1
|
Ploenes L, Straňák P, Mishra A, Liu X, Pérez-Ríos J, Willitsch S. Collisional alignment and molecular rotation control the chemi-ionization of individual conformers of hydroquinone with metastable neon. Nat Chem 2024; 16:1876-1881. [PMID: 39030421 DOI: 10.1038/s41557-024-01590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024]
Abstract
The relationship between the shape of a molecule and its chemical reactivity is a central tenet in chemistry. However, the influence of the molecular geometry on reactivity can be subtle and result from several opposing effects. Here, using a crossed-molecular-beam experiment in which individual rotational quantum states of specific conformers of a molecule are separated, we study the chemi-ionization reaction of hydroquinone with metastable neon atoms. We show that collision-induced alignment of the reaction partners caused by geometry-dependent long-range forces influences reaction pathways, which is, however, countered by molecular rotation. The present work provides insights into the conformation-specific stereodynamics of complex polyatomic systems and illustrates the capability of advanced molecule-control techniques to unravel these effects.
Collapse
Affiliation(s)
- L Ploenes
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - P Straňák
- Department of Chemistry, University of Basel, Basel, Switzerland
- Fraunhofer Institute for Applied Solid State Physics IAF, Freiburg, Germany
| | - A Mishra
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - X Liu
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - J Pérez-Ríos
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA.
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY, USA.
| | - S Willitsch
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Czakó G, Gruber B, Papp D, Tajti V, Tasi DA, Yin C. First-principles mode-specific reaction dynamics. Phys Chem Chem Phys 2024; 26:15818-15830. [PMID: 38639072 DOI: 10.1039/d4cp00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Controlling the outcome of chemical reactions by exciting specific vibrational and/or rotational modes of the reactants is one of the major goals of modern reaction dynamics studies. In the present Perspective, we focus on first-principles vibrational and rotational mode-specific dynamics computations on reactions of neutral and anionic systems beyond six atoms such as X + C2H6 [X = F, Cl, OH], HX + C2H5 [X = Br, I], OH- + CH3I, and F- + CH3CH2Cl. The dynamics simulations utilize high-level ab initio analytical potential energy surfaces and the quasi-classical trajectory method. Besides initial state specificity and the validity of the Polanyi rules, mode-specific vibrational-state assignment for polyatomic product species using normal-mode analysis and Gaussian binning is also discussed and compared with experiment.
Collapse
Affiliation(s)
- Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Balázs Gruber
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Viktor Tajti
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Domonkos A Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Cangtao Yin
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| |
Collapse
|
3
|
Cappelletti D, Falcinelli S, Pirani F. The dawn of hydrogen and halogen bonds and their crucial role in collisional processes probing long-range intermolecular interactions. Phys Chem Chem Phys 2024; 26:7971-7987. [PMID: 38411471 DOI: 10.1039/d3cp05871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This perspective review focuses on the results of an internally consistent study developed in the Perugia laboratory, centered on the fundamental interaction components that, at large intermolecular distances, determine the formation of weak intermolecular hydrogen (HB) and halogen (XB) bonds. This investigation exploits old and novel molecular beam scattering experiments involving several gaseous prototypical systems. In particular, we focus on the kinetic energy dependence of the total (elastic + inelastic) integral cross-sections. Of particular interest is the measure of quantum interference patterns in the energy dependence of cross-sections of targeted systems and their shift compared to that of known reference systems. We interpreted these findings as interaction energy stabilization components, such as charge transfer, σ-hole, and polar flattening, that emerge at intermediate separation distance ranges and selectively manifest for specific geometries of collision complexes. Another significant observable we discuss is the absolute value of the cross-section and its dependence on permanent multipole moments of the collisional partners. Specifically, we show how the spontaneous orientation of rotationally cold and polar molecules, due to the electric field gradient associated with the interaction between permanent multipole moments, can significantly modify the magnitude of the total cross-section, even at high values of the impact parameter. We are confident that the present results can help extend the force field formulation to various interacting systems and carry out molecular dynamics simulations under conditions of application interest.
