1
|
Orselly M, Richard C, Devémy J, Bouvet-Marchand A, Dequidt A, Loubat C, Malfreyt P. Impact of the Force Field on the Calculation of Density and Surface Tension of Epoxy-Resins. J Phys Chem B 2023; 127:2617-2628. [PMID: 36917513 DOI: 10.1021/acs.jpcb.2c09087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
The molecular simulation of interfacial systems is a matter of debate because of the choice of many input parameters that can affect significantly the performance of the force field of reproducing the surface tension and the coexisting densities. After developing a robust methodology for the calculation of the surface tension on a Lennard-Jones fluid, we apply it with different force fields to calculate the density and surface tension of pure constituents of epoxy resins. By using the model that best reproduces the experimental density and surface tension, we investigate the impact of composition in mass fraction on uncured epoxy resins and the effects of degree of cross-linking on cured resins.
Collapse
Affiliation(s)
- Mathilde Orselly
- Specific Polymers, 150 Avenue des Cocardières, 34160 Castries, France
| | - Cécile Richard
- Specific Polymers, 150 Avenue des Cocardières, 34160 Castries, France
| | - Julien Devémy
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | | | - Alain Dequidt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Cédric Loubat
- Specific Polymers, 150 Avenue des Cocardières, 34160 Castries, France
| | - Patrice Malfreyt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
2
|
George A, Mondal S, Purnaprajna M, Athri P. Review of Electrostatic Force Calculation Methods and Their Acceleration in Molecular Dynamics Packages Using Graphics Processors. ACS OMEGA 2022; 7:32877-32896. [PMID: 36157750 PMCID: PMC9494432 DOI: 10.1021/acsomega.2c03189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Molecular dynamics (MD) simulations probe the conformational repertoire of macromolecular systems using Newtonian dynamic equations. The time scales of MD simulations allow the exploration of biologically relevant phenomena and can elucidate spatial and temporal properties of the building blocks of life, such as deoxyribonucleic acid (DNA) and protein, across microsecond (μs) time scales using femtosecond (fs) time steps. A principal bottleneck toward extending MD calculations to larger time scales is the long-range electrostatic force measuring component of the naive nonbonded force computation algorithm, which scales with a complexity of (N, number of atoms). In this review, we present various methods to determine electrostatic interactions in often-used open-source MD packages as well as the implementation details that facilitate acceleration of the electrostatic interaction calculation.
Collapse
Affiliation(s)
- Anu George
- Department
of Computer Science and Engineering, Amrita
School of Engineering, Bengaluru 560035, Amrita Vishwa Vidyapeetham, India
| | | | - Madhura Purnaprajna
- Department
of Computer Science and Engineering, PES
University, Bengaluru 560085, India
| | - Prashanth Athri
- Department
of Computer Science and Engineering, Amrita
School of Engineering, Bengaluru 560035, Amrita Vishwa Vidyapeetham, India
| |
Collapse
|
3
|
Kaya H, Hardy DJ, Skeel RD. Multilevel summation for periodic electrostatics using B-splines. J Chem Phys 2021; 154:144105. [PMID: 33858159 PMCID: PMC8036131 DOI: 10.1063/5.0040925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/23/2021] [Indexed: 11/14/2022] Open
Abstract
Fast methods for calculating two-body interactions have many applications, and for molecular science and cosmology, it is common to employ periodic boundary conditions. However, for the 1/r potential, the energy and forces are ill-defined. Adopted here is the model given by the classic Ewald sum. For the fast calculation of two-body forces, the most celebrated method is the fast multipole method and its tree-code predecessor. However, molecular simulations typically employ mesh-based approximations and the fast Fourier transform. Both types of methods have significant drawbacks, which, in most respects, are overcome by the less well-known multilevel summation method (MSM). Presented here is a realization of the MSM, which can be regarded as a multilevel extension of the (smoothed) particle mesh Ewald (PME) method, but with the Ewald softening replaced by one having a finite range. The two-level (single-grid) version of MSM requires fewer tuning parameters than PME and is marginally faster. Additionally, higher-level versions of MSM scale well to large numbers of processors, whereas PME and other two-level methods do not. Although higher-level versions of MSM are less efficient on a single processor than the two-level version, evidence suggests that they are more efficient than other methods that scale well, such as the fast multipole method and tree codes.
