1
|
Mattioli G, Avaldi L, Bolognesi P, Casavola A, Morini F, Van Caekenberghe T, Bozek JD, Castrovilli MC, Chiarinelli J, Domaracka A, Indrajith S, Maclot S, Milosavljević AR, Nicolafrancesco C, Nicolas C, Rousseau P. A study of the valence photoelectron spectrum of uracil and mixed water-uracil clusters. J Chem Phys 2023; 158:114301. [PMID: 36948841 DOI: 10.1063/5.0135574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The valence ionization of uracil and mixed water-uracil clusters has been studied experimentally and by ab initio calculations. In both measurements, the spectrum onset shows a red shift with respect to the uracil molecule, with the mixed cluster characterized by peculiar features unexplained by the sum of independent contributions of the water or uracil aggregation. To interpret and assign all the contributions, we performed a series of multi-level calculations, starting from an exploration of several cluster structures using automated conformer-search algorithms based on a tight-binding approach. Ionization energies have been assessed on smaller clusters via a comparison between accurate wavefunction-based approaches and cost-effective DFT-based simulations, the latter of which were applied to clusters up to 12 uracil and 36 water molecules. The results confirm that (i) the bottom-up approach based on a multilevel method [Mattioli et al. Phys. Chem. Chem. Phys. 23, 1859 (2021)] to the structure of neutral clusters of unknown experimental composition converges to precise structure-property relationships and (ii) the coexistence of pure and mixed clusters in the water-uracil samples. A natural bond orbital (NBO) analysis performed on a subset of clusters highlighted the special role of H-bonds in the formation of the aggregates. The NBO analysis yields second-order perturbative energy between the H-bond donor and acceptor orbitals correlated with the calculated ionization energies. This sheds light on the role of the oxygen lone-pairs of the uracil CO group in the formation of strong H-bonds, with a stronger directionality in mixed clusters, giving a quantitative explanation for the formation of core-shell structures.
Collapse
Affiliation(s)
- Giuseppe Mattioli
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10 Monterotondo Scalo, Italy
| | - Lorenzo Avaldi
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10 Monterotondo Scalo, Italy
| | - Paola Bolognesi
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10 Monterotondo Scalo, Italy
| | - Annarita Casavola
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10 Monterotondo Scalo, Italy
| | - Filippo Morini
- X-lab, Faculty of Sciences, University of Hasselt, Campus Diepenbeek, BE 3590 Diepenbeek, Belgium
| | - Thomas Van Caekenberghe
- X-lab, Faculty of Sciences, University of Hasselt, Campus Diepenbeek, BE 3590 Diepenbeek, Belgium
| | - John D Bozek
- Synchrotron SOLEIL, L'Orme de Merisiers, 91192, Saint Aubin, BP48, 1192 Gif-sur-Yvette Cedex, France
| | - Mattea C Castrovilli
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10 Monterotondo Scalo, Italy
| | - Jacopo Chiarinelli
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10 Monterotondo Scalo, Italy
| | - Alicja Domaracka
- Normandie University, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | | | - Sylvain Maclot
- Institut Lumière Matière, UMR5306 CNRS, Université Claude Bernard Lyon 1, 69622 Villeurbanne CEDEX, France
| | | | - Chiara Nicolafrancesco
- Synchrotron SOLEIL, L'Orme de Merisiers, 91192, Saint Aubin, BP48, 1192 Gif-sur-Yvette Cedex, France
| | - Christophe Nicolas
- Synchrotron SOLEIL, L'Orme de Merisiers, 91192, Saint Aubin, BP48, 1192 Gif-sur-Yvette Cedex, France
| | - Patrick Rousseau
- Normandie University, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| |
Collapse
|
2
|
Ultrafast Photo-Ion Probing of the Relaxation Dynamics in 2-Thiouracil. Molecules 2023; 28:molecules28052354. [PMID: 36903604 PMCID: PMC10005304 DOI: 10.3390/molecules28052354] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
In this work, we investigate the relaxation processes of 2-thiouracil after UV photoexcitation to the S2 state through the use of ultrafast, single-colour, pump-probe UV/UV spectroscopy. We place focus on investigating the appearance and subsequent decay signals of ionized fragments. We complement this with VUV-induced dissociative photoionisation studies collected at a synchrotron, allowing us to better understand and assign the ionisation channels involved in the appearance of the fragments. We find that all fragments appear when single photons with energy > 11 eV are used in the VUV experiments and hence appear through 3+ photon-order processes when 266 nm light is used. We also observe three major decays for the fragment ions: a sub-autocorrelation decay (i.e., sub-370 fs), a secondary ultrafast decay on the order of 300-400 fs, and a long decay on the order of 220 to 400 ps (all fragment dependent). These decays agree well with the previously established S2 → S1 → Triplet → Ground decay process. Results from the VUV study also suggest that some of the fragments may be created by dynamics occurring in the excited cationic state.