Collapse
Affiliation(s)
- David Cappelletti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Stefano Falcinelli
- Dipartimento di Ingegneria Civile ed Ambientale, Università degli Studi di Perugia, via G. Duranti 93, 06215 Perugia, Italy
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
- Dipartimento di Ingegneria Civile ed Ambientale, Università degli Studi di Perugia, via G. Duranti 93, 06215 Perugia, Italy
| |
Collapse
|
4
|
Song H, Guo H. Theoretical Insights into the Dynamics of Gas-Phase Bimolecular Reactions with Submerged Barriers. ACS PHYSICAL CHEMISTRY AU 2023; 3:406-418. [PMID: 37780541 PMCID: PMC10540288 DOI: 10.1021/acsphyschemau.3c00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 10/03/2023]
Abstract
Much attention has been paid to the dynamics of both activated gas-phase bimolecular reactions, which feature monotonically increasing integral cross sections and Arrhenius kinetics, and their barrierless capture counterparts, which manifest monotonically decreasing integral cross sections and negative temperature dependence of the rate coefficients. In this Perspective, we focus on the dynamics of gas-phase bimolecular reactions with submerged barriers, which often involve radicals or ions and are prevalent in combustion, atmospheric chemistry, astrochemistry, and plasma chemistry. The temperature dependence of the rate coefficients for such reactions is often non-Arrhenius and complex, and the corresponding dynamics may also be quite different from those with significant barriers or those completely dominated by capture. Recent experimental and theoretical studies of such reactions, particularly at relatively low temperatures or collision energies, have revealed interesting dynamical behaviors, which are discussed here. The new knowledge enriches our understanding of the dynamics of these unusual reactions.
Collapse
Affiliation(s)
- Hongwei Song
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University
of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
5
|
Plamper D, Fujioka K, Schmidt S, Sun R, Weitzel KM. Ion-molecule reactions in the HBr + + HCl (DCl) system: a combined experimental and theoretical study. Phys Chem Chem Phys 2023; 25:2629-2640. [PMID: 36602406 DOI: 10.1039/d2cp03654a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reactions in the system HBr+ + HCl (DCl) were investigated inside a guided ion-beam apparatus under single-collision conditions. In the HBr+ + HCl system, the proton transfer (PTHCl) and charge transfer (CT) are observable. In the HBr+ + DCl system, proton transfer (PTDCl) and deuterium abstraction (DA) are accessible. The cross sections for all reaction channels were measured as a function of the collision energy Ecm and of the rotational energy Erot of the ion. The rotationally state-selective formation of the ionic species was realized by resonance-enhanced multiphoton ionization (REMPI). As expected, the PT-channels are exothermic, and the cross section decreases with increasing collision energy for both PTHCl and PTDCl. The cross section for DA also decreases with an increasing Ec.m.. In the case of a considerably endothermic CT-channel, the reaction efficiency increases with increasing collision energy but has an overall much smaller cross sections compared to PT and DA reactions. Both PT-reactions are hindered by ion rotation, whereas DA is independent of Erot. The CT-channel shows a rotational enhancement near the thermochemical threshold. The experiment is complemented by theory, using ab initio molecular dynamics (AIMD, also known as direct dynamics) simulations and taking the rotational enhancement of HBr+ into account. The simulations show good agreement with the experimental results. The cross section of PTHCl decreases with an increase of the rotational energy. Furthermore, the absolute cross sections are in the same order of magnitude. The CT channel shows no reactions in the simulation.
Collapse
Affiliation(s)
- Dominik Plamper
- Philipps-Universität Marburg, Fachbereich Chemie, 35032 Marburg, Germany.
| | - Kazuumi Fujioka
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Sebastian Schmidt
- Philipps-Universität Marburg, Fachbereich Chemie, 35032 Marburg, Germany.
| | - Rui Sun
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | | |
Collapse
|
6
|
Mondal S, Pan H, Liu K. Stretching-mode specificity in the Cl + CH 3D( v1-I, v1-II, and v4 = 1; | jK〉) reactions: dependency on the initial | jK〉 selectivity. Phys Chem Chem Phys 2022; 24:24050-24061. [PMID: 36168830 DOI: 10.1039/d2cp03614b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The title reactions were studied at a collisional energy of 5.4 kcal mol-1 in a crossed-beam product-imaging experiment. The dynamics attributes of the dominant ground-state CH2D(00) and the accompanied C-D bend-excited CH2D(61) products were imaged in reactions with totally 16 ro-vibrationally selected states of the CH3D(vi, |jK〉) reagents. We found that all three vibrational excitations yielded marked |jK〉-dependent rate-enhancements in forming the (00, 0/1)s product pairs. Furthermore, for a given rotational |jK〉-mode, a vibrational-mode propensity of v4 > v1-I > v1-II in rate promotion and a clear manifestation of the Fermi-phase-induced interference effect of the latter two were observed. Compared to the reactivity of the rotationless state |jK〉 = |00〉, a minute rotational-excitation of all three stretch-excited CH3D(vi = 1) reagents could yield significantly higher reaction rates for the product pair (00, 0)s, but not so for (00, 1)s. The signals in forming the (61, 0)s pair were clearly notable but smaller than that of the ground-state reaction product pair, (00, 0)g. An opposite propensity of v1-II ≈ v1-I > v4 with a milder dependency on the initial |jK〉-states was observed. The angular distributions of the (00, 0)s pairs were nearly identical for all ro-vibrationally excited reagents, displaying the typical trait for a direct abstraction of the rebound mechanism. Similar distributions were found for the (61, 0)s pairs; yet, both pairs deviated substantially from the peripheral feature of the ground-state reaction pair of (00, 0)g. Those of the (00, 1)s pairs in reactions with v4-excitation featured a prominent forward-peaking distribution-suggestive of a time-delayed, resonance-mediated pathway, again with little dependency on the initial |jK〉-states. As for the reactions with the two Fermi-dyads, v1-I and v1-II, albeit showing globally similar distributions to that for v4, a substantial variation with the initial rotational-mode excitation could be discerned in the forward-peaking features. To unravel the impact of the Fermi-phase on the |jK〉-dependent attributes, we adopted a comparative approach by contrasting the observations in reactions with the Fermi-dyad reagents (the superposition states) to those with the pure-state reagents. Remarkable distinctions are unveiled and elucidated with the unexplained results explicitly pointed out, which call for future theoretical investigations for deeper understanding.
Collapse
Affiliation(s)
- Sohidul Mondal
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, P. O. Box 23-166, Taipei, 10699, Taiwan.
| | - Huilin Pan
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, P. O. Box 23-166, Taipei, 10699, Taiwan. .,Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Kopin Liu
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, P. O. Box 23-166, Taipei, 10699, Taiwan. .,Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian, 116023, P. R. China
| |
Collapse
|
7
|
Song K, Song H, Li J. Validating experiments for the reaction H 2 + NH 2- by dynamical calculations on an accurate full-dimensional potential energy surface. Phys Chem Chem Phys 2022; 24:10160-10167. [PMID: 35420091 DOI: 10.1039/d2cp00870j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ion-molecule reactions play key roles in the field of ion related chemistry. As a prototypical multi-channel ion-molecule reaction, the reaction H2 + NH2- → NH3 + H- has been studied for decades. In this work, we develop a new globally accurate potential energy surface (PES) for the title system based on hundreds of thousands of sampled points over a wide dynamically relevant region that covers long-range interacting configuration space. The permutational invariant polynomial-neural network (PIP-NN) method is used for fitting and the resulting total root mean squared error (RMSE) is extremely small, 0.026 kcal mol-1. Extensive dynamical and kinetic calculations are carried out on this PIP-NN PES. Impressively, a unique phenomenon of significant reactivity suppression by exciting the rotational mode of H2 is reported, supported by both the quasi-classical trajectory (QCT) and quantum dynamics (QD) calculations. Further analysis uncovers that exciting the H2 rotational mode would prevent the formation of the reactant complex and thus suppress the reactivity. The calculated rate coefficients for H2/D2 + NH2- agree well with the experimental results, which show an inverse temperature dependence from 50 to 300 K, consistent with the capture nature of this barrierless reaction. The significant kinetic isotope effect observed by experiments is well reproduced by the QCT computations as well.
Collapse
Affiliation(s)
- Kaisheng Song
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, P. R. China.
| | - Hongwei Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, P. R. China.
| |
Collapse
|
8
|
Abstract
We perform rotational mode-specific quasi-classical trajectory simulations using a high-quality ab initio analytical potential energy surface for the Cl(2P3/2) + C2H6 → HCl + C2H5 reaction. As ethane, being a prolate-type symmetric top, can be characterized by the J and K rotational quantum numbers, the excitation of two rotational modes, the tumbling (J, K = 0) and spinning (J, K = J) rotations of the reactant is carried out with J = 10, 20, 30, and 40 at a wide range of collision energies. The impacts of rotational excitation on the reactivity, the mechanism, and the post-reaction distribution of energy are investigated: (1) exciting both rotational modes enhances the reactivity with the spinning rotation being more effective due to its coupling to the C-H stretching vibrational normal modes (C-H bond elongating effect) and larger rotational energies, (2) rotational excitation increases the dominance of direct rebound over the stripping mechanism, while collision energy favors the latter, (3) investing energy in tumbling rotation excites the translational motion of the products, while the excess spinning rotational energy readily flows into the internal degrees of freedom of the ethyl radical or, less significantly, into the HCl vibration, probably due to the pronounced rovibrational coupling in this case. We also study the relative efficiency of vibrational and rotational excitation on the reactivity of the barrierless and thus translationally hindered title reaction.
Collapse
Affiliation(s)
- Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
9
|
Zhu Y, Li R, Song H. Kinetic and dynamic studies of the NH 2+ + H 2 reaction on a high-level ab initio potential energy surface. Phys Chem Chem Phys 2022; 24:25663-25672. [DOI: 10.1039/d2cp03859e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The dynamics and kinetics of the NH2+ + H2 reaction are investigated on a newly developed ab initio potential energy surface using the quasi-classical trajectory method.
Collapse
Affiliation(s)
- Yongfa Zhu
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Hongwei Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
10
|
Pan M, Xiang H, Li Y, Song H. Study on the kinetics and dynamics of the H 2 + NH 2- reaction on a high-level ab initio potential energy surface. Phys Chem Chem Phys 2021; 23:17848-17855. [PMID: 34612274 DOI: 10.1039/d1cp02423j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gas-phase ion-molecule reactions play major roles in many fields of chemistry and physics. The reaction of an amino radical anion with a hydrogen molecule is one of the simplest proton transfer reactions involving anions. A globally accurate full-dimensional potential energy surface (PES) for the NH2- + H2 reaction is developed by the fundamental invariant-neural network method, resulting in a root mean square error of 0.116 kcal mol-1. Quasi-classical trajectory calculations are then carried out on the newly developed PES to give integral cross sections, differential cross sections and thermal rate coefficients. This reaction has two reaction channels, proton transfer and hydrogen exchange. The reactivity of the proton transfer channel is about one or two orders of magnitude stronger than that of the hydrogen exchange channel in the energy range studied. Vibrational excitation of H2 promotes the proton transfer reaction, while fundamental excitation of each vibrational mode of NH2- has a negligible effect. In addition, the theoretical rate coefficients of the proton transfer reaction on the PES show inverse temperature dependence from 150 to 750 K, in accordance with the available experimental results.
Collapse
Affiliation(s)
- Mengyi Pan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | | | | | | |
Collapse
|
11
|
Falcinelli S, Vecchiocattivi F, Farrar JM, Pirani F. Chemi-Ionization Reactions and Basic Stereodynamical Effects in Collisions of Atom-Molecule Reagents. J Phys Chem A 2021; 125:3307-3315. [PMID: 33853326 PMCID: PMC8154608 DOI: 10.1021/acs.jpca.1c00688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/28/2021] [Indexed: 12/02/2022]
Abstract
A new theoretical method, developed by our laboratory to describe the microscopic dynamics of gas-phase elementary chemi-ionization reactions, has been applied recently to study prototype atom-atom processes involving reactions between electronically excited metastable Ne*(3P2,0) and heavier noble gas atoms. Important aspects of electronic rearrangement selectivity have been emphasized that suggested the existence of two fundamental microscopic reaction mechanisms. The distinct mechanisms, which are controlled by intermolecular forces of chemical and noncovalent nature respectively, emerge under different conditions, and their balance depends on the collision energy regime investigated. The present paper provides the first step for the extension of the method to cases involving molecules of increasing complexity, whose chemi-ionization reactions are of relevance in several fields of basic and applied researches. The focus is here on the reactions of Ne* with simple inorganic molecules as Cl2 and NH3, and the application of the method discloses relevant features of the reaction microscopic evolution. In particular, this study shows that the balance of two fundamental reaction mechanisms depends not only on the collision energy and on the relative orientation of reagents but also on the orbital angular momentum of each collision complex. The additional insights so emphasized are of general relevance to assess in detail the stereodynamics of many other elementary processes.
Collapse
Affiliation(s)
- Stefano Falcinelli
- Department
of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Franco Vecchiocattivi
- Department
of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - James M. Farrar
- Department
of Chemistry, University of Rochester, 14627 Rochester, New York, United States
| | - Fernando Pirani
- Department
of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
12
|
Papp P, Czakó G. Rotational Mode Specificity in the F - + CH 3I( v = 0, JK) S N2 and Proton-Transfer Reactions. J Phys Chem A 2020; 124:8943-8948. [PMID: 33054214 PMCID: PMC7604870 DOI: 10.1021/acs.jpca.0c08043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Quasiclassical
trajectory computations are performed for the F– + CH3I(v = 0, JK) →
I– + CH3F (SN2) and HF + CH2I– (proton-transfer)
reactions considering initial rotational states characterized by J = {0, 2, 4, 6, 8, 12, and 16} and K =
{0 and J} in the 1–30 kcal/mol collision energy
(Ecoll) range. Tumbling rotation (K = 0) counteracts orientation effects, thereby hindering
the SN2 reactivity by about 15% for J =
16 in the 1–15 kcal/mol Ecoll range
and has a negligible effect on proton transfer. Spinning about the
C–I bond (K = J), which is
21 times faster than tumbling, makes the reactions more direct, inhibiting
the SN2 reactivity by 25% in some cases, whereas significantly
enhancing the proton-transfer channel by a factor of 2 at Ecoll = 15 kcal/mol due to the fact that the
spinning-induced centrifugal force hinders complex formation by breaking
H-bonds and activates C–H bond cleavage, thereby promoting
proton abstraction on the expense of substitution. At higher Ecoll, as the reactions become more direct, the
rotational effects are diminishing.
Collapse
Affiliation(s)
- Paszkál Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
13
|
Falcinelli S, Farrar JM, Vecchiocattivi F, Pirani F. Quantum-State Controlled Reaction Channels in Chemi-ionization Processes: Radiative (Optical-Physical) and Exchange (Oxidative-Chemical) Mechanisms. Acc Chem Res 2020; 53:2248-2260. [PMID: 32930573 PMCID: PMC8011800 DOI: 10.1021/acs.accounts.0c00371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 01/29/2023]
Abstract
ConspectusMost chemical processes are triggered by electron or charge transfer phenomena (CT). An important class of processes involving CT are chemi-ionization reactions. Such processes are very common in nature, involving neutral species in ground or excited electronic states with sufficient energy (X*) to yield ionic products, and are considered as the primary initial step in flames. They are characterized by pronounced electronic rearrangements that take place within the collisional complex (X···M)* formed by approaching reagents, as shown by the following scheme, where M is an atomic or molecular target: X* + M → (X···M)* → [(X+···M) ↔ (X···M+)]e- → via e - CT (X···M)+ + e- → final ions.Despite their important role in fundamental and applied research, combustion, plasmas, and astrochemistry, a unifying description of these basic processes is still lacking. This Account describes a new general theoretical methodology that demonstrates, for the first time, that chemi-ionization reactions are prototypes of gas phase oxidation processes occurring via two different microscopic mechanisms whose relative importance varies with collision energy, Ec, and separation distance, R. These mechanisms are illustrated for simple collisions involving Ne*(3P2,0) and noble gases (Ng). In thermal and hyperthermal collisions probing interactions at intermediate and short R, the transition state [(Ne···Ng)+]e- is a molecular species described as a molecular ion core with an orbiting Rydberg electron in which the neon reagent behaves as a halogen atom (i.e., F) with high electron affinity promoting chemical oxidation. Conversely, subthermal collisions favor a different reaction mechanism: Ng chemi-ionization proceeds through another transition state [Ne*······Ng], a weakly bound diatomic-lengthened complex where Ne* reagent, behaving as a Na atom, loses its metastability and stimulates an electron ejection from M by a concerted emission-absorption of a "virtual" photon. This is a physical radiative mechanism promoting an effective photoionization. In the thermal regime of Ec, there is a competition between these two mechanisms. The proposed method overcomes previous approaches for the following reasons: (1) it is consistent with all assumptions invoked in previous theoretical descriptions dating back to 1970; (2) it provides a simple and general description able to reproduce the main experimental results from our and other laboratories during last 40 years; (3) it demonstrates that the two "exchange" and "radiative" mechanisms are simultaneously present with relative weights that change with Ec (this viewpoint highlights the fact that the "canonical" chemical oxidation process, dominant at high Ec, changes its nature in the subthermal regime to a direct photoionization process; therefore, it clarifies differences between the cold chemistry of terrestrial and interstellar environments and the energetic one of combustion and flames); (4) the proposed method explicitly accounts for the influence of the degree of valence orbital alignment on the selective role of each reaction channel as a function of Ec and also permits a description of the collision complex, a rotating adduct, in terms of different Hund's cases of angular momentum couplings that are specific for each reaction channel; (5) finally, the method can be extended to reaction mechanisms of redox, acid-base, and other important condensed phase reactions.
Collapse
Affiliation(s)
- Stefano Falcinelli
- Dipartimento
di Ingegneria Civile ed Ambientale, Università
di Perugia, 06125 Perugia, Italy
| | - James M. Farrar
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Franco Vecchiocattivi
- Dipartimento
di Ingegneria Civile ed Ambientale, Università
di Perugia, 06125 Perugia, Italy
| | - Fernando Pirani
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
di Perugia, 06123 Perugia, Italy
- Istituto
di Scienze e Tecnologie Chimiche “G. Natta” CNR-SCITEC, 06123 Perugia, Italy
| |
Collapse
|
14
|
Schmidt S, Plamper D, Jekkel J, Weitzel KM. Self-Reactions in the HBr + (DBr +) + HBr System: A State-Selective Investigation of the Role of Rotation. J Phys Chem A 2020; 124:8461-8468. [PMID: 32960596 DOI: 10.1021/acs.jpca.0c07361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Self-reactions observed in the HBr+ (DBr+) + HBr system have been investigated using a guided ion-beam experiment under single-collision conditions. The reaction channels observed are proton transfer/hydrogen abstraction (PT/HA) in the case of HBr+ and deuteron transfer/hydrogen abstraction (DT/HA) and charge transfer (CT) in the case of DBr+. HBr+/DBr+ ions have been formed with rotational energies selected using the resonance-enhanced multiphoton ionization (REMPI) formation process. Cross sections have been measured as a function of the rotational energy of the ion, Erot, and of the center-of-mass collision energy, Ecm. In the region of low rotational energies, the cross section for both PT/HA and DT/HA decreases with increasing ion rotation. In this region, the cross section for CT increases with increasing ion rotation. For higher rotational energies, the cross section increases with increasing ion rotation for PT/HA and less pronounced for DT/HA. The cross section for CT becomes independent of ion rotation for high rotational energies. Since all reaction channels are exothermic, all cross sections decrease with increasing Ecm.
Collapse
Affiliation(s)
- Sebastian Schmidt
- Philipps-Universität Marburg, Fachbereich Chemie, Marburg 35032, Germany
| | - Dominik Plamper
- Philipps-Universität Marburg, Fachbereich Chemie, Marburg 35032, Germany
| | - Jasmin Jekkel
- Philipps-Universität Marburg, Fachbereich Chemie, Marburg 35032, Germany
| | | |
Collapse
|
15
|
Pan H, Wang F, Liu K. Multifaceted Stereoselectivity in Polyatomic Reactions. J Phys Chem A 2020; 124:6573-6584. [DOI: 10.1021/acs.jpca.0c04838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huilin Pan
- Southern University of Science and Technology, Shenzhen, P. R. China 518055
| | - Fengyan Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, P. R. China 200433
| | - Kopin Liu
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei, Taiwan 10617
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian, P. R. China 116023
- Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan 80424
| |
Collapse
|
16
|
Ascenzi D, Scotoni M, Tosi P, Cappelletti D, Pirani F. Stereodynamical Effects by Anisotropic Intermolecular Forces. Front Chem 2019; 7:390. [PMID: 31214573 PMCID: PMC6554618 DOI: 10.3389/fchem.2019.00390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/15/2019] [Indexed: 11/13/2022] Open
Abstract
Electric and magnetic field gradients, arising from sufficiently strong anisotropic intermolecular forces, tend to induce molecular polarization which can often modify substantially the results of molecular collisions, especially at low rotational temperatures and low collision energies. The knowledge of these phenomena, today still not fully understood, is of general relevance for the control of the stereo-dynamics of elementary chemical-physical processes, involving neutral and ionic species under a variety of conditions. This paper reports on results obtained by combining information from scattering, spectroscopic and reactivity experiments, within a collaboration between the research groups in Perugia and Trento. We addressed particular attention to the reactions of small atomic ions with polar neutrals for their relevance in several environments, including interstellar medium, planetary atmospheres, and laboratory plasmas. In the case of ion-molecule reactions, alignment/orientation is a general phenomenon due to the electric field generated by the charged particle. Such phenomenon originates critical stereo-dynamic effects that can either suppress (when the orientation drives the collision complex into non-reactive or less reactive configurations), or enhance the reactivity (when orientation confines reagents in the most appropriate configuration for reaction). The associated rate coefficients show the propensity to follow an Arrhenius and a non-Arrhenius behavior, respectively.
Collapse
Affiliation(s)
| | - Mario Scotoni
- Dipartimento di Fisica, Università di Trento, Trento, Italy
| | - Paolo Tosi
- Dipartimento di Fisica, Università di Trento, Trento, Italy
| | - David Cappelletti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| |
Collapse
|
17
|
Xu Y, Xiong B, Chang YC, Ng CY. Quantum-State-Selected Integral Cross Sections and Branching Ratios for the Ion–Molecule Reaction of N2+(X2Σg+: ν+ = 0–2) + C2H4 in the Collision Energy Range of 0.05–10.00 eV. J Phys Chem A 2018; 122:6491-6499. [DOI: 10.1021/acs.jpca.8b04587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuntao Xu
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Bo Xiong
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Yih Chung Chang
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Cheuk-Yiu Ng
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
18
|
Yang T, Li A, Chen GK, Xie C, Suits AG, Campbell WC, Guo H, Hudson ER. Optical Control of Reactions between Water and Laser-Cooled Be + Ions. J Phys Chem Lett 2018; 9:3555-3560. [PMID: 29893569 DOI: 10.1021/acs.jpclett.8b01437] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigate reactions between laser-cooled Be+ ions and room-temperature water molecules using an integrated ion trap and high-resolution time-of-flight mass spectrometer. This system allows simultaneous measurement of individual reaction rates that are resolved by reaction product. The rate coefficient of the Be+(2S1/2) + H2O → BeOH+ + H reaction is measured for the first time and is found to be approximately two times smaller than predicted by an ion-dipole capture model. Zero-point-corrected quasi-classical trajectory calculations on a highly accurate potential energy surface for the ground electronic state reveal that the reaction is capture-dominated, but a submerged barrier in the product channel lowers the reactivity. Furthermore, laser excitation of the ions from the 2S1/2 ground state to the 2P3/2 state opens new reaction channels, and we report the rate and branching ratio of the Be+(2P3/2) + H2O → BeOH+ + H and H2O+ + Be reactions. The excited-state reactions are nonadiabatic in nature.
Collapse
Affiliation(s)
- Tiangang Yang
- Department of Physics and Astronomy , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science , Northwest University , 710127 Xi'an , P. R. China
| | - Gary K Chen
- Department of Physics and Astronomy , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Changjian Xie
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Arthur G Suits
- Department of Chemistry , University of Missouri , Columbia , Missouri 65211 , United States
| | - Wesley C Campbell
- Department of Physics and Astronomy , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Eric R Hudson
- Department of Physics and Astronomy , University of California, Los Angeles , Los Angeles , California 90095 , United States
| |
Collapse
|
19
|
Kumar SS, Grussie F, Suleimanov YV, Guo H, Kreckel H. Low temperature rates for key steps of interstellar gas-phase water formation. SCIENCE ADVANCES 2018; 4:eaar3417. [PMID: 29942857 PMCID: PMC6014714 DOI: 10.1126/sciadv.aar3417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
The gas-phase formation of water molecules in the diffuse interstellar medium (ISM) proceeds mainly via a series of reactions involving the molecular ions OH+, H2O+, and H3O+ and molecular hydrogen. These reactions form the backbone for the chemistry leading to the formation of several complex molecular species in space. A comprehensive understanding of the mechanisms involved in these reactions in the ISM necessitates an accurate knowledge of the rate coefficients at the relevant temperatures (10 to 100 K). We present measurements of the rate coefficients for two key reactions below 100 K, which, in both cases, are significantly higher than the values used in astronomical models thus far. The experimental rate coefficients show excellent agreement with dedicated theoretical calculations using a novel ring-polymer molecular dynamics approach that offers a first-principles treatment of low-temperature barrierless gas-phase reactions, which are prevalent in interstellar chemical networks.
Collapse
Affiliation(s)
- Sunil S. Kumar
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - Florian Grussie
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - Yury V. Suleimanov
- Computation-based Science and Technology Research Center, Cyprus Institute, 20 Kavafi Street, Nicosia 2121, Cyprus
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Holger Kreckel
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| |
Collapse
|
20
|
Cernuto A, Pirani F, Martini LM, Tosi P, Ascenzi D. The Selective Role of Long-Range Forces in the Stereodynamics of Ion-Molecule Reactions: The He + +Methyl Formate Case From Guided-Ion-Beam Experiments. Chemphyschem 2018; 19:51-59. [PMID: 29045020 DOI: 10.1002/cphc.201701096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Indexed: 12/20/2022]
Abstract
Long-range intermolecular forces play a crucial role in controlling the outcome of ion-molecule chemical reactions, such as those determining the disappearance of organic or inorganic "complex" molecules recently detected in various regions of the interstellar medium due to collisions with abundant interstellar atomic ions (e.g. H+ and He+ ). Theoretical treatments, for example, based on simple capture models, are nowadays often adopted to evaluate the collision-energy dependence of reactive cross sections and the temperature dependent rate coefficients of many ion-molecule reactions. The obtained results are widely used for the modelling of phenomena occurring in different natural environments or technological applications such as astrophysical and laboratory plasmas. Herein it is demonstrated, through a combined experimental and theoretical investigation on a prototype ion-molecule reaction (He+ +methyl formate), that the dynamics, investigated in detail, shows some intriguing features that can lead to rate coefficients at odds with the expectations (e.g. Arrhenius versus anti-Arrhenius behaviour). Therefore, this study casts light on some new and general guidelines to be properly taken into account for a suitable evaluation of rate coefficients of ion-molecule reactions.
Collapse
Affiliation(s)
- Andrea Cernuto
- Dipartimento di Fisica, Universitá di Trento, Via Sommarive 14, 38123, Trento, Italy
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Universitá di Perugia, Via Elce di Sotto 8, Perugia, Italy.,Istituto di Nanotecnologia (CNR NANOTEC), 70126, Bari, Italy
| | - Luca Matteo Martini
- Dipartimento di Fisica, Universitá di Trento, Via Sommarive 14, 38123, Trento, Italy
| | - Paolo Tosi
- Dipartimento di Fisica, Universitá di Trento, Via Sommarive 14, 38123, Trento, Italy
| | - Daniela Ascenzi
- Dipartimento di Fisica, Universitá di Trento, Via Sommarive 14, 38123, Trento, Italy
| |
Collapse
|
21
|
Cernuto A, Tosi P, Martini LM, Pirani F, Ascenzi D. Experimental investigation of the reaction of helium ions with dimethyl ether: stereodynamics of the dissociative charge exchange process. Phys Chem Chem Phys 2017; 19:19554-19565. [PMID: 28277582 DOI: 10.1039/c7cp00827a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fate of dimethyl ether (DME, CH3OCH3) in collisions with He+ ions is of high relevance for astrochemical models aimed at reproducing the abundances of complex organic molecules in the interstellar medium. Here we report an investigation on the reaction of He+ ions with DME carried out using a Guided Ion Beam Mass Spectrometer (GIB-MS), which allows the measurement of reactive cross-sections and branching ratios (BRs) as a function of the collision energy. We obtain insights into the dissociative charge (electron) exchange mechanism by investigating the nature of the non-adiabatic transitions between the relevant potential energy surfaces (PESs) in an improved Landau-Zener approach. We find that the large interaction anisotropy could induce a pronounced orientation of the polar DME molecule in the electric field generated by He+ so that at short distances the collision complex is confined within pendular states, a particular case of bending motion, which gives rise to intriguing stereodynamic effects. The positions of the intermolecular potential energy curve crossings indicate that He+ captures an electron from an inner valence orbital of DME, thus causing its dissociation. In addition to the crossing positions, the symmetry of the electron density distribution of the involved DME orbitals turns out to be a further major point affecting the probability of electron transfer. Thus, the anisotropy of the intermolecular interaction and the electron densities of the orbitals involved in the reaction are the key "ingredients" for describing the dynamics of this dissociative charge transfer.
Collapse
Affiliation(s)
- Andrea Cernuto
- Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Povo, Italy.
| | | | | | | | | |
Collapse
|
22
|
Xiong B, Chang YC, Ng CY. A quantum-rovibrational-state-selected study of the proton-transfer reaction H 2+(X 2Σ: v + = 1-3; N + = 0-3) + Ne → NeH + + H using the pulsed field ionization-photoion method: observation of the rotational effect near the reaction threshold. Phys Chem Chem Phys 2017; 19:18619-18627. [PMID: 28692096 DOI: 10.1039/c7cp03963h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using the sequential electric field pulsing scheme for vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection, we have successfully prepared H2+(X2Σ: v+ = 1-3; N+ = 0-5) ions in the form of an ion beam in single quantum-rovibrational-states with high purity, high intensity, and narrow laboratory kinetic energy spread (ΔElab ≈ 0.05 eV). This VUV-PFI-PI ion source, when coupled with the double-quadrupole double-octupole ion-molecule reaction apparatus, has made possible a systematic examination of the vibrational- as well as rotational-state effects on the proton transfer reaction of H2+(X2Σ: v+; N+) + Ne. Here, we present the integral cross sections [σ(v+; N+)'s] for the H2+(v+ = 1-3; N+ = 0-3) + Ne → NeH+ + H reaction observed in the center-of-mass kinetic energy (Ecm) range of 0.05-2.00 eV. The σ(v+ = 1, N+ = 1) exhibits a distinct Ecm onset, which is found to agree with the endothermicity of 0.27 eV for the proton transfer process after taking into account of experimental uncertainties. Strong v+-vibrational enhancements are observed for σ(v+ = 1-3, N+) in the Ecm range of 0.05-2.00 eV. While rotational excitations appear to have little effect on σ(v+ = 3, N+), a careful search leads to the observation of moderate N+-rotational enhancements at v+ = 2: σ(v+ = 2; N+ = 0) < σ(v+ = 2; N+ = 1) < σ(v+ = 2; N+ = 2) < σ(v+ = 2; N+ = 3), where the formation of NeH+ is near thermal-neutral. The σ(v+ = 1-3, N+ = 0-3) values obtained here are compared with previous experimental results and the most recent state-of-the-art quantum dynamics predictions. We hope that these new experimental results would further motivate more rigorous theoretical calculations on the dynamics of this prototypical ion-molecule reaction.
Collapse
Affiliation(s)
- Bo Xiong
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
23
|
Song H, Li A, Yang M, Guo H. Competition between the H- and D-atom transfer channels in the H 2O + + HD reaction: reduced-dimensional quantum and quasi-classical studies. Phys Chem Chem Phys 2017. [PMID: 28650041 DOI: 10.1039/c7cp02889j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ion-molecule reaction between a water cation and a hydrogen molecule has recently attracted considerable interest due to its importance in astrochemistry. In this work, the intramolecular isotope effect of the H2O+ + HD reaction is investigated using a seven-dimensional initial state-selected time-dependent wave packet approach as well as a full-dimensional quasi-classical trajectory method on a full-dimensional ab initio global potential energy surface. The calculated branching ratios for the formation of H3O+ and H2DO+via H- and D-transfer agree reasonably well with the experimental values. The preference to the formation of the H3O+ product observed using the experiment at low collision energies is reproduced by theoretical calculations and explained by a one-dimensional effective potential model.
Collapse
Affiliation(s)
- Hongwei Song
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.
| | | | | | | |