Collapse
Affiliation(s)
- Hüseyin Kaya
- Technology Management, Payten, Inc., ITU Advanced Research and Innovation Center, Istanbul 34396, Turkey
| | - David J. Hardy
- Beckman Insitute, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, USA
| | - Robert D. Skeel
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
4
|
Janeček J, Said-Aizpuru O, Paricaud P. Long Range Corrections for Inhomogeneous Simulations of Mie n–m Potential. J Chem Theory Comput 2017; 13:4482-4491. [DOI: 10.1021/acs.jctc.7b00212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiří Janeček
- ENSTA ParisTech, UCP, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex, France
| | - Olivier Said-Aizpuru
- ENSTA ParisTech, UCP, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex, France
| | - Patrice Paricaud
- ENSTA ParisTech, UCP, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex, France
| |
Collapse
|
5
|
|
6
|
Werth S, Stöbener K, Horsch M, Hasse H. Simultaneous description of bulk and interfacial properties of fluids by the Mie potential. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1206218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Stephan Werth
- Department of Mechanical and Process Engineering, Laboratory of Engineering Thermodynamics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Katrin Stöbener
- Department for Optimization, Fraunhofer Institute for Industrial Mathematics, Kaiserslautern, Germany
| | - Martin Horsch
- Department of Mechanical and Process Engineering, Laboratory of Engineering Thermodynamics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Hans Hasse
- Department of Mechanical and Process Engineering, Laboratory of Engineering Thermodynamics, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
7
|
Hardy DJ, Wu Z, Phillips JC, Stone JE, Skeel RD, Schulten K. Multilevel summation method for electrostatic force evaluation. J Chem Theory Comput 2016; 11:766-79. [PMID: 25691833 PMCID: PMC4325600 DOI: 10.1021/ct5009075] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 12/18/2022]
Abstract
![]()
The
multilevel summation method (MSM) offers an efficient algorithm
utilizing convolution for evaluating long-range forces arising in
molecular dynamics simulations. Shifting the balance of computation
and communication, MSM provides key advantages over the ubiquitous
particle–mesh Ewald (PME) method, offering better scaling on
parallel computers and permitting more modeling flexibility, with
support for periodic systems as does PME but also for semiperiodic
and nonperiodic systems. The version of MSM available in the simulation
program NAMD is described, and its performance and accuracy are compared
with the PME method. The accuracy feasible for MSM in practical applications
reproduces PME results for water property calculations of density,
diffusion constant, dielectric constant, surface tension, radial distribution
function, and distance-dependent Kirkwood factor, even though the
numerical accuracy of PME is higher than that of MSM. Excellent agreement
between MSM and PME is found also for interface potentials of air–water
and membrane–water interfaces, where long-range Coulombic interactions
are crucial. Applications demonstrate also the suitability of MSM
for systems with semiperiodic and nonperiodic boundaries. For this
purpose, simulations have been performed with periodic boundaries
along directions parallel to a membrane surface but not along the
surface normal, yielding membrane pore formation induced by an imbalance
of charge across the membrane. Using a similar semiperiodic boundary
condition, ion conduction through a graphene nanopore driven by an
ion gradient has been simulated. Furthermore, proteins have been simulated
inside a single spherical water droplet. Finally, parallel scalability
results show the ability of MSM to outperform PME when scaling a system
of modest size (less than 100 K atoms) to over a thousand processors,
demonstrating the suitability of MSM for large-scale parallel simulation.
Collapse
Affiliation(s)
- David J Hardy
- Beckman Institute, University of Illinois at Urbana−Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | | | | | | | | | | |
Collapse
|
8
|
Hardy DJ, Wolff MA, Xia J, Schulten K, Skeel RD. Multilevel summation with B-spline interpolation for pairwise interactions in molecular dynamics simulations. J Chem Phys 2016; 144:114112. [PMID: 27004867 DOI: 10.1063/1.4943868] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The multilevel summation method for calculating electrostatic interactions in molecular dynamics simulations constructs an approximation to a pairwise interaction kernel and its gradient, which can be evaluated at a cost that scales linearly with the number of atoms. The method smoothly splits the kernel into a sum of partial kernels of increasing range and decreasing variability with the longer-range parts interpolated from grids of increasing coarseness. Multilevel summation is especially appropriate in the context of dynamics and minimization, because it can produce continuous gradients. This article explores the use of B-splines to increase the accuracy of the multilevel summation method (for nonperiodic boundaries) without incurring additional computation other than a preprocessing step (whose cost also scales linearly). To obtain accurate results efficiently involves technical difficulties, which are overcome by a novel preprocessing algorithm. Numerical experiments demonstrate that the resulting method offers substantial improvements in accuracy and that its performance is competitive with an implementation of the fast multipole method in general and markedly better for Hamiltonian formulations of molecular dynamics. The improvement is great enough to establish multilevel summation as a serious contender for calculating pairwise interactions in molecular dynamics simulations. In particular, the method appears to be uniquely capable for molecular dynamics in two situations, nonperiodic boundary conditions and massively parallel computation, where the fast Fourier transform employed in the particle-mesh Ewald method falls short.
Collapse
Affiliation(s)
- David J Hardy
- Beckman Institute, University of Illinois, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
| | - Matthew A Wolff
- Department of Computer Science, Purdue University, 305 North University Street, West Lafayette, Indiana 47907, USA
| | - Jianlin Xia
- Department of Mathematics, Purdue University, 150 North University Street, West Lafayette, Indiana 47907, USA
| | - Klaus Schulten
- Beckman Institute, University of Illinois, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
| | - Robert D Skeel
- Department of Computer Science, Purdue University, 305 North University Street, West Lafayette, Indiana 47907, USA
| |
Collapse
|
9
|
Ghoufi A, Malfreyt P, Tildesley DJ. Computer modelling of the surface tension of the gas–liquid and liquid–liquid interface. Chem Soc Rev 2016; 45:1387-409. [DOI: 10.1039/c5cs00736d] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review presents the state of the art in molecular simulations of interfacial systems and of the calculation of the surface tension from the underlying intermolecular potential.
Collapse
Affiliation(s)
- Aziz Ghoufi
- Institut de Physique de Rennes
- UMR CNRS 6251
- 35042 Rennes
- France
| | - Patrice Malfreyt
- Institut de Chimie de Clermont-Ferrand
- ICCF
- CNRS
- UMR 6296
- F-63000 Clermont-Ferrand
| | | |
Collapse
|
10
|
Wennberg CL, Murtola T, Páll S, Abraham MJ, Hess B, Lindahl E. Direct-Space Corrections Enable Fast and Accurate Lorentz-Berthelot Combination Rule Lennard-Jones Lattice Summation. J Chem Theory Comput 2015; 11:5737-46. [PMID: 26587968 DOI: 10.1021/acs.jctc.5b00726] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Long-range lattice summation techniques such as the particle-mesh Ewald (PME) algorithm for electrostatics have been revolutionary to the precision and accuracy of molecular simulations in general. Despite the performance penalty associated with lattice summation electrostatics, few biomolecular simulations today are performed without it. There are increasingly strong arguments for moving in the same direction for Lennard-Jones (LJ) interactions, and by using geometric approximations of the combination rules in reciprocal space, we have been able to make a very high-performance implementation available in GROMACS. Here, we present a new way to correct for these approximations to achieve exact treatment of Lorentz-Berthelot combination rules within the cutoff, and only a very small approximation error remains outside the cutoff (a part that would be completely ignored without LJ-PME). This not only improves accuracy by almost an order of magnitude but also achieves absolute biomolecular simulation performance that is an order of magnitude faster than any other available lattice summation technique for LJ interactions. The implementation includes both CPU and GPU acceleration, and its combination with improved scaling LJ-PME simulations now provides performance close to the truncated potential methods in GROMACS but with much higher accuracy.
Collapse
Affiliation(s)
- Christian L Wennberg
- Swedish e-Science Research Center, Department of Theoretical Physics, KTH Royal Institute of Technology , Box 1031, 171 21 Solna, Sweden.,Center for Biomembrane Research, Department of Biophysics & Biochemistry, Stockholm University , 106 91 Stockholm, Sweden
| | - Teemu Murtola
- Swedish e-Science Research Center, Department of Theoretical Physics, KTH Royal Institute of Technology , Box 1031, 171 21 Solna, Sweden.,Center for Biomembrane Research, Department of Biophysics & Biochemistry, Stockholm University , 106 91 Stockholm, Sweden
| | - Szilárd Páll
- Swedish e-Science Research Center, Department of Theoretical Physics, KTH Royal Institute of Technology , Box 1031, 171 21 Solna, Sweden.,Center for Biomembrane Research, Department of Biophysics & Biochemistry, Stockholm University , 106 91 Stockholm, Sweden
| | - Mark J Abraham
- Swedish e-Science Research Center, Department of Theoretical Physics, KTH Royal Institute of Technology , Box 1031, 171 21 Solna, Sweden.,Center for Biomembrane Research, Department of Biophysics & Biochemistry, Stockholm University , 106 91 Stockholm, Sweden
| | - Berk Hess
- Swedish e-Science Research Center, Department of Theoretical Physics, KTH Royal Institute of Technology , Box 1031, 171 21 Solna, Sweden.,Center for Biomembrane Research, Department of Biophysics & Biochemistry, Stockholm University , 106 91 Stockholm, Sweden
| | - Erik Lindahl
- Swedish e-Science Research Center, Department of Theoretical Physics, KTH Royal Institute of Technology , Box 1031, 171 21 Solna, Sweden.,Center for Biomembrane Research, Department of Biophysics & Biochemistry, Stockholm University , 106 91 Stockholm, Sweden
| |
Collapse
|
11
|
Goujon F, Ghoufi A, Malfreyt P, Tildesley DJ. Controlling the Long-Range Corrections in Atomistic Monte Carlo Simulations of Two-Phase Systems. J Chem Theory Comput 2015; 11:4573-85. [DOI: 10.1021/acs.jctc.5b00377] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Florent Goujon
- Institut
de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Université Blaise Pascal, BP 10448, F-63000 Clermont-Ferrand, France
| | - Aziz Ghoufi
- Institut
de Physique de Rennes, Université Rennes 1, 35042 Rennes, France
| | - Patrice Malfreyt
- Institut
de Chimie de Clermont-Ferrand, Université Clermont Auvergne, Université Blaise Pascal, BP 10448, F-63000 Clermont-Ferrand, France
| | | |
Collapse
|
12
|
|
13
|
Moore SG, Crozier PS. Extension and evaluation of the multilevel summation method for fast long-range electrostatics calculations. J Chem Phys 2015; 140:234112. [PMID: 24952528 DOI: 10.1063/1.4883695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Several extensions and improvements have been made to the multilevel summation method (MSM) of computing long-range electrostatic interactions. These include pressure calculation, an improved error estimator, faster direct part calculation, extension to non-orthogonal (triclinic) systems, and parallelization using the domain decomposition method. MSM also allows fully non-periodic long-range electrostatics calculations which are not possible using traditional Ewald-based methods. In spite of these significant improvements to the MSM algorithm, the particle-particle particle-mesh (PPPM) method was still found to be faster for the periodic systems we tested on a single processor. However, the fast Fourier transforms (FFTs) that PPPM relies on represent a major scaling bottleneck for the method when running on many cores (because the many-to-many communication pattern of the FFT becomes expensive) and MSM scales better than PPPM when using a large core count for two test problems on Sandia's Redsky machine. This FFT bottleneck can be reduced by running PPPM on only a subset of the total processors. MSM is most competitive for relatively low accuracy calculations. On Sandia's Chama machine, however, PPPM is found to scale better than MSM for all core counts that we tested. These results suggest that PPPM is usually more efficient than MSM for typical problems running on current high performance computers. However, further improvements to MSM algorithm could increase its competitiveness for calculation of long-range electrostatic interactions.
Collapse
Affiliation(s)
- Stan G Moore
- Sandia National Laboratories, P.O. Box 5800, MS 1322, Albuquerque, New Mexico 87185-1322, USA
| | - Paul S Crozier
- Sandia National Laboratories, P.O. Box 5800, MS 1322, Albuquerque, New Mexico 87185-1322, USA
| |
Collapse
|
14
|
Werth S, Stöbener K, Klein P, Küfer KH, Horsch M, Hasse H. Molecular modelling and simulation of the surface tension of real quadrupolar fluids. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.08.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Isele-Holder RE, Ismail AE. Atomistic potentials for trisiloxane, alkyl ethoxylate, and perfluoroalkane-based surfactants with TIP4P/2005 and application to simulations at the air-water interface. J Phys Chem B 2014; 118:9284-97. [PMID: 25003511 DOI: 10.1021/jp502975p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism of superspreading, the greatly enhanced spreading of water droplets facilitated by trisiloxane surfactants, is still under debate, largely because the role and behavior of the surfactants cannot be sufficiently resolved by experiments or continuum simulations. Previous molecular dynamics studies have been performed with simple model molecules or inaccurate models, strongly limiting their explanatory power. Here we present a force field dedicated to superspreading, extending existing quantum-chemistry-based models for the surfactant and the TIP4P/2005 water model ( Abascal et al. J. Chem. Phys. , 2005 , 123 , 234505 ). We apply the model to superspreading trisiloxane surfactants and nonsuperspreading alkyl ethoxylate and perfluoroalkane surfactants at various concentrations at the air-water interface. We show that the developed model accurately predicts surface tensions, which are typically assumed important for superspreading. Significant differences between superspreading and traditional surfactants are presented and their possible relation to superspreading discussed. Although the force field has been developed for superspreading problems, it should also perform well for other simulations involving polymers or copolymers with water.
Collapse
Affiliation(s)
- Rolf E Isele-Holder
- Aachener Verfahrenstechnik: Molecular Simulations and Transformations and AICES Graduate School, RWTH Aachen University , Schinkelstraße 2, 52062 Aachen, Germany
| | | |
Collapse
|
16
|
Lorenzen K, Wichmann C, Tavan P. Including the Dispersion Attraction into Structure-Adapted Fast Multipole Expansions for MD Simulations. J Chem Theory Comput 2014; 10:3244-59. [DOI: 10.1021/ct500319a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Konstantin Lorenzen
- Lehrstuhl
für Biomolekulare
Optik, Ludwig-Maximilians-Universität, Oettingenstr. 67, 80538 München, Germany
| | - Christoph Wichmann
- Lehrstuhl
für Biomolekulare
Optik, Ludwig-Maximilians-Universität, Oettingenstr. 67, 80538 München, Germany
| | - Paul Tavan
- Lehrstuhl
für Biomolekulare
Optik, Ludwig-Maximilians-Universität, Oettingenstr. 67, 80538 München, Germany
| |
Collapse
|
17
|
Isele-Holder RE, Mitchell W, Hammond JR, Kohlmeyer A, Ismail AE. Reconsidering Dispersion Potentials: Reduced Cutoffs in Mesh-Based Ewald Solvers Can Be Faster Than Truncation. J Chem Theory Comput 2013; 9:5412-20. [DOI: 10.1021/ct4004614] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rolf E. Isele-Holder
- Aachener
Verfahrenstechnik: Molecular Simulations and Transformations and AICES
Graduate School, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany
| | - Wayne Mitchell
- Aachener
Verfahrenstechnik: Molecular Simulations and Transformations and AICES
Graduate School, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany
- Loyola University, 6363 Saint
Charles Avenue, New Orleans, Louisiana 70118, United States of America
| | - Jeff R. Hammond
- Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, United States of America
| | - Axel Kohlmeyer
- International
Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Ahmed E. Ismail
- Aachener
Verfahrenstechnik: Molecular Simulations and Transformations and AICES
Graduate School, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany
| |
Collapse
|