Parsons SW, Hucek DG, Mishra P, Plusquellic DF, Zwier TS, Drucker S. Jet-Cooled Phosphorescence Excitation Spectrum of the T
1(n,π*) ← S
0 Transition of 4
H-Pyran-4-one.
J Phys Chem A 2023;
127:3636-3647. [PMID:
37067071 PMCID:
PMC10150392 DOI:
10.1021/acs.jpca.3c01059]
[Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Indexed: 04/18/2023]
Abstract
The 4H-pyran-4-one (4PN) molecule is a cyclic conjugated enone with spectroscopically accessible singlet and triplet (n,π*)excited states. Vibronic spectra of 4PN provide a stringent test of electronic-structure calculations, through comparison of predicted vs measured vibrational frequencies in the excited state. We report here the T1(n,π*) ← S0 phosphorescence excitation spectrum of 4PN, recorded under the cooling conditions of a supersonic free-jet expansion. The jet cooling has eliminated congestion appearing in previous room-temperature measurements of the T1 ← S0 band system and has enabled us to determine precise fundamental frequencies for seven vibrational modes of the molecule in its T1(n,π*) state. We have also analyzed the rotational contour of the 000 band, obtaining experimental values for spin-spin and spin-rotation constants of the T1(n,π*) state. We used the experimental results to test predictions from two commonly used computational methods, equation-of-motion excitation energies with dynamical correlation incorporated at the level of coupled cluster singles doubles (EOM-EE-CCSD) and time-dependent density functional theory (TDDFT). We find that each method predicts harmonic frequencies within a few percent of observed fundamentals, for in-plane vibrational modes. However, for out-of-plane modes, each method has specific liabilities that result in frequency errors on the order of 20-30%. The calculations have helped to identify a perturbation from the T2(π,π*) state that leads to unexpected features observed in the T1(n,π*) ← S0 origin band rotational contour.
Collapse