Collapse
|
3
|
Semmeq A, Badawi M, Dziurla MA, Ouaskit S, Monari A. Nucleic Acids under Stress: Understanding and Simulating Nucleobase Fragmentation Pathways. Chempluschem 2021; 86:1426-1435. [PMID: 34637193 DOI: 10.1002/cplu.202100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/24/2021] [Indexed: 11/10/2022]
Abstract
The effects of radiations on nucleic acids and their constituents is widely studied across several research fields using different experimental and theoretical protocols. While a large number of studies were performed in this context, many fundamental physical and chemical effects are still being investigated, particularly involving the effect of the biological environment. As an example, the interpretation of experimental nucleic acid bases mass spectra, and hence inferring their reactivity in complex environment still poses great challenge. This Minireview summarizes recent theoretical advancements aiming to predict and interpret the reactivity of nucleic acid bases. We focus not only on the understanding of the inherent fragmentation pathways of isolated nucleobases but also on the modeling of a realistic nano-environments highlighting the importance of molecular dynamics simulations and the non-innocent role of the environment and also the possibility to open novel fragmentation pathways.
Collapse
Affiliation(s)
| | - Michael Badawi
- Université de Lorraine and CNRS, UMR 7019 LPCT, 54000, Nancy, France
| | | | - Said Ouaskit
- Laboratoire de Physique de la Matière Condensée, Faculté de Sciences Ben M'sick, University Hassan II of Casablanca, Morocco
| | - Antonio Monari
- Université de Lorraine and CNRS, UMR 7019 LPCT, 54000, Nancy, France
- Université de Paris and CNRS, ITODYS, 75006, Paris, France
| |
Collapse
|
4
|
Mattioli G, Avaldi L, Bolognesi P, Bozek JD, Castrovilli MC, Chiarinelli J, Domaracka A, Indrajith S, Maclot S, Milosavljević AR, Nicolafrancesco C, Rousseau P. Water-biomolecule clusters studied by photoemission spectroscopy and multilevel atomistic simulations: hydration or solvation? Phys Chem Chem Phys 2021; 23:15049-15058. [PMID: 34231588 DOI: 10.1039/d1cp02031e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The properties of mixed water-uracil nanoaggregates have been probed by core electron-photoemission measurements to investigate supramolecular assembly in the gas phase driven by weak interactions. The interpretation of the measurements has been assisted by multilevel atomistic simulations, based on semi-empirical tight-binding and DFT-based methods. Our protocol established a positive-feedback loop between experimental and computational techniques, which has enabled a sound and detailed atomistic description of such complex heterogeneous molecular aggregates. Among biomolecules, uracil offers interesting and generalized skeletal features; its structure encompasses an alternation of hydrophilic H-bond donor and acceptor sites and hydrophobic moieties, typical in biomolecular systems, that induces a supramolecular core-shell-like organization of the mixed clusters with a water core and an uracil shell. This structure is far from typical models of both solid-state hydration, with water molecules in defined positions, or liquid solvation, where disconnected uracil molecules are completely surrounded by water.
Collapse
Affiliation(s)
- Giuseppe Mattioli
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10, Monterotondo Scalo, Italy.
| | - Lorenzo Avaldi
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10, Monterotondo Scalo, Italy.
| | - Paola Bolognesi
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10, Monterotondo Scalo, Italy.
| | - John D Bozek
- Synchrotron SOLEIL, L'Orme de Merisiers, 91192, Saint Aubin, BP48, 1192, Gif-sur-Yvette Cedex, France
| | - Mattea C Castrovilli
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10, Monterotondo Scalo, Italy.
| | - Jacopo Chiarinelli
- CNR-Istituto di Struttura della Materia, Area della Ricerca di Roma 1, CP 10, Monterotondo Scalo, Italy.
| | - Alicja Domaracka
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | | | - Sylvain Maclot
- Physics Department, University of Gothenburg, Origovägen 6B, 41296 Göteborg, Sweden
| | | | - Chiara Nicolafrancesco
- Synchrotron SOLEIL, L'Orme de Merisiers, 91192, Saint Aubin, BP48, 1192, Gif-sur-Yvette Cedex, France and Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - Patrick Rousseau
- Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| |
Collapse
|
5
|
Bocková J, Rebelo A, Ryszka M, Pandey R, Mészáros D, Limão-Vieira P, Papp P, Mason NJ, Townsend D, Nixon KL, Vizcaino V, Poully JC, Eden S. Thermal desorption effects on fragment ion production from multi-photon ionized uridine and selected analogues. RSC Adv 2021; 11:20612-20621. [PMID: 35479354 PMCID: PMC9033967 DOI: 10.1039/d1ra01873f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/09/2021] [Indexed: 12/22/2022] Open
Abstract
Experiments on neutral gas-phase nucleosides are often complicated by thermal lability. Previous mass spectrometry studies of nucleosides have identified enhanced relative production of nucleobase ions (e.g. uracil+ from uridine) as a function of desorption temperature to be the critical indicator of thermal decomposition. On this basis, the present multi-photon ionization (MPI) experiments demonstrate that laser-based thermal desorption is effective for producing uridine, 5-methyluridine, and 2′-deoxyuridine targets without thermal decomposition. Our experiments also revealed one notable thermal dependence: the relative production of the sugar ion C5H9O4+ from intact uridine increased substantially with the desorption laser power and this only occurred at MPI wavelengths below 250 nm (full range studied 222–265 nm). We argue that this effect can only be rationalized plausibly in terms of changing populations of different isomers, tautomers, or conformers in the target as a function of the thermal desorption conditions. Furthermore, the wavelength threshold behavior of this thermally-sensitive MPI channel indicates a critical dependence on neutral excited state dynamics between the absorption of the first and second photons. The experimental results are complemented by density functional theory (DFT) optimizations of the lowest-energy structure of uridine and two further conformers distinguished by different orientations of the hydroxymethyl group on the sugar part of the molecule. The energies of the transitions states between these three conformers are low compared with the energy required for decomposition. This work reveals the first experimental evidence supporting isomer-dependence in the radiation response of a nucleoside.![]()
Collapse
Affiliation(s)
- J Bocková
- School of Physical Sciences, The Open University Walton Hall Milton Keynes MK7 6AA UK
| | - A Rebelo
- School of Physical Sciences, The Open University Walton Hall Milton Keynes MK7 6AA UK .,Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, FCT - Universidade NOVA de Lisboa P-2829-516 Caparica Portugal
| | - M Ryszka
- School of Physical Sciences, The Open University Walton Hall Milton Keynes MK7 6AA UK
| | - R Pandey
- School of Physical Sciences, The Open University Walton Hall Milton Keynes MK7 6AA UK
| | - D Mészáros
- Department of Experimental Physics, Comenius University in Bratislava Mlynská dolina F2 84248 Bratislava Slovakia
| | - P Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, FCT - Universidade NOVA de Lisboa P-2829-516 Caparica Portugal
| | - P Papp
- Department of Experimental Physics, Comenius University in Bratislava Mlynská dolina F2 84248 Bratislava Slovakia
| | - N J Mason
- School of Physical Sciences, The Open University Walton Hall Milton Keynes MK7 6AA UK .,School of Physical Sciences, Ingram Building, University of Kent Canterbury CT2 7NH UK
| | - D Townsend
- Institute of Photonics and Quantum Sciences, Heriot-Watt University Edinburgh EH14 4AS UK.,Institute of Chemical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - K L Nixon
- School of Life, Health, and Chemical Sciences, The Open University Walton Hall Milton Keynes MK7 6AA UK.,School of Sciences, University of Wolverhampton Wulfruna Street Wolverhampton WV1 1LY UK
| | - V Vizcaino
- CIMAP UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Normandie, GANIL Bd Becquerel BP 5133 14070 Caen France
| | - J-C Poully
- CIMAP UMR 6252, CEA/CNRS/ENSICAEN/Université de Caen Normandie, GANIL Bd Becquerel BP 5133 14070 Caen France
| | - S Eden
- School of Physical Sciences, The Open University Walton Hall Milton Keynes MK7 6AA UK
| |
Collapse
|
6
|
Chakraborty P, Liu Y, Weinacht T, Matsika S. Effect of dynamic correlation on the ultrafast relaxation of uracil in the gas phase. Faraday Discuss 2021; 228:266-285. [DOI: 10.1039/d0fd00110d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High level multi-reference non-adiabatic dynamics simulations reveal that uracil’s photoexcited S2 state decays very quickly without any significant trapping.
Collapse
Affiliation(s)
| | - Yusong Liu
- Department of Physics and Astronomy
- Stony Brook University
- New York 11794
- USA
| | - Thomas Weinacht
- Department of Physics and Astronomy
- Stony Brook University
- New York 11794
- USA
| | | |
Collapse
|
7
|
Marques TS, Schürmann R, Ebel K, Heck C, Śmiałek MA, Eden S, Mason N, Bald I. Kinetics of molecular decomposition under irradiation of gold nanoparticles with nanosecond laser pulses-A 5-Bromouracil case study. J Chem Phys 2020; 152:124712. [PMID: 32241129 DOI: 10.1063/1.5137898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Laser illuminated gold nanoparticles (AuNPs) efficiently absorb light and heat up the surrounding medium, leading to versatile applications ranging from plasmonic catalysis to cancer photothermal therapy. Therefore, an in-depth understanding of the thermal, optical, and electron induced reaction pathways is required. Here, the electrophilic DNA nucleobase analog 5-Bromouracil (BrU) has been used as a model compound to study its decomposition in the vicinity of AuNPs illuminated with intense ns laser pulses under various conditions. The plasmonic response of the AuNPs and the concentration of BrU and resulting photoproducts have been tracked by ultraviolet and visible (UV-Vis) spectroscopy as a function of the irradiation time. A kinetic model has been developed to determine the reaction rates of two parallel fragmentation pathways of BrU, and their dependency on laser fluence and adsorption on the AuNP have been evaluated. In addition, the size and the electric field enhancement of the decomposed AuNPs have been determined by atomic force microscopy and finite domain time difference calculations, respectively. A minor influence of the direct photoreaction and a strong effect of the heating of the AuNPs have been revealed. However, due to the size reduction of the irradiated AuNPs, a trade-off between laser fluence and plasmonic response of the AuNPs has been observed. Hence, the decomposition of the AuNPs might be limiting the achievable temperatures under irradiation with several laser pulses. These findings need to be considered for an efficient design of catalytic plasmonic systems.
Collapse
Affiliation(s)
- Telma S Marques
- School of Physical Sciences, The Open University, Walton Hall, MK7 6AA, Milton Keynes, United Kingdom
| | - Robin Schürmann
- Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Kenny Ebel
- Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Christian Heck
- Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Małgorzata A Śmiałek
- School of Physical Sciences, The Open University, Walton Hall, MK7 6AA, Milton Keynes, United Kingdom
| | - Sam Eden
- School of Physical Sciences, The Open University, Walton Hall, MK7 6AA, Milton Keynes, United Kingdom
| | - Nigel Mason
- School of Physical Sciences, The Open University, Walton Hall, MK7 6AA, Milton Keynes, United Kingdom
| | - Ilko Bald
- Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| |
Collapse
|
8
|
Semmeq A, Badawi M, Hasnaoui A, Ouaskit S, Monari A. DNA Nucleobase under Ionizing Radiation: Unexpected Proton Transfer by Thymine Cation in Water Nanodroplets. Chemistry 2020; 26:11340-11344. [PMID: 32511805 DOI: 10.1002/chem.202002025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/04/2020] [Indexed: 11/07/2022]
Abstract
The effect of ionizing radiation on DNA constituents is a widely studied fundamental process using experimental and computational techniques. In particular, radiation effects on nucleobases are usually tackled by mass spectrometry in which the nucleobase is embedded in a water nanodroplet. Here, we present a multiscale theoretical study revealing the effects and the dynamics of water droplets towards neutral and ionized thymine. In particular, by using both hybrid quantum mechanics/molecular mechanics and full ab initio molecular dynamics, we reveal an unexpected proton transfer from thymine cation to a nearby water molecule. This leads to the formation of a neutral radical thymine and a Zundel structure, while the hydrated proton localizes at the interface between the deprotonated thymine and the water droplet. This observation opens entirely novel perspectives concerning the reactivity and further fragmentation of ionized nucleobases.
Collapse
Affiliation(s)
- Abderrahmane Semmeq
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France.,Laboratoire de Physique de la Matière Condensée LPMC Faculté des, Sciences Ben M'sik, University Hassan II of Casablanca, BP 7955 Av. Driss El Harti, Sidi Othmane, 20000, Casablanca, Morocco
| | - Michael Badawi
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| | - Abdellatif Hasnaoui
- LS3M, Faculté Polydisicplinaire-Khouribga, University Sultan Moulay Slimane of Beni Mellal, B.P 145, 25000, Khouribga, Morocco
| | - Said Ouaskit
- Laboratoire de Physique de la Matière Condensée LPMC Faculté des, Sciences Ben M'sik, University Hassan II of Casablanca, BP 7955 Av. Driss El Harti, Sidi Othmane, 20000, Casablanca, Morocco
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| |
Collapse
|
9
|
Water acting as a catalyst for electron-driven molecular break-up of tetrahydrofuran. Nat Commun 2020; 11:2194. [PMID: 32366861 PMCID: PMC7198510 DOI: 10.1038/s41467-020-15958-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/02/2020] [Indexed: 11/09/2022] Open
Abstract
Low-energy electron-induced reactions in hydrated molecular complexes are important in various fields ranging from the Earth’s environment to radiobiological processes including radiation therapy. Nevertheless, our understanding of the reaction mechanisms in particular in the condensed phase and the role of water in aqueous environments is incomplete. Here we use small hydrogen-bonded pure and mixed dimers of the heterocyclic molecule tetrahydrofuran (THF) and water as models for biochemically relevant systems. For electron-impact-induced ionization of these dimers, a molecular ring-break mechanism is observed, which is absent for the THF monomer. Employing coincident fragment ion mass and electron momentum spectroscopy, and theoretical calculations, we find that ionization of the outermost THF orbital initiates significant rearrangement of the dimer structure increasing the internal energy and leading to THF ring-break. These results demonstrate that the local environment in form of hydrogen-bonded molecules can considerably affect the stability of molecular covalent bonds. Reactions induced by low-energy electrons in hydrated systems are central to radiation therapy, but a full understanding of their mechanism is lacking. Here the authors investigate the electron-impact induced ionization and subsequent dissociation of tetrahydrofuran, model for biochemically relevant systems, in a micro-solvated environment.
Collapse
|
10
|
Sahakyan AB, Mahtey A, Kawasaki F, Balasubramanian S. A Spontaneous Ring-Opening Reaction Leads to a Repair-Resistant Thymine Oxidation Product in Genomic DNA. Chembiochem 2020; 21:320-323. [PMID: 31386787 DOI: 10.1002/cbic.201900484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 11/09/2022]
Abstract
The alphabet of modified DNA bases goes beyond the conventional four letters, with biological roles being found for many such modifications. Herein, we describe the observation of a modified thymine base that arises from spontaneous N1 -C2 ring opening of the oxidation product 5-formyl uracil, after N3 deprotonation. We first observed this phenomenon in silico through ab initio calculations, followed by in vitro experiments to verify its formation at a mononucleoside level and in a synthetic DNA oligonucleotide context. We show that the new base modification (Trex , thymine ring expunged) can form under physiological conditions, and is resistant to the action of common repair machineries. Furthermore, we found cases of the natural existence of Trex while screening a number of human cell types and mESC (E14), thus suggesting potential biological relevance of this modification.
Collapse
Affiliation(s)
- Aleksandr B Sahakyan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Present address: MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, OX3 9DS, UK
| | - Areeb Mahtey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Fumiko Kawasaki
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Present address: RIKEN, Center for Advanced Intelligence Project, Tokyo, 103-0027, Japan
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Cancer Research (UK), Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK
| |
Collapse
|
11
|
Semmeq A, Monari A, Badawi M, Ouaskit S. Ab Initio Study of the Stepwise versus Concerted Fragmentation Pathways in Microhydrated Thymine Radical Cations. Chemistry 2019; 25:15525-15534. [PMID: 31373410 DOI: 10.1002/chem.201902462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/31/2019] [Indexed: 11/08/2022]
Abstract
Thymine radiation-induced fragmentation is characterised by ring opening and the loss of HNCO/NCO. These pathways have been investigated using DFT calculations in the presence of zero, one and two water molecules. In addition to the already characterised stepwise fragmentation mechanism, we propose a novel concerted pathway reported here for the first time. We show that both the stepwise and concerted mechanisms are competitive with activation energies of 2.05 eV and 2.00 eV, respectively, in the gas phase. The effect of microhydration on these mechanisms are examined based on the most stable conformations found by an exploration of the potential energy surface performed by using DFT-based ab initio molecular dynamics. Microhydration is also accompanied by an increase in the activation energies, with respect to gas phase, amounting to 0.47 eV-an increase that is associated to a stabilising effect of water in agreement with recent experimental studies. However, we also point out that this effect is greatly dependent on the specific water arrangement around thymine and could be limited to only 0.13 eV for some configurations.
Collapse
Affiliation(s)
- Abderrahmane Semmeq
- Laboratoire Physique et Chimie Théoriques UMR 7019, CNRS, Université de Lorraine, BP239, Boulevard des Aiguillettes, 54506, Vandoeuvre-lès-Nancy-Cedex, France.,Laboratoire de Physique de la Matière Condensée, Faculté des Sciences Ben M'sik, Université Hassan II de Casablanca, B.P 7955, Av Driss El Harti, Sidi Othmane, Casablanca, Maroc
| | - Antonio Monari
- Laboratoire Physique et Chimie Théoriques UMR 7019, CNRS, Université de Lorraine, BP239, Boulevard des Aiguillettes, 54506, Vandoeuvre-lès-Nancy-Cedex, France
| | - Michael Badawi
- Laboratoire Physique et Chimie Théoriques UMR 7019, CNRS, Université de Lorraine, BP239, Boulevard des Aiguillettes, 54506, Vandoeuvre-lès-Nancy-Cedex, France
| | - Said Ouaskit
- Laboratoire de Physique de la Matière Condensée, Faculté des Sciences Ben M'sik, Université Hassan II de Casablanca, B.P 7955, Av Driss El Harti, Sidi Othmane, Casablanca, Maroc
| |
Collapse
|
12
|
Semmeq A, Ouaskit S, Monari A, Badawi M. Ionization and fragmentation of uracil upon microhydration. Phys Chem Chem Phys 2019; 21:4810-4821. [PMID: 30773577 DOI: 10.1039/c8cp07452f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study at the DFT level the ionization and the fragmentation of uracil in the presence of zero, one and two water molecules, to unravel the effect of microhydration on the reactivity of this nucleobase. We show that the microhydration lowers the adiabatic and vertical ionization potentials by 0.41 eV and 0.22 eV, respectively. Furthermore, microhydration increases the activation energies of the different dissociation channels up to 0.5 eV and restricts the formation of some fragments, in particular those corresponding to the C5-C6 fragmentation pathway. For the first time, our theoretical study shows new transition states and minima not found for the gas phase, hence indicating a change in the fragmentation mechanisms, as well as a stabilizing effect of microhydration, confirming previous experimental studies.
Collapse
Affiliation(s)
- Abderrahmane Semmeq
- Laboratoire Physique et Chimie Théoriques UMR 7019, CNRS - Université de Lorraine, BP239, Boulevard des Aiguillettes, 54 506 Vandoeuvre-lès-Nancy-Cedex, France.
| | | | | | | |
Collapse
|
13
|
Matthews E, Dessent CEH. Observation of Near-Threshold Resonances in the Flavin Chromophore Anions Alloxazine and Lumichrome. J Phys Chem Lett 2018; 9:6124-6130. [PMID: 30277786 DOI: 10.1021/acs.jpclett.8b02529] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lumichrome (LC) is the chromophore of the flavin family of photoactive biomolecules, where key biochemical activity involves interplay between redox and photophysical events. Questions remain about the relationship between the redox status of the ground and excited states and demand an improved understanding of the intrinsic photochemistry. Using anion photodissociation spectroscopy, we have measured the intrinsic electronic spectroscopy (564-220 nm) and accompanying photodegradation pathways of the deprotonated anionic form of LC. Experiments were also performed on alloxazine (AL), which is equivalent to LC minus two methyl groups. We observe a resonance state close to 3.8 eV for both anions for the first time, which we tentatively assign to dipole-bound excited states. For AL this state is sufficiently long-lived to facilitate dissociative electron attachment. Our results suggest that the presence of methyl group rotors at key positions along the molecular dipole may reduce the lifetime of the resonance state and hence provide a structural barrier to valence electron capture, and ensuing molecular dissociation.
Collapse
Affiliation(s)
- Edward Matthews
- Department of Chemistry , University of York , Heslington, York YO10 5DD , U.K
| | | |
Collapse
|
14
|
Ghafur O, Crane SW, Ryszka M, Bockova J, Rebelo A, Saalbach L, De Camillis S, Greenwood JB, Eden S, Townsend D. Ultraviolet relaxation dynamics in uracil: Time-resolved photoion yield studies using a laser-based thermal desorption source. J Chem Phys 2018; 149:034301. [DOI: 10.1063/1.5034419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Omair Ghafur
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Stuart W. Crane
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Michal Ryszka
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | - Jana Bockova
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | - Andre Rebelo
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
- CEFITEC, Departamento de Física, FCT–Universidade NOVA de Lisboa, P-2829-516 Caparica, Portugal
| | - Lisa Saalbach
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Simone De Camillis
- School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Jason B. Greenwood
- School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Samuel Eden
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom
| | - Dave Townsend
- Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
15
|
Itälä E, Granroth S, Ha D, Kooser K, Levola H, Rachlew E, Tanzer K, Kukk E. Fragmentation of imidazole, pyrimidine and purine induced by core ionization: Significance of small-scale chemical environment. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Poštulka J, Slavíček P, Fedor J, Fárník M, Kočišek J. Energy Transfer in Microhydrated Uracil, 5-Fluorouracil, and 5-Bromouracil. J Phys Chem B 2017; 121:8965-8974. [DOI: 10.1021/acs.jpcb.7b07390] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. Poštulka
- Department
of Physical Chemistry, University of Chemistry and Technology, Technická
5, Prague 6, Czech Republic
| | - P. Slavíček
- Department
of Physical Chemistry, University of Chemistry and Technology, Technická
5, Prague 6, Czech Republic
- J.
Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - J. Fedor
- J.
Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - M. Fárník
- J.
Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - J. Kočišek
- J.
Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| |
Collapse
|
17
|
Pandey R, Ryszka M, da Fonseca Cunha T, Lalande M, Dampc M, Limão-Vieira P, Mason N, Poully J, Eden S. Threshold behavior in metastable dissociation of multi-photon ionized thymine and uracil. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.06.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Neustetter M, Mahmoodi-Darian M, Denifl S. Study of Electron Ionization and Fragmentation of Non-hydrated and Hydrated Tetrahydrofuran Clusters. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:866-872. [PMID: 28326462 PMCID: PMC5391379 DOI: 10.1007/s13361-017-1634-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 05/28/2023]
Abstract
Mass spectroscopic investigations on tetrahydrofuran (THF, C4H8O), a common model molecule of the DNA-backbone, have been carried out. We irradiated isolated THF and (hydrated) THF clusters with low energy electrons (electron energy ~70 eV) in order to study electron ionization and ionic fragmentation. For elucidation of fragmentation pathways, deuterated TDF (C4D8O) was investigated as well. One major observation is that the cluster environment shows overall a protective behavior on THF. However, also new fragmentation channels open in the cluster. In this context, we were able to solve a discrepancy in the literature about the fragment ion peak at mass 55 u in the electron ionization mass spectrum of THF. We ascribe this ion yield to the fragmentation of ionized THF clusters. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Michael Neustetter
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | | | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik and Center for Molecular Biosciences, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria.
| |
Collapse
|
19
|
Pysanenko A, Kočišek J, Nachtigallová D, Poterya V, Fárník M. Clustering of Uracil Molecules on Ice Nanoparticles. J Phys Chem A 2017; 121:1069-1077. [PMID: 28098464 DOI: 10.1021/acs.jpca.6b12594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We generate a molecular beam of ice nanoparticles (H2O)N, N̅ ≈ 130-220, which picks up several individual gas phase uracil (U) or 5-bromouracil (BrU) molecules. The mass spectra of the doped nanoparticles prove that the uracil and bromouracil molecules coagulate to clusters on the ice nanoparticles. Calculations of U and BrU monomers and dimers on the ice nanoparticles provide theoretical support for the cluster formation. The (U)mH+ and (BrU)mH+ intensity dependencies on m extracted from the mass spectra suggest a smaller tendency of BrU to coagulate compared to U, which is substantiated by a lower mobility of bromouracil on the ice surface. The hydrated Um·(H2O)nH+ series are also reported and discussed. On the basis of comparison with the previous experiments, we suggest that the observed propensity for aggregation on ice nanoparticles is a more general trend for biomolecules forming strong hydrogen bonds. This, together with their mobility, leads to their coagulation on ice nanoparticles which is an important aspect for astrochemistry.
Collapse
Affiliation(s)
- Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences , Dolejškova 3, 182 23 Prague, Czech Republic
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences , Dolejškova 3, 182 23 Prague, Czech Republic
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences , Flemingovo nám. 2, 160610 Prague 6, Czech Republic
| | - Viktoriya Poterya
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences , Dolejškova 3, 182 23 Prague, Czech Republic
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences , Dolejškova 3, 182 23 Prague, Czech Republic
| |
Collapse
|
20
|
Markush P, Bolognesi P, Cartoni A, Rousseau P, Maclot S, Delaunay R, Domaracka A, Kocisek J, Castrovilli MC, Huber BA, Avaldi L. The role of the environment in the ion induced fragmentation of uracil. Phys Chem Chem Phys 2016; 18:16721-9. [DOI: 10.1039/c6cp01940d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fragmentation of uracil molecules and pure and nano-hydrated uracil clusters by 12C4+ ion impact is investigated.
Collapse
Affiliation(s)
| | | | - Antonella Cartoni
- CNR-ISM
- Monterotondo Scalo
- Italy
- Dipartimento di Chimica
- Sapienza Università di Roma
| | - Patrick Rousseau
- Normandie Université
- CIMAP (UMR6252 CEA/CNRS/ENSICAEN/UNICAEN)
- 14070 Caen Cedex 5
- France
| | - Sylvain Maclot
- Normandie Université
- CIMAP (UMR6252 CEA/CNRS/ENSICAEN/UNICAEN)
- 14070 Caen Cedex 5
- France
| | - Rudy Delaunay
- Normandie Université
- CIMAP (UMR6252 CEA/CNRS/ENSICAEN/UNICAEN)
- 14070 Caen Cedex 5
- France
| | - Alicja Domaracka
- Normandie Université
- CIMAP (UMR6252 CEA/CNRS/ENSICAEN/UNICAEN)
- 14070 Caen Cedex 5
- France
| | - Jaroslav Kocisek
- Normandie Université
- CIMAP (UMR6252 CEA/CNRS/ENSICAEN/UNICAEN)
- 14070 Caen Cedex 5
- France
- J. Heyrovský Institute of Physical Chemistry
| | | | - Bernd A. Huber
- Normandie Université
- CIMAP (UMR6252 CEA/CNRS/ENSICAEN/UNICAEN)
- 14070 Caen Cedex 5
- France
| | | |
Collapse
|
21
|
Çarçabal P, Descamps D, Petit S, Mairesse Y, Blanchet V, Cireasa R. Using high harmonic radiation to reveal the ultrafast dynamics of radiosensitiser molecules. Faraday Discuss 2016; 194:407-425. [DOI: 10.1039/c6fd00129g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5-Fluorouracil (5FU) is a radiosensitiser molecule routinely used in combined chemo- and radio-therapies to enhance and localize cancer treatments. We have employed ultra-short XUV pulses produced by high harmonic generation (HHG) as a pump pulse to study the dynamics underlying the photo-stability and the radiation damage of this molecule. This work shows that it is possible to resolve individual dynamics even when using unselected HH. By comparing the results with those obtained in the multiphoton absorption at 400 nm, we were able to identify the frequencies of the HH comb relevant to the recorded dynamics: HH5 and HH3. The latter excites a high-lying Rydberg state interacting with a valence state and its dynamics is revealed by a 30 fs decay signal in the parent ion transient. Our results suggest that the same photoprotection mechanisms as those conferring photostability to the neutral nucleobases and to the DNA appear to be activated: HH5 excites the molecule to a state around 10.5 eV that undergoes an ultrafast relaxation on a timescale of 30 fs due to nonadiabatic interactions. This is followed sequentially by a 2.3 ps internal conversion as revealed by the dynamics observed for another fragment ion. These dynamics are extracted from the fragment ion signals. Proton or hydrogen transfer processes are required for the formation of three fragments and we speculate that the time scale of one of the processes is revealed by a H+ transient signal.
Collapse
Affiliation(s)
- Pierre Çarçabal
- Institut des Sciences Moléculaires d'Orsay
- CNRS
- Université Paris Sud
- Orsay
- France
| | - Dominique Descamps
- Centre Lasers Intenses et Applications
- CNRS
- Université de Bordeaux
- Talence
- France
| | - Stéphane Petit
- Centre Lasers Intenses et Applications
- CNRS
- Université de Bordeaux
- Talence
- France
| | - Yann Mairesse
- Centre Lasers Intenses et Applications
- CNRS
- Université de Bordeaux
- Talence
- France
| | - Valérie Blanchet
- Centre Lasers Intenses et Applications
- CNRS
- Université de Bordeaux
- Talence
- France
| | - Raluca Cireasa
- Institut des Sciences Moléculaires d'Orsay
- CNRS
- Université Paris Sud
- Orsay
- France
| |
Collapse
|
22
|
Poully JC, Vizcaino V, Schwob L, Delaunay R, Kocisek J, Eden S, Chesnel JY, Méry A, Rangama J, Adoui L, Huber B. Formation and Fragmentation of Protonated Molecules after Ionization of Amino Acid and Lactic Acid Clusters by Collision with Ions in the Gas Phase. Chemphyschem 2015; 16:2389-96. [DOI: 10.1002/cphc.201500275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 11/11/2022]
|
23
|
Grimme S, Bauer CA. Automated quantum chemistry based molecular dynamics simulations of electron ionization induced fragmentations of the nucleobases Uracil, Thymine, Cytosine, and Guanine. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:125-140. [PMID: 26307693 DOI: 10.1255/ejms.1313] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The gas-phase decomposition pathways of electron ionization (EI)-induced radical cations of the nucleobases uracil, thymine, cytosine, and guanine are investigated by means of mixed quantum-classical molecular dynamics. No preconceived fragmentation channels are used in the calculations. The results compare well to a plethora of experimental and theoretical data for these important biomolecules. With our combined stochastic and dynamic approach, one can access in an unbiased way the energetically available decomposition mechanisms. Additionally, we are able to separate the EI mass spectra of different tautomers of cytosine and guanine. Our method (previously termed quantum chemistry electron ionization mass spectra) reproduces free nucleobase experimental mass spectra well and provides detailed mechanistic in-sight into high-energy unimolecular decomposition processes.
Collapse
Affiliation(s)
- Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Rheinischen Friedrich- Wilhelms-Universität Bonn, Beringstr. 4, D-53115, Bonn, Germany. - bonn.de
| | - Christopher Alexander Bauer
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, D-53115, Bonn, Germany.
| |
Collapse
|
24
|
Poully JC, Miles J, De Camillis S, Cassimi A, Greenwood JB. Proton irradiation of DNA nucleosides in the gas phase. Phys Chem Chem Phys 2015; 17:7172-80. [DOI: 10.1039/c4cp05303f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Charge localization within nucleosides after proton irradiation is strongly influenced by the ionization energy of the base.
Collapse
Affiliation(s)
| | - Jordan Miles
- Centre for Plasma Physics
- School of Mathematics and Physics
- Queen's University Belfast
- Northern Ireland
- UK
| | - Simone De Camillis
- Centre for Plasma Physics
- School of Mathematics and Physics
- Queen's University Belfast
- Northern Ireland
- UK
| | - Amine Cassimi
- CIMAP (UMR 6252 CEA, Université de Caen, ENSICAEN, CNRS)
- 14070 CAEN Cedex 5
- France
| | - Jason B. Greenwood
- Centre for Plasma Physics
- School of Mathematics and Physics
- Queen's University Belfast
- Northern Ireland
- UK
| |
Collapse
|
25
|
Bacchus-Montabonel MC, Calvo F. Nanohydration of uracil: emergence of three-dimensional structures and proton-induced charge transfer. Phys Chem Chem Phys 2015; 17:9629-33. [DOI: 10.1039/c5cp00611b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stepwise hydration of uracil proceeds three dimensionally above three molecules and qualitatively changes the response to proton damage.
Collapse
Affiliation(s)
| | - Florent Calvo
- Laboratoire Interdisciplinaire de Physique
- Rue de La Piscine
- Campus Saint Martin d'Hères
- 38000 Grenoble
- France
| |
Collapse
|
26
|
Cole CA, Wang ZC, Snow TP, Bierbaum VM. Anionic derivatives of uracil: fragmentation and reactivity. Phys Chem Chem Phys 2014; 16:17835-44. [DOI: 10.1039/c4cp02277g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uracil is an essential biomolecule for terrestrial life, yet its prebiotic formation mechanisms have proven elusive for decades.
Collapse
Affiliation(s)
- Callie A. Cole
- Department of Chemistry and Biochemistry
- University of Colorado
- Boulder, USA
| | - Zhe-Chen Wang
- Department of Chemistry and Biochemistry
- University of Colorado
- Boulder, USA
| | - Theodore P. Snow
- Department of Astrophysical and Planetary Sciences
- University of Colorado
- Boulder, USA
- Center for Astrophysics and Space Astronomy
- University of Colorado
| | - Veronica M. Bierbaum
- Department of Chemistry and Biochemistry
- University of Colorado
- Boulder, USA
- Center for Astrophysics and Space Astronomy
- University of Colorado
| |
Collapse
|