutational symmetry.
Collapse
Affiliation(s)
- Jose Gutierrez-Cardenas
- Department of Chemistry & Biochemistry, Kennesaw State University, 370 Paulding Ave NW ,Box#1203,Kennesaw 30144, Georgia
| | - Benjamin D Gibbas
- Department of Chemistry & Biochemistry, Kennesaw State University, 370 Paulding Ave NW ,Box#1203,Kennesaw 30144, Georgia
| | - Kyle Whitaker
- Department of Chemistry & Biochemistry, Kennesaw State University, 370 Paulding Ave NW ,Box#1203,Kennesaw 30144, Georgia
| | - Martina Kaledin
- Department of Chemistry & Biochemistry, Kennesaw State University, 370 Paulding Ave NW ,Box#1203,Kennesaw 30144, Georgia
| | - Alexey L Kaledin
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, 1515 Dickey Drive ,Atlanta 30322, Georgia
| |
Collapse
|
8
|
Schmiedmayer B, Kresse G. Derivative learning of tensorial quantities-Predicting finite temperature infrared spectra from first principles. J Chem Phys 2024; 161:084703. [PMID: 39171710 DOI: 10.1063/5.0217243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
We develop a strategy that integrates machine learning and first-principles calculations to achieve technically accurate predictions of infrared spectra. In particular, the methodology allows one to predict infrared spectra for complex systems at finite temperatures. The method's effectiveness is demonstrated in challenging scenarios, such as the analysis of water and the organic-inorganic halide perovskite MAPbI3, where our results consistently align with experimental data. A distinctive feature of the methodology is the incorporation of derivative learning, which proves indispensable for obtaining accurate polarization data in bulk materials and facilitates the training of a machine learning surrogate model of the polarization adapted to rotational and translational symmetries. We achieve polarization prediction accuracies of about 1% for the water dimer by training only on the predicted Born effective charges.
Collapse
Affiliation(s)
- Bernhard Schmiedmayer
- Faculty of Physics and Center for Computational Materials Science, University of Vienna, Kolingasse 14-16, A-1090 Vienna, Austria
| | - Georg Kresse
- Faculty of Physics and Center for Computational Materials Science, University of Vienna, Kolingasse 14-16, A-1090 Vienna, Austria
- VASP Software GmbH, Sensengasse 8, A-1090 Vienna, Austria
| |
Collapse
|
9
|
Liu Y, Ončák M, Meyer J, Ard SG, Shuman NS, Viggiano AA, Guo H. Intersystem Crossing Control of the Nb + + CO 2 → NbO + + CO Reaction. J Phys Chem A 2024; 128:6943-6953. [PMID: 39117562 DOI: 10.1021/acs.jpca.4c04067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The transfer of an oxygen atom from carbon dioxide (CO2) to a transition metal cation in the gas phase offers atomic level insights into single-atom catalysis for CO2 activation. Given that these reactions often involve open-shell transition metals, they may proceed through intersystem crossing between different spin manifolds. However, a definitive understanding of such spin-forbidden reaction requires dynamical calculations on multiple global potential energy surfaces (PESs) coupled by spin-orbit couplings. In this work, we report global PESs and spin-orbit couplings for three low-lying spin (quintet, triplet, and singlet) states for the reaction between the niobium cation (Nb+) and CO2, which are used to investigate the nonadiabatic reaction dynamics and kinetics. Comparison with experimental data of kinetics and collision dynamics shows satisfactory agreement. This reaction is found to be very similar to that between Ta+ + CO2. Specifically, our theoretical findings suggest that the rate-limiting step in this reaction is intersystem crossing, rather than potential barriers.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Milan Ončák
- Universität Innsbruck, Institut für Ionenenphysik und Angewandte Physik, Technikerstraße 25, Innsbruck 6020, Austria
| | - Jennifer Meyer
- RPTU Kaiserslautern-Landau, Fachbereich Chemie und Forschungszentrum OPTIMAS, Erwin-Schrödinger Str. 52, Kaiserslautern 67663, Germany
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
10
|
Song K, Li J. Fundamental Invariant Neural Network (FI-NN) Potential Energy Surface for the OH + CH 3OH Reaction with Analytical Forces. J Phys Chem A 2024; 128:6636-6647. [PMID: 39096277 DOI: 10.1021/acs.jpca.4c02432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
The hydrogen abstraction reaction of OH + CH3OH plays a great role in combustion and atmospheric and interstellar chemistry and has been extensively studied theoretically and experimentally. Theoretically, the numerical gradients with respect to the Cartesian coordinates of atoms in molecular simulations on our recent potential energy surface (PES) for the title reaction trained using the permutationally invariant polynomial neural network (PIP-NN) approach hinder the extensive calculation because of the unaffordable computation cost. To address this issue, we in this work report a new full-dimensional accurate analytical PES for the title reaction using the fundamental invariant neural network (FI-NN) approach based on 140,192 points of the quality UCCSD(T)-F12a/AVTZ. Besides, the spin-orbit (SO) corrections of OH in the entrance channel were determined at the level of complete active space self-consistent field with the AVTZ basis set. As a compromise between computational cost and efficiency, the Δ-machine learning approach was employed to construct the SO-corrected PES. Based on this new FI-NN PES with analytical forces, thermal rate coefficients and various dynamic properties, including the integral cross sections, the differential cross sections, and the product energy partitioning, were determined by running a total of 5.5 million trajectories. The use of analytical gradients of the FI-NN PES accelerated simulations and about 99% of computation cost was saved, compared to that for the PIP-NN PES with numerical gradients. Such a significant acceleration is achieved mainly by replacing PIPs with FIs.
Collapse
Affiliation(s)
- Kaisheng Song
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P.R. China
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P.R. China
| |
Collapse
|
11
|
Yang J, Li J, Li J, Li J. Gaussian Process Regression for State-to-State Integral Cross Sections: The Case of the O + O 2 Collision Dissociation Reactions. J Phys Chem A 2024; 128:4966-4975. [PMID: 38869143 DOI: 10.1021/acs.jpca.4c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Research on hypersonic vehicles has become increasingly important worldwide in recent years. However, accurately simulating the dynamics of the nonequilibrium high-temperature reactions that are in the hypersonic flow around the vehicles presents a significant challenge as a large number of states and transitions are accessible even for the smallest atom-diatom reaction systems. It is quite difficult, sometimes even impossible, to exhaustively investigate all relevant combinations or determine high-dimensional analytical representations for the state-to-state reaction probabilities. In this study, we used Gaussian process regression (GPR) to fit a model based on only 807 QCT data for training. The confidence interval of the GPR prediction and the Kullback-Leibler (KL) divergence were used to help minimize the sampling amount of data for fitting the converged GPR model. The model aims to predict the state-to-state integral cross section (ICS) of the O + O2 → 3O dissociation reaction under random initial conditions (Et, v, j). In total, it took almost a month to obtain this converged GPR model, but it took only a few seconds to predict the ICS value for any initial condition. For 330 initial conditions not included in the training set, the mean-square error (MSE) between the QCT-calculated ICSs and the GPR-predicted ones is only 0.08 Å2 and the R2 is 0.9986, indicating that the GPR model can replace the direct expensive QCT calculation with high accuracy. Finally, we calculated the equilibrium dissociation rate coefficients based on the StS ICS values predicted by the GPR model, and the results were in good agreement with available experimental and theoretical results. Thus, this study provides an effective and accurate approach to the extensive direct state-to-state reaction dynamic calculations.
Collapse
Affiliation(s)
- Jiawei Yang
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Jia Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Junhong Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China
| |
Collapse
|
12
|
Jiang J, Yang J, Hong Q, Sun Q, Li J. Global Potential Energy Surfaces by Compressed-State Multistate Pair-Density Functional Theory for Hyperthermal Collisions in the O 2+O 2 System. Chemphyschem 2024; 25:e202400078. [PMID: 38526528 DOI: 10.1002/cphc.202400078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/02/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
Interactions between oxygen molecules play an important role in atmospheric chemistry and hypersonic flow chemistry in atmospheric entries. Recently, high-quality ab initio potential energy surface (PES) of the quintet O4 was reported by Paukku et al. [J. Chem. Phys. 147, 034301 (2017)]. 10543 configurations were sampled and calculated at the level of MS-CASPT2/maug-cc-pVTZ with scaled external correlation. The PES was fitted to a many-body (MB) form with the many-body part described by the permutationally invariant polynomial approach (MB-PIP). In this work, the PIP-Neural Network (PIP-NN) and MB-PIP-NN methods were used to refit the PES based on the same data by Paukku et al. Three PESs were compared. It was found that the performances differ significantly in the O+O3 region as well as in the long-range region. Therefore, additional 1300 points were sampled, and the efficient compressed-state multistate pair-density functional theory (CMS-PDFT) was used to calculate the electronic structure of these 1300 points and 10543 points by Paukku et al. Then, a completely new quintet PES was fitted using the MB-PIP-NN method. Based on this PES, the quasi-classical trajectory (QCT) approach was used to reveal all possible reaction channels for hyperthermal O2-O2 collisions.
Collapse
Affiliation(s)
- Jie Jiang
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| | - Jiawei Yang
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| | - Qizhen Hong
- State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Quanhua Sun
- State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
13
|
Liu Y, Ončák M, Meyer J, Ard SG, Shuman NS, Viggiano AA, Guo H. Multistate Dynamics and Kinetics of CO 2 Activation by Ta + in the Gas Phase: Insights into Single-Atom Catalysis. J Am Chem Soc 2024; 146:14182-14193. [PMID: 38741473 DOI: 10.1021/jacs.4c03192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The activation of carbon dioxide (CO2) by a transition-metal cation in the gas phase is a unique model system for understanding single-atom catalysis. The mechanism of such reactions is often attributed to a "two-state reactivity" model in which the high-energy barrier of a spin state correlating with ground-state reactants is avoided by intersystem crossing (ISC) to a different spin state with a lower barrier. However, such a "spin-forbidden" mechanism, along with the corresponding dynamics, has seldom been rigorously examined theoretically, due to the lack of global potential energy surfaces (PESs). In this work, we report full-dimensional PESs of the lowest-lying quintet, triplet, and singlet states of the TaCO2+ system, machine-learned from first-principles data. These PESs and the corresponding spin-orbit couplings enable us to provide an extensive theoretical characterization of the dynamics and kinetics of the reaction between the tantalum cation (Ta+) and CO2, which have recently been investigated experimentally at high collision energies using crossed beams and velocity map imaging, as well as at thermal energies using a selected-ion flow tube apparatus. The multistate quasi-classical trajectory simulations with surface hopping reproduce most of the measured product translational and angular distributions, shedding valuable light on the nonadiabatic reaction dynamics. The calculated rate coefficients from 200 to 600 K are also in good agreement with the latest experimental measurements. More importantly, these calculations revealed that the reaction is controlled by intersystem crossing, rather than potential barriers.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstra. 25, 6020 Innsbruck, Austria
| | - Jennifer Meyer
- Fachbereich Chemie und Forschungszentrum OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Str. 52, 67663 Kaiserslautern, Germany
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
14
|
Jiang X, Liu L, Peng Y, Zhu H. A New Ab Initio Potential Energy Surface and Rovibrational Spectra for the CO-N 2O Complex. J Phys Chem A 2024; 128:2743-2751. [PMID: 38557005 DOI: 10.1021/acs.jpca.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We constructed a new ab initio potential energy surface (PES) for CO-N2O which includes the intramolecular Q3 normal coordinate for the N2O ν3 antisymmetric stretching vibration. The intermolecular potential was evaluated employing the supermolecular method at the [CCSD(T)]-F12a level, with the aug-cc-pVTZ basis set plus bond functions. By integral over the intramolecular Q3 coordinate, we obtained the vibrationally averaged PESs for the CO-N2O system in the ground and ν3 excited states of N2O. Each PES features one nearly T-shaped global minimum and one skewed T-shaped local minimum. Based on these obtained PESs of CO-N2O, the radial discrete variable representation/angle finite base representation method and the Lanczos algorithm were applied for the calculations of bound states and rovibrational energy levels. The calculated ν3 vibrational band origin shift of the N2O monomer in CO-N2O is 2.7570 cm-1, matching well with the observed value of 2.9048 cm-1. The computed microwave and infrared transition frequencies, as well as the rotational parameters, are consistent with the experimental observations.
Collapse
Affiliation(s)
- Xuedan Jiang
- School of Chemistry, Sichuan University, Chengdu 610064, China
| | - Li Liu
- School of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yang Peng
- School of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hua Zhu
- School of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
15
|
Zhang S, Chen Q, Zhang L, Li J, Hu X, Xie D. Dynamics studies for the multi-well and multi-channel reaction of OH with C 2H 2 on a full-dimensional global potential energy surface. Phys Chem Chem Phys 2024; 26:7351-7362. [PMID: 38375620 DOI: 10.1039/d3cp05811e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The C2H2 + OH reaction is an important acetylene oxidation pathway in the combustion process, as well as a typical multi-well and multi-channel reaction. Here, we report an accurate full-dimensional machine learning-based potential energy surface (PES) for the C2H2 + OH reaction at the UCCSD(T)-F12b/cc-pVTZ-F12 level, based on about 475 000 ab initio points. Extensive quasi-classical trajectory (QCT) calculations were performed on the newly developed PES to obtain detailed dynamic data and analyze reaction mechanisms. Below 1000 K, the C2H2 + OH reaction produces H + OCCH2 and CO + CH3. With increasing temperature, the product channels H2O + C2H and H + HCCOH are accessible and the former dominates above 1900 K. It is found that the formation of H2O + C2H is dominated by a direct reaction process, while other channels belong to the indirect mechanism involving long-lived intermediates along the reaction pathways. At low temperatures, the C2H2 + OH reaction behaves like an unimolecular reaction due to the unique PES topographic features, of which the dynamic features are similar to the decomposition of energy-rich complexes formed by C2H2 + OH collision. The classification of trajectories that undergo different reaction pathways to generate each product and their product energy distributions were also reported in this work. This dynamic information may provide a deep understanding of the C2H2 + OH reaction.
Collapse
Affiliation(s)
- Shuwen Zhang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qixin Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lidong Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China; State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China.
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.
| | - Xixi Hu
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.
- Hefei National Laboratory, Hefei 230088, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
16
|
Shu Y, Akher FB, Guo H, Truhlar DG. Parametrically Managed Activation Functions for Improved Global Potential Energy Surfaces for Six Coupled 5A' States and Fourteen Coupled 3A' States of O + O 2. J Phys Chem A 2024; 128:1207-1217. [PMID: 38349764 DOI: 10.1021/acs.jpca.3c06823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
We report new potential energy surfaces for six coupled 5A' states and 14 coupled 3A' states of O3. The new surfaces are created by parametrically managed diabatization by deep neural network (PM-DDNN). The PM-DDNN method uses calculated adiabatic potential energy surfaces to discover and fit an underlying adiabatic-equivalent set of diabatic surfaces and their couplings and obtains the fit to the adiabatic surfaces by diagonalization of the diabatic potential energy matrix (DPEM). The procedure yields the adiabatic surfaces and their gradients, as well as the DPEM and its gradient. If desired one can also compute the nonadiabatic coupling due to the transformation. The present work improves on previous work by using a new coordinate to guide the decay of the neural network contribution to the many-body fit to the whole DPEM. The main objective was to obtain smoother potentials than the previous ones with better suitability for dynamics calculations, and this was achieved. Furthermore, we obtained suitably small deviations from the input reference data. For the six coupled 5A' surfaces, the 60,366 data below 10 eV are fit with a mean unsigned error (MUE) of 49 meV, and for the 14 coupled 3A' surfaces, the 76,733 data below 10 eV are fit with an MUE of 28 meV. The data below 5 eV fit even more accurately with MUEs of 37 meV (5A') and 20 meV (3A').
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Farideh Badichi Akher
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
17
|
Song Q, Zhang X, Miao Z, Meng Q. Construction of a Mode-Combination Hamiltonian under the Grid-Based Representation for the Quantum Dynamics of OH + HO 2 → O 2 + H 2O. J Chem Theory Comput 2024; 20:597-613. [PMID: 38199964 DOI: 10.1021/acs.jctc.3c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
In this work, a systematic construction framework on a mode-combination Hamiltonian operator of a typical polyatomic reaction, OH + HO2 → O2 + H2O, is developed. First, a set of Jacobi coordinates are employed to construct the kinetic energy operator (KEO) through the polyspherical approach ( Phys. Rep. 2009, 484, 169). Second, due to the multiconfigurational electronic structure of this system, a non-adiabatic potential energy surface (PES) is constructed where the first singlet and triplet states are involved with spin-orbital coupling. To improve the training database, the training set of random energy data was optimized through a popular iterative optimization approach with extensive trajectories. Here, we propose an automatic trajectory method, instead of the classical trajectory on a crude PES, where the gradients are directly computed by the present ab initio calculations. Third, on the basis of the training set, the potential function is directly constructed in the canonical polyadic decomposition (CPD) form ( J. Chem. Theory Comput. 2021, 17, 2702-2713) which is helpful in propagating the nuclear wave function under the grid-based representation. To do this, the Gaussian process regression (GPR) approach for building the CPD form, called the CPD-GPR method ( J. Phys. Chem. Lett. 2022, 13, 11128-11135) is adopted where we further revise CPD-GPR by introducing the mode-combination (mc) scheme leading to the present CPD-mc-GPR approach. Constructing the full-dimension non-adiabatic Hamiltonian operator with mode combination, as test calculations, the nuclear wave function is propagated to preliminarily compute the reactive probability of OH + HO2 → O2 + H2O where the reactants are prepared in vibrational ground states and in the first triplet electronic state.
Collapse
Affiliation(s)
- Qingfei Song
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, Xi'an 710072, China
| | - Xingyu Zhang
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, Xi'an 710072, China
| | - Zekai Miao
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, Xi'an 710072, China
| | - Qingyong Meng
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, Xi'an 710072, China
| |
Collapse
|
18
|
Peng Y, Jiang X, Liu L, Liu G, Zhu H. A new six-dimensional ab initio potential energy surface and rovibrational spectra for the N2-CO2 complex. J Chem Phys 2023; 159:244304. [PMID: 38146833 DOI: 10.1063/5.0182188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023] Open
Abstract
New six-dimensional ab initio potential energy surfaces (PESs) for the N2-CO2 complex, which involve the stretching vibration of N2 and the Q3 normal mode for the ν3 asymmetric stretching vibration of CO2, were constructed using the CCSD(T)-F12/AVTZ method with midpoint bond functions. Two vibrational averaged 4D interaction potentials were obtained by integrating over the two intramolecular coordinates. It was found that both PESs possess two equivalent T-shaped global minima as well as two in-plane and one out-of-plane saddle points. Based on these PESs, rovibrational bound states and energy levels were calculated applying the radial discrete variable representation/angular finite basis representation method and the Lanczos algorithm. The splitting of the energy levels between oN2-CO2 and pN2-CO2 for the intermolecular vibrational ground state is determined to be only 0.000 09 cm-1 due to the higher barriers. The obtained band origin shift is about +0.471 74 cm-1 in the N2-CO2 infrared spectra with CO2 at the ν3 zone, which coincides with the experimental data of +0.483 74 cm-1. The frequencies of the in-plane geared-bending for N2-CO2 at the ν3 = 0 and 1 states of CO2 turn out to be 21.6152 and 21.4522 cm-1, the latter reproduces the available experimental 21.3793 cm-1 value with CO2 at the ν3 zone. The spectral parameters fitted from the rovibrational energy levels show that this dimer is a near prolate asymmetric rotor. The computed microwave transitions as well as the infrared fundamental and combination bands for the complex agree well with the observed data.
Collapse
Affiliation(s)
- Yang Peng
- School of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xuedan Jiang
- School of Chemistry, Sichuan University, Chengdu 610064, China
| | - Li Liu
- School of Chemistry, Sichuan University, Chengdu 610064, China
| | - Guangliang Liu
- School of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hua Zhu
- School of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
19
|
Xia J, Zhang Y, Jiang B. Accuracy Assessment of Atomistic Neural Network Potentials: The Impact of Cutoff Radius and Message Passing. J Phys Chem A 2023; 127:9874-9883. [PMID: 37943102 DOI: 10.1021/acs.jpca.3c06024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Atomistic neural network potentials have achieved great success in accelerating atomistic simulations in complicated systems in recent years. They are typically based on the atomic decomposition of total properties, truncating the interatomic correlations to a local environment within a given cutoff radius. A more recently developed message passing (MP) neural network framework can, in principle, incorporate nonlocal effects through iteratively correlating some atoms outside the cutoff sphere with atoms inside, a process referred to as MP. However, how the model accuracy depends on the cutoff radius and the MP process has rarely been discussed. In this work, we investigate this dependence using a recursively embedded atom neural network method that possesses both local and MP features, in two representative systems: liquid H2O and solid Al2O3. We focus on how these settings influence predictions for structural and vibrational properties, namely, radial distribution functions (RDFs) and vibrational density of states (VDOSs). We find that while MP lowers test errors of energy and forces in general, it may not improve the prediction for RDFs and/or VDOSs if direct interatomic correlations in the local environment are insufficiently described. A cutoff radius exceeding the first neighbor shell is necessary, beyond which involving MP quickly enhances the model accuracy until convergence. This is a potentially more efficient way to increase the model accuracy than directly increasing the cutoff radius, especially with more memory savings in the GPU implementation. Our findings also suggest that using the mean test error as the measure of the model accuracy alone is inadequate.
Collapse
Affiliation(s)
- Junfan Xia
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yaolong Zhang
- École Polytechnique FFlytech de Lausanne, 1015 Lausanne, Switzerland
| | - Bin Jiang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
20
|
Liu Y, Guo H. A Gaussian Process Based Δ-Machine Learning Approach to Reactive Potential Energy Surfaces. J Phys Chem A 2023; 127:8765-8772. [PMID: 37815868 DOI: 10.1021/acs.jpca.3c05318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The Gaussian process (GP) is an efficient nonparametric machine learning (ML) method. A distinct advantage of the GP is its ability to provide an estimate of statistical uncertainties. This is particularly useful in constructing high-dimensional potential energy surfaces (PESs) from ab initio data as it offers an optimal way to add new geometries to reduce the overall error. In this work, GP is employed in the context of Δ-machine learning (Δ-ML), in which a correction PES to an inaccurate low-level PES is constructed using a small number of high-level ab initio calculations. This new method is tested in three prototypical reactive systems, namely, the H + H2 → H + H2, OH + H2 → H2O + H, and H + CH4 → H2 + CH3 reactions. The results show that the GP-based Δ-ML approach is more efficient than its direct application in constructing high-level PESs. We also compare the new method to a previously proposed neural-network-based Δ-ML approach [Liu and Li J. Phys. Chem. Lett. 2022, 13, 4729-4738]. The results indicate that the two Δ-ML methods have comparable efficiencies in constructing accurate PESs.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
21
|
Liu X, Wang W, Pérez-Ríos J. Molecular dynamics-driven global potential energy surfaces: Application to the AlF dimer. J Chem Phys 2023; 159:144103. [PMID: 37811831 DOI: 10.1063/5.0169080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
In this work, we present a full-dimensional potential energy surface for AlF-AlF. We apply a general machine learning approach for full-dimensional potential energy surfaces, employing an active learning scheme trained on ab initio points, whose size grows based on the accuracy required. The training points are selected based on molecular dynamics simulations, choosing the most suitable configurations for different collision energy and mapping the most relevant part of the potential energy landscape of the system. The present approach does not require long-range information and is entirely general. As a result, it is possible to provide the full-dimensional AlF-AlF potential energy surface, requiring ≲0.01% of the configurations to be calculated ab initio. Furthermore, we analyze the general properties of the AlF-AlF system, finding critical differences with other reported results on CaF or bi-alkali dimers.
Collapse
Affiliation(s)
- Xiangyue Liu
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Weiqi Wang
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Jesús Pérez-Ríos
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794-3800, USA
| |
Collapse
|
22
|
Chen J, Zhang H, Zhou L, Hu X, Xie D. New accurate diabatic potential energy surfaces for the two lowest 1A'' states of H 2S and photodissociation dynamics in its first absorption band. Phys Chem Chem Phys 2023; 25:26032-26042. [PMID: 37750311 DOI: 10.1039/d3cp03026a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
In this work, state-to-state photodissociation dynamics of H2S in its first absorption band has been studied quantum mechanically with a new set of coupled potential energy surfaces (PESs) for the first two 1A'' excited states, which were developed at the explicitly correlated internally contracted multi-reference configuration interaction level with the cc-pVQZ-F12 basis set and a large active space. The calculated absorption spectrum, product state distributions, and angular distributions are in excellent agreement with available experimental data, validating the accuracy of the PESs and the non-adiabatic couplings. Detailed analysis of the dynamics reveals that there are strong non-adiabatic couplings between the bound 11B1 and dissociative 11A2 states around the Franck-Condon region, leading to very fast predissociation to ro-vibrationally cold SH(X̃) fragments, during which marginal angular anisotropy of the PESs is involved. This study provides quantitatively accurate characterization of the electronic structure and detailed fragmentation dynamics of this prototypical photodissociation system, which is desirable for improving astrochemical modelling.
Collapse
Affiliation(s)
- Junjie Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hanzi Zhang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Linsen Zhou
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China.
| | - Xixi Hu
- Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University, Nanjing 210023, China.
- Hefei National Laboratory, Hefei 230088, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
23
|
Hashem Y, Foust K, Kaledin M, Kaledin AL. Fitting Potential Energy Surfaces by Learning the Charge Density Matrix with Permutationally Invariant Polynomials. J Chem Theory Comput 2023; 19:5690-5700. [PMID: 37561135 PMCID: PMC10501011 DOI: 10.1021/acs.jctc.3c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 08/11/2023]
Abstract
The electronic energy in the Hartree-Fock (HF) theory is the trace of the product of the charge density matrix (CDM) with the one-electron and two-electron matrices represented in an atomic orbital basis, where the two-electron matrix is also a function of the same CDM. In this work, we examine a formalism of analytic representation of a generic molecular potential energy surface (PES) as a sum of a linearly parameterized HF and a correction term, the latter formally representing the electron correlation energy, also linearly parameterized, by expressing the elements of CDM using permutationally invariant polynomials (PIPs). We show on a variety of numerical examples, ranging from exemplary two-electron systems HeH+ and H3+ to the more challenging cases of methanium (CH5+) fragmentation and high-energy tautomerization of formamide to formimidic acid that such a formulation requires significantly fewer, 10-20% of PIPs, to accomplish the same accuracy of the fit as the conventional representation at practically the same computational cost.
Collapse
Affiliation(s)
- Younos Hashem
- Department
of Chemistry & Biochemistry, Kennesaw
State University, 370 Paulding Ave NW, Box # 1203, Kennesaw 30144, Georgia
| | - Katheryn Foust
- Department
of Chemistry & Biochemistry, Kennesaw
State University, 370 Paulding Ave NW, Box # 1203, Kennesaw 30144, Georgia
| | - Martina Kaledin
- Department
of Chemistry & Biochemistry, Kennesaw
State University, 370 Paulding Ave NW, Box # 1203, Kennesaw 30144, Georgia
| | - Alexey L. Kaledin
- Cherry
L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta 30322, Georgia
| |
Collapse
|
24
|
Fu L, Yang S, Zhang DH. Neural network potential energy surfaces and dipole moment surfaces for SO 2(H 2O) and SO 2(H 2O) 2 complexes. Phys Chem Chem Phys 2023; 25:22804-22812. [PMID: 37584113 DOI: 10.1039/d3cp03113f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Full-dimensional, ab initio-based many-body potential energy surfaces and dipole moment surfaces constructed using the neural network method for SO2(H2O)n (n = 1,2) complexes are reported. The database of the SO2 1-body PES, SO2(H2O) 2-body PES and SO2(H2O)2 3-body PES consists of 11 952, 79 882 and 84 159 ab initio energies, respectively. All 1-body energies were calculated at the CCSD(T)/CBS(AVTZ:AVQZ) level and all 2,3-body energies were calculated at the DSD-PBEP86/AVTZ level. The database of DMSs is the same as that of PESs and all dipole moments were calculated at the MP2/AVTZ level. Harmonic frequencies and dissociation energies of SO2(H2O) and SO2(H2O)2 were calculated on these PESs and compared with ab initio results to examine the fidelity of these PESs.
Collapse
Affiliation(s)
- Liangfei Fu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuo Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
| |
Collapse
|
25
|
Riera M, Knight C, Bull-Vulpe EF, Zhu X, Agnew H, Smith DGA, Simmonett AC, Paesani F. MBX: A many-body energy and force calculator for data-driven many-body simulations. J Chem Phys 2023; 159:054802. [PMID: 37526156 PMCID: PMC10550339 DOI: 10.1063/5.0156036] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Many-Body eXpansion (MBX) is a C++ library that implements many-body potential energy functions (PEFs) within the "many-body energy" (MB-nrg) formalism. MB-nrg PEFs integrate an underlying polarizable model with explicit machine-learned representations of many-body interactions to achieve chemical accuracy from the gas to the condensed phases. MBX can be employed either as a stand-alone package or as an energy/force engine that can be integrated with generic software for molecular dynamics and Monte Carlo simulations. MBX is parallelized internally using Open Multi-Processing and can utilize Message Passing Interface when available in interfaced molecular simulation software. MBX enables classical and quantum molecular simulations with MB-nrg PEFs, as well as hybrid simulations that combine conventional force fields and MB-nrg PEFs, for diverse systems ranging from small gas-phase clusters to aqueous solutions and molecular fluids to biomolecular systems and metal-organic frameworks.
Collapse
Affiliation(s)
- Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Christopher Knight
- Argonne National Laboratory, Computational Science Division, Lemont, Illinois 60439, USA
| | - Ethan F. Bull-Vulpe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Xuanyu Zhu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Henry Agnew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | | | - Andrew C. Simmonett
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
26
|
Li C, Hou S, Xie C. Constructing Diabatic Potential Energy Matrices with Neural Networks Based on Adiabatic Energies and Physical Considerations: Toward Quantum Dynamic Accuracy. J Chem Theory Comput 2023. [PMID: 37216273 DOI: 10.1021/acs.jctc.2c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A permutation invariant polynomial-neural network (PIP-NN) approach for constructing the global diabatic potential energy matrices (PEMs) of the coupled states of molecules is proposed. Specifically, the diabatization scheme is based merely on the adiabatic energy data of the system, which is ideally a most convenient way due to not requiring additional ab initio calculations for the data of the derivative coupling or any other physical properties of the molecule. Considering the permutation and coupling characteristics of the system, particularly in the presence of conical intersections, some vital treatments for the off-diagonal terms in diabatic PEM are essentially needed. Taking the photodissociation of H2O(X~/B~)/NH3(X~/A~) and nonadiabatic reaction Na(3p) + H2 → NaH(Σ+) + H for example, this PIP-NN method is shown to build up the global diabatic PEMs effectively and accurately. The root-mean-square errors of the adiabatic potential energies in the fitting for three different systems are all small (<10 meV). Further quantum dynamic calculations show that the absorption spectra and product branching ratios in both H2O(X~/B~) and NH3(X~/A~) nonadiabatic photodissociation are well reproduced on the new diabatic PEMs, and the nonadiabatic reaction probability of Na(3p) + H2 → NaH(Σ+) + H obtained on the new diabatic PEMs of the 12A1 and 12B2 states is in reasonably good agreement with previous theoretical result as well, validating this new PIP-NN method.
Collapse
Affiliation(s)
- Chaofan Li
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an 710127, China
| | - Siting Hou
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an 710127, China
| | - Changjian Xie
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an 710127, China
| |
Collapse
|
27
|
Li F, Yang X, Liu X, Cao J, Bian W. An Ab Initio Neural Network Potential Energy Surface for the Dimer of Formic Acid and Further Quantum Tunneling Dynamics. ACS OMEGA 2023; 8:17296-17303. [PMID: 37214673 PMCID: PMC10193396 DOI: 10.1021/acsomega.3c02169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023]
Abstract
We construct a full-dimensional ab initio neural network potential energy surface (PES) for the isomerization system of the formic acid dimer (FAD). This is based upon ab initio calculations using the DLPNO-CCSD(T) approach with the aug-cc-pVTZ basis set, performed at over 14000 symmetry-unique geometries. An accurate fit to the obtained energies is generated using a general neural network fitting procedure combined with the fundamental invariant method, and the overall energy-weighted root-mean-square fitting error is about 6.4 cm-1. Using this PES, we present a multidimensional quantum dynamics study on tunneling splittings with an efficient theoretical scheme developed by our group. The ground-state tunneling splitting of FAD calculated with a four-mode coupled method is in good agreement with the most recent experimental measurements. The PES can be applied for further dynamics studies. The effectiveness of the present scheme for constructing a high-dimensional PES is demonstrated, and this scheme is expected to be feasible for larger molecular systems.
Collapse
Affiliation(s)
- Fengyi Li
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Xingyu Yang
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Xiaoxi Liu
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, People’s
Republic of China
| | - Jianwei Cao
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Wensheng Bian
- Beijing
National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, People’s
Republic of China
| |
Collapse
|
28
|
Wang J, An F, Chen J, Hu X, Guo H, Xie D. Accurate Full-Dimensional Global Diabatic Potential Energy Matrix for the Two Lowest-Lying Electronic States of the H + O 2 ↔ HO + O Reaction. J Chem Theory Comput 2023; 19:2929-2938. [PMID: 37161259 DOI: 10.1021/acs.jctc.3c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A new and more accurate diabatic potential energy matrix (DPEM) is developed for the two lowest-lying electronic states of HO2, covering both the strong interaction region and reaction asymptotes. The ab initio calculations were performed at the Davidson corrected multireference configuration interaction level with the augmented correlation-consistent polarized valence quintuple-zeta basis set (MRCI+Q/AV5Z). The accuracy of the electronic structure calculations is validated by excellent agreement with the experimental HO2 equilibrium geometry, fundamental vibrational frequencies, and H + O2 ↔ OH + O reaction energy. Through the combination of an electronic angular momentum-method and a configuration interaction vector-based method, the mixing angle between the first two 2A″ states of HO2 was successfully determined. Elements of the 2×2 DPEM were fit to neural networks with a proper account of the complete nuclear permutation inversion symmetry of HO2. The DPEM correctly predicted the properties of conical intersection seams at linear and T-shape geometries, thus providing a reliable platform for studying both the spectroscopy of HO2 and the nonadiabatic dynamics for the H + O2 ↔ OH + O reaction.
Collapse
Affiliation(s)
- Junyan Wang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng An
- Research Center for Graph Computing, Zhejiang Lab, Hangzhou 311121, China
| | - Junjie Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xixi Hu
- Kuang Yaming Honors School, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, China
- Hefei National Laboratory, Hefei 230088, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
29
|
Tao C, Yang J, Hong Q, Sun Q, Li J. Global and Full-Dimensional Potential Energy Surfaces of the N 2 + O 2 Reaction for Hyperthermal Collisions. J Phys Chem A 2023; 127:4027-4042. [PMID: 37128765 DOI: 10.1021/acs.jpca.3c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The energy transfer, dissociations, and chemical reactions between O2 and N2 play an important role in the re-entry process of aircraft and many atmospheric, combustion, and plasma processes. Recently, Varga et al. (J. Chem. Phys., 2016, 144, 024310) developed a full-dimensional high-precision potential energy surface (PES) of the ground triplet electronic state for the O2 and N2 system based on ca. 55,000 data points, whose energies were calculated by multi-state complete-active-space second-order perturbation theory/minimally augmented correlation-consistent polarized valence triple-zeta electronic structure calculations plus dynamically scaled external correlation. The fitting function adopted the many-body expansion form with the four-body interactions fitted by the permutationally invariant polynomial in terms of bond-order functions of the six interatomic distances (MB-PIP). In this work, we refit the PES of the N2O2 system by two methods based on the same data set that was used by Varga et al. The first uses the permutation invariant polynomial-neural network (PIP-NN) method to fit the entire energy of the 55,000 data points. In the second approach, the PIP-NN method is used to fit only the four-body interaction component, a similar treatment in the MB-PIP method, and the resulting PES is named MB-PIP-NN. Then, the performances of these new PESs and the MB-PIP PES are comprehensively and systematically compared, such as comparisons of various scans, properties of stationary points, and dynamics simulations. Possible improvements for the PES of N2O2 are suggested. A more reliable PES of the system can be constructed in terms of data sampling range, electronic structure calculation level, and fitting method for high-temperature calculation and simulation in the future.
Collapse
Affiliation(s)
- Chun Tao
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Jiawei Yang
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qizhen Hong
- State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Quanhua Sun
- State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Li
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
30
|
Rösch D, Xu Y, Guo H, Hu X, Osborn DL. SO 2 Photodissociation at 193 nm Directly Forms S( 3P) + O 2( 3Σ g-): Implications for the Archean Atmosphere on Earth. J Phys Chem Lett 2023; 14:3084-3091. [PMID: 36950956 DOI: 10.1021/acs.jpclett.3c00077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It is well-documented that photodissociation of SO2 at λ = 193 nm produces O(3Pj) + SO X(3Σ-). We provide experimental evidence of a new product channel from one-photon absorption producing S(3Pj) + O2 X(3Σg-) in 2-4% yield. We probe the reactant and all products with time-resolved photoelectron photoion coincidence spectroscopy. High-level ab initio calculations suggest that the new product channel can only occur on the ground-state potential energy surface through internal conversion from the excited state, followed by isomerization to a transient SOO intermediate. Classical trajectories on the ground-state potential energy surface with random initial conditions qualitatively reproduce the experimental yields. This unexpected photodissociation pathway may help reconcile discrepancies in sulfur mass-independent fractionation mechanisms in Earth's geologic history, which shape our understanding of the Archean atmosphere and the Great Oxygenation Event in Earth's evolution.
Collapse
Affiliation(s)
- Daniel Rösch
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
| | - Yifei Xu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico,Albuquerque, New Mexico 87131, United States
| | - Xixi Hu
- Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - David L Osborn
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
31
|
Wang HD, Fu YL, Fu B, Fang W, Zhang DH. A highly accurate full-dimensional ab initio potential surface for the rearrangement of methylhydroxycarbene (H 3C-C-OH). Phys Chem Chem Phys 2023; 25:8117-8127. [PMID: 36876923 DOI: 10.1039/d3cp00312d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
We report here a full-dimensional machine learning global potential surface (PES) for the rearrangement of methylhydroxycarbene (H3C-C-OH, 1t). The PES is trained with the fundamental invariant neural network (FI-NN) method on 91 564 ab initio energies calculated at the UCCSD(T)-F12a/cc-pVTZ level of theory, covering three possible product channels. FI-NN PES has the correct symmetry properties with respect to permutation of four identical hydrogen atoms and is suitable for dynamics studies of the 1t rearrangement. The averaged root mean square error (RMSE) is 11.4 meV. Six important reaction pathways, as well as the energies and vibrational frequencies at the stationary geometries on these pathways are accurately preproduced by our FI-NN PES. To demonstrate the capacity of the PES, we calculated the rate coefficient of hydrogen migration in -CH3 (path A) and hydrogen migration of -OH (path B) with instanton theory on this PES. Our calculations predicted the half-life of 1t to be 95 min, which is excellent in agreement with experimental observations.
Collapse
Affiliation(s)
- Heng-Ding Wang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yan-Lin Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Wei Fang
- Fudan University, Shanghai, 200032, China.
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
32
|
Käser S, Vazquez-Salazar LI, Meuwly M, Töpfer K. Neural network potentials for chemistry: concepts, applications and prospects. DIGITAL DISCOVERY 2023; 2:28-58. [PMID: 36798879 PMCID: PMC9923808 DOI: 10.1039/d2dd00102k] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Artificial Neural Networks (NN) are already heavily involved in methods and applications for frequent tasks in the field of computational chemistry such as representation of potential energy surfaces (PES) and spectroscopic predictions. This perspective provides an overview of the foundations of neural network-based full-dimensional potential energy surfaces, their architectures, underlying concepts, their representation and applications to chemical systems. Methods for data generation and training procedures for PES construction are discussed and means for error assessment and refinement through transfer learning are presented. A selection of recent results illustrates the latest improvements regarding accuracy of PES representations and system size limitations in dynamics simulations, but also NN application enabling direct prediction of physical results without dynamics simulations. The aim is to provide an overview for the current state-of-the-art NN approaches in computational chemistry and also to point out the current challenges in enhancing reliability and applicability of NN methods on a larger scale.
Collapse
Affiliation(s)
- Silvan Käser
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | - Kai Töpfer
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| |
Collapse
|
33
|
Houston PL, Qu C, Yu Q, Conte R, Nandi A, Li JK, Bowman JM. PESPIP: Software to fit complex molecular and many-body potential energy surfaces with permutationally invariant polynomials. J Chem Phys 2023; 158:044109. [PMID: 36725524 DOI: 10.1063/5.0134442] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We wish to describe a potential energy surface by using a basis of permutationally invariant polynomials whose coefficients will be determined by numerical regression so as to smoothly fit a dataset of electronic energies as well as, perhaps, gradients. The polynomials will be powers of transformed internuclear distances, usually either Morse variables, exp(-ri,j/λ), where λ is a constant range hyperparameter, or reciprocals of the distances, 1/ri,j. The question we address is how to create the most efficient basis, including (a) which polynomials to keep or discard, (b) how many polynomials will be needed, (c) how to make sure the polynomials correctly reproduce the zero interaction at a large distance, (d) how to ensure special symmetries, and (e) how to calculate gradients efficiently. This article discusses how these questions can be answered by using a set of programs to choose and manipulate the polynomials as well as to write efficient Fortran programs for the calculation of energies and gradients. A user-friendly interface for access to monomial symmetrization approach results is also described. The software for these programs is now publicly available.
Collapse
Affiliation(s)
- Paul L Houston
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA and Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Chen Qu
- Independent Researcher, Toronto, Ontario M9B0E3, Canada
| | - Qi Yu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Riccardo Conte
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Apurba Nandi
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Jeffrey K Li
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
34
|
Muther T, Dahaghi AK, Syed FI, Van Pham V. Physical laws meet machine intelligence: current developments and future directions. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Zhang Y, Lin Q, Jiang B. Atomistic neural network representations for chemical dynamics simulations of molecular, condensed phase, and interfacial systems: Efficiency, representability, and generalization. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yaolong Zhang
- Department of Chemical Physics, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes University of Science and Technology of China Hefei Anhui China
| | - Qidong Lin
- Department of Chemical Physics, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes University of Science and Technology of China Hefei Anhui China
| | - Bin Jiang
- Department of Chemical Physics, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes University of Science and Technology of China Hefei Anhui China
| |
Collapse
|
36
|
Bull-Vulpe EF, Riera M, Bore SL, Paesani F. Data-Driven Many-Body Potential Energy Functions for Generic Molecules: Linear Alkanes as a Proof-of-Concept Application. J Chem Theory Comput 2022. [PMID: 36113028 DOI: 10.1021/acs.jctc.2c00645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a generalization of the many-body energy (MB-nrg) theoretical/computational framework that enables the development of data-driven potential energy functions (PEFs) for generic covalently bonded molecules, with arbitrary quantum mechanical accuracy. The "nearsightedness of electronic matter" is exploited to define monomers as "natural building blocks" on the basis of their distinct chemical identity. The energy of generic molecules is then expressed as a sum of individual many-body energies of incrementally larger subsystems. The MB-nrg PEFs represent the low-order n-body energies, with n = 1-4, using permutationally invariant polynomials derived from electronic structure data carried out at an arbitrary quantum mechanical level of theory, while all higher-order n-body terms (n > 4) are represented by a classical many-body polarization term. As a proof-of-concept application of the general MB-nrg framework, we present MB-nrg PEFs for linear alkanes. The MB-nrg PEFs are shown to accurately reproduce reference energies, harmonic frequencies, and potential energy scans of alkanes, independently of their length. Since, by construction, the MB-nrg framework introduced here can be applied to generic covalently bonded molecules, we envision future computer simulations of complex molecular systems using data-driven MB-nrg PEFs, with arbitrary quantum mechanical accuracy.
Collapse
Affiliation(s)
- Ethan F. Bull-Vulpe
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Marc Riera
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Sigbjørn L. Bore
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
37
|
Xu X, Li J. Deciphering Dynamics of the Cl + SiH 4 → H + SiH 3Cl Reaction on a Machine Learning Made Globally Accurate Full-Dimensional Potential Energy Surface. J Phys Chem A 2022; 126:6456-6466. [PMID: 36084298 DOI: 10.1021/acs.jpca.2c05417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical reaction dynamics needs the joint effort from both experiment and theory, and theory is useful to rationalize the experimental results by offering intimate details of chemical reaction dynamics and to explore new reaction pathways. With the aid of machine learning, we develop here an accurate full-dimensional potential energy surface (PES) for the reaction between Cl + SiH4. This PES can describe well the hydrogen abstraction channel to HCl + SiH3. It can also give a good description for the hydrogen substitution channel to H + SiH3Cl, which is the focus of the current study and has never been reported by theory. The dynamics of this substitution channel is revealed in detail by calculating ample quasi-classical trajectories (QCTs) on the new PES. The computed product angular distributions are in good agreement with the only crossed molecular beam experiment. Both theory and experiment suggest that this channel takes place mainly via the typical SN2 inversion mechanism. Theory reveals that there also exists a novel torsion mechanism for the substitution channel. Two dynamic mechanisms are analyzed in detail. The present detailed theoretical dynamics study sheds insightful and novel understanding for this fundamentally important chemical reaction.
Collapse
Affiliation(s)
- Xiaohu Xu
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
38
|
Qin J, Liu Y, Li J. Quantitative Dynamics of Paradigmatic SN2 reaction OH− + CH3F on Accurate Full-Dimensional Potential Energy Surface. J Chem Phys 2022; 157:124301. [DOI: 10.1063/5.0112228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The bimolecular reaction between OH− and CH3F is not just a prototypical SN2 process but also has three other product channels. Here, we develop an accurate full-dimensional potential energy surface (PES) based on 191 193 points calculated at the level CCSD(T)-F12a/aug-cc-pVTZ. A detailed dynamics and mechanism analysis were carried out on this PES by using the quasi-classical trajectory approach. It is verified that the trajectories do not follow the minimum energy path (MEP) but directly dissociate to F− and CH3OH. In addition, a new transition state for proton exchange and a new product complex CH2F−‧‧‧H2O for proton abstraction were discovered. The trajectories avoid the transition state or this complex, instead dissociate to H2O and CH2F− directly through the ridge regions of the MEP before the transition state. These non-MEP dynamics become more pronounced at high collision energies. Detailed dynamics simulations provide new insights into the atomic-level mechanisms of the title reaction thanks to the new chemically accurate PES with the aid of the machine learning.
Collapse
Affiliation(s)
- Jie Qin
- Chemistry and Chemical Engineering, Chongqing University Department of Chemical Engineering, China
| | | | - Jun Li
- School of Chemistry and Chemical Engineering, Chongqing University, China
| |
Collapse
|
39
|
Peng Y, Zhu F, Zhu H. A new potential energy surface and rovibrational spectra of the CO-CO 2 complex: Dependence on the antisymmetric stretching vibration of CO 2. J Chem Phys 2022; 157:084310. [DOI: 10.1063/5.0100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a new ab initio five-dimensional potential energy surface for the CO-CO2 complex containing the Q3 normal mode for the ν3 asymmetric stretching vibration of the CO2 unit. The potential was calculated by supermolecular approach at the CCSD(T)-F12 level with aug-cc-pVTZ basis set plus midpoint bond functions. Two vibrationally averaged four-dimensional potentials for CO-CO2 with CO2 in the ground and ν3 excited states were generated by the integration of the five-dimensional potential over the Q3 intramolecular coordinate. Each potential displays a T-shaped global minimum with the C end in the CO unit pointing toward the C atom in the CO2 unit and a T-shaped local minimum but with the CO monomer rotated by 180º. The rovibrational bound states and energy levels for the CO-CO2 dimer were obtained employing the radial discrete variable representation (DVR)/angular finite basis representation (FBR) method in conjunction with the Lanczos algorithm. The vibrational ground and some lower excited states for CO-CO2 are localized around the global minimum because of the higher potential barriers. The band origin is blueshifted by 0.2089 cm-1 for CO-CO2 in the CO2 ν3 range, which is consistent with the experimental result of 0.211 cm-1. The geared bending vibrational frequencies for CO-CO2 are 24.7101 and 24.5549 cm-1 at the ground and ν3 excited states of CO2, respectively. The predicted rovibrational frequencies as well as spectral constants coincide with the available observations, and these parameters show the CO-CO2 complex is a nearly prolate asymmetric rotor.
Collapse
Affiliation(s)
- Yang Peng
- Sichuan University College of Chemistry, China
| | | | | |
Collapse
|
40
|
Guan Y, Yarkony DR, Zhang DH. Permutation invariant polynomial neural network based diabatic ansatz for the (E + A) × (e + a) Jahn-Teller and Pseudo-Jahn-Teller systems. J Chem Phys 2022; 157:014110. [PMID: 35803819 DOI: 10.1063/5.0096912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, the permutation invariant polynomial neural network (PIP-NN) approach is employed to construct a quasi-diabatic Hamiltonian for system with non-Abelian symmetries. It provides a flexible and compact NN-based diabatic ansatz from the related approach of Williams, Eisfeld, and co-workers. The example of H3 + is studied, which is an (E + A) × (e + a) Jahn-Teller and Pseudo-Jahn-Teller system. The PIP-NN diabatic ansatz is based on the symmetric polynomial expansion of Viel and Eisfeld, the coefficients of which are expressed with neural network functions that take permutation-invariant polynomials as input. This PIP-NN-based diabatic ansatz not only preserves the correct symmetry but also provides functional flexibility to accurately reproduce ab initio electronic structure data, thus resulting in excellent fits. The adiabatic energies, energy gradients, and derivative couplings are well reproduced. A good description of the local topology of the conical intersection seam is also achieved. Therefore, this diabatic ansatz completes the PIP-NN based representation of DPEM with correct symmetries and will enable us to diabatize even more complicated systems with complex symmetries.
Collapse
Affiliation(s)
- Yafu Guan
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - David R Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
41
|
Ma D, Ma J. Full-dimensional quantum mechanical calculations for the tunneling behavior of HOCO dissociation to H + CO 2. Phys Chem Chem Phys 2022; 24:15321-15329. [PMID: 35703166 DOI: 10.1039/d1cp04269f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tunneling behavior during HOCO dissociation to H + CO2 was investigated by full-dimensional quantum mechanical calculations based on an accurate global potential energy surface. The tunneling lifetimes for the low-lying 1500 vibrational states were calculated using the low-storage filter diagonalization method after a 1 million-step Chebyshev propagation. In the calculated energy range, the lifetimes of different vibrational states with similar energy are found to differ by 3-4 orders of magnitude, and the lower limit for these tunneling lifetimes is consistent with the experimental results reported by Continetti et al. For the given vibrational progressions, the lifetime of the vibrational states decreases with the increasing energy level, which is consistent with the results of 1D simulation calculations reported by Bowman, but the declining curve obviously fluctuates, and the declining slope is significantly different from that obtained by 1D simulation. Due to a difference in the effective barrier width, the mode-specific behavior of the tunneling effect is manifested in that the O-C-O' and H-O-C bend modes lead to the largest enhancement and an inhibitory effect on the tunneling process, respectively.
Collapse
Affiliation(s)
- Dandan Ma
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Jianyi Ma
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
42
|
Meng Q, Chen J, Ma J, Zhang X, Chen J. Adiabatic models for the quantum dynamics of surface scattering with lattice effects. Phys Chem Chem Phys 2022; 24:16415-16436. [PMID: 35766107 DOI: 10.1039/d2cp01560a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this contribution, we review models for the lattice effects in quantum dynamics calculations on surface scattering, which is important to modeling heterogeneous catalysis for achieving an interpretation of experimental measurements. Unlike dynamics models for reactions in the gas phase, those for heterogeneous reactions have to include the effects of the surface. For manageable computational costs in calculations, the effects of static surface (SS) are firstly modeled as this is simply and easily implemented. Then, the SS model has to be improved to include the effects of the flexible surface, that is the lattice effects. To do this, various surface models have been designed where the coordinates of the surface atoms are introduced in the Hamiltonian operator, especially those of the top surface atom. Based on this model Hamiltonian operator, extensive multi-dimension quantum dynamics calculations can be performed to recover the lattice effects. Here, we first review an overview of the techniques in constructing the Hamiltonian operator, which is a sum of the kinetic energy operator (KEO) and potential energy surface (PES). Since the PES containing the coordinates of the surface atoms in a cell is still expensive, the SS model is often accepted. We consider a mathematical model, called the coupled harmonic oscillator (CHO) model, to introduce the concepts of adiabatic and diabatic representations for separating the molecule and surface. Under the adiabatic model, we further introduce the expansion model where the potential function is Taylor expanded around the optimized geometry of the surface. By an expansion model truncated at the first and second order, various coupling surface models between the molecule and surface are derived. Moreover, by further and deeply understanding the adiabatic representation, an effective Hamiltonian operator is obtained by optimizing the total wave function in factorized form. By this factorized form of wave function and effective Hamiltonian operator, the geometry phase of the surface wave function is theoretically found. This theoretical prediction may be measured by carefully designing experiments. Finally, discussions on the adiabatic representation, the PES construction, and possibility of the classical-dynamics solutions are given. Based on these discussions, a simple outlook on the dynamics of photocatalytics is finally given.
Collapse
Affiliation(s)
- Qingyong Meng
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Junbo Chen
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China. .,Xi'an Modern Chemistry Research Institute, China North Industries Group Corp., Ltd., East Zhangba Road 168, 710065 Xi'an, China
| | - Jianxing Ma
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Xingyu Zhang
- Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Jun Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Yangqiao Road West 155, 350002 Fuzhou, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Optoelectronic Industry Base at High-tech Zone, 350108 Fuzhou, China
| |
Collapse
|
43
|
Liu Y, Li J. Permutation-Invariant-Polynomial Neural-Network-Based Δ-Machine Learning Approach: A Case for the HO 2 Self-Reaction and Its Dynamics Study. J Phys Chem Lett 2022; 13:4729-4738. [PMID: 35609295 DOI: 10.1021/acs.jpclett.2c01064] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Δ-machine learning, or the hierarchical construction scheme, is a highly cost-effective method, as only a small number of high-level ab initio energies are required to improve a potential energy surface (PES) fit to a large number of low-level points. However, there is no efficient and systematic way to select as few points as possible from the low-level data set. We here propose a permutation-invariant-polynomial neural-network (PIP-NN)-based Δ-machine learning approach to construct full-dimensional accurate PESs of complicated reactions efficiently. Particularly, the high flexibility of the NN is exploited to efficiently sample points from the low-level data set. This approach is applied to the challenging case of a HO2 self-reaction with a large configuration space. Only 14% of the DFT data set is used to successfully bring a newly fitted DFT PES to the UCCSD(T)-F12a/AVTZ quality. Then, the quasiclassical trajectory (QCT) calculations are performed to study its dynamics, particularly the mode specificity.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
44
|
Song K, Song H, Li J. Validating experiments for the reaction H 2 + NH 2- by dynamical calculations on an accurate full-dimensional potential energy surface. Phys Chem Chem Phys 2022; 24:10160-10167. [PMID: 35420091 DOI: 10.1039/d2cp00870j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ion-molecule reactions play key roles in the field of ion related chemistry. As a prototypical multi-channel ion-molecule reaction, the reaction H2 + NH2- → NH3 + H- has been studied for decades. In this work, we develop a new globally accurate potential energy surface (PES) for the title system based on hundreds of thousands of sampled points over a wide dynamically relevant region that covers long-range interacting configuration space. The permutational invariant polynomial-neural network (PIP-NN) method is used for fitting and the resulting total root mean squared error (RMSE) is extremely small, 0.026 kcal mol-1. Extensive dynamical and kinetic calculations are carried out on this PIP-NN PES. Impressively, a unique phenomenon of significant reactivity suppression by exciting the rotational mode of H2 is reported, supported by both the quasi-classical trajectory (QCT) and quantum dynamics (QD) calculations. Further analysis uncovers that exciting the H2 rotational mode would prevent the formation of the reactant complex and thus suppress the reactivity. The calculated rate coefficients for H2/D2 + NH2- agree well with the experimental results, which show an inverse temperature dependence from 50 to 300 K, consistent with the capture nature of this barrierless reaction. The significant kinetic isotope effect observed by experiments is well reproduced by the QCT computations as well.
Collapse
Affiliation(s)
- Kaisheng Song
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, P. R. China.
| | - Hongwei Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, P. R. China.
| |
Collapse
|
45
|
Zhang Y, Xia J, Jiang B. REANN: A PyTorch-based end-to-end multi-functional deep neural network package for molecular, reactive, and periodic systems. J Chem Phys 2022; 156:114801. [DOI: 10.1063/5.0080766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this work, we present a general purpose deep neural network package for representing energies, forces, dipole moments, and polarizabilities of atomistic systems. This so-called recursively embedded atom neural network model takes advantages of both the physically inspired atomic descriptor based neural networks and the message-passing based neural networks. Implemented in the PyTorch framework, the training process is parallelized on both the central processing unit and the graphics processing unit with high efficiency and low memory in which all hyperparameters can be optimized automatically. We demonstrate the state-of-the-art accuracy, high efficiency, scalability, and universality of this package by learning not only energies (with or without forces) but also dipole moment vectors and polarizability tensors in various molecular, reactive, and periodic systems. An interface between a trained model and LAMMPs is provided for large scale molecular dynamics simulations. We hope that this open-source toolbox will allow for future method development and applications of machine learned potential energy surfaces and quantum-chemical properties of molecules, reactions, and materials.
Collapse
Affiliation(s)
- Yaolong Zhang
- School of Chemistry and Materials Science, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junfan Xia
- School of Chemistry and Materials Science, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- School of Chemistry and Materials Science, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
46
|
Xiang H, Tian L, Li Y, Song H. Energy- and Local-Gradient-Based Neural Network Method for Accurately Describing Long-Range Interaction: Application to the H 2 + CO + Reaction. J Phys Chem A 2022; 126:352-363. [PMID: 34989591 DOI: 10.1021/acs.jpca.1c09719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The long-range interaction plays an important role in theoretically describing ion-molecule reaction. However, most energy-based neural network fitting methods usually introduce spurious long-range interactions. In this work, we propose an energy- and local-gradient-based neural network (ELGNN) method to fit potential energy surfaces (PESs). K-means clustering is employed to divide the whole configuration space into three regions: reactant asymptotic region, interaction region, and product asymptotic region. In the interaction region, only the energies of sampled points are computed, while in the asymptotic regions, the gradients of partially sampled configurations are calculated as well, and both the energies and energy gradients (if necessary) are used to fit long-range interactions. These regions are joined together by switching functions. The ELGNN method is first applied to fit the PES of the H2 + CO+ reaction, which has significant long-range interactions. It is found that the ELGNN method works better than the energy-based NN method in describing long-range interactions. The dynamics and kinetics of the reaction are then investigated on the new PES.
Collapse
Affiliation(s)
- Haipan Xiang
- College of Physical Science and Technology, Huazhong Normal University, Wuhan 430079, China.,State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Li Tian
- College of Physical Science and Technology, Huazhong Normal University, Wuhan 430079, China.,State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yong Li
- College of Physical Science and Technology, Huazhong Normal University, Wuhan 430079, China
| | - Hongwei Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
47
|
Abstract
In the past two decades, machine learning potentials (MLPs) have reached a level of maturity that now enables applications to large-scale atomistic simulations of a wide range of systems in chemistry, physics, and materials science. Different machine learning algorithms have been used with great success in the construction of these MLPs. In this review, we discuss an important group of MLPs relying on artificial neural networks to establish a mapping from the atomic structure to the potential energy. In spite of this common feature, there are important conceptual differences among MLPs, which concern the dimensionality of the systems, the inclusion of long-range electrostatic interactions, global phenomena like nonlocal charge transfer, and the type of descriptor used to represent the atomic structure, which can be either predefined or learnable. A concise overview is given along with a discussion of the open challenges in the field. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Emir Kocer
- Institut für Physikalische Chemie, Theoretische Chemie, Universität Göttingen, Göttingen, Germany;, ,
| | - Tsz Wai Ko
- Institut für Physikalische Chemie, Theoretische Chemie, Universität Göttingen, Göttingen, Germany;, ,
| | - Jörg Behler
- Institut für Physikalische Chemie, Theoretische Chemie, Universität Göttingen, Göttingen, Germany;, ,
| |
Collapse
|
48
|
Theoretical Description of Water from Single-Molecule to Condensed Phase: a Review of Recent Progress on Potential Energy Surfaces and Molecular Dynamics. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2201005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
49
|
Felker PM, Bačić Z. Noncovalently bound molecular complexes beyond diatom–diatom systems: full-dimensional, fully coupled quantum calculations of rovibrational states. Phys Chem Chem Phys 2022; 24:24655-24676. [DOI: 10.1039/d2cp04005k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The methodological advances made in recent years have significantly extended the range and dimensionality of noncovalently bound molecular complexes for which full-dimensional quantum calculations of their rovibrational states are feasible.
Collapse
Affiliation(s)
- Peter M. Felker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, NY, 10003, USA
- Simons Center for Computational Physical Chemistry at New York University, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China
| |
Collapse
|
50
|
Roy S, Tiwari A. Mode Selective Chemistry for the Dissociation of Methane on Efficient Ni/Pt-Bimetallic Alloy Catalysts. Phys Chem Chem Phys 2022; 24:16596-16610. [DOI: 10.1039/d2cp02030k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mode selectivity of methane dissociation is studied on three different Ni/Pt-bimetallic alloy surfaces using a fully quantum approach based on reaction path Hamiltonian. Dissociative sticking probability depends on the...
Collapse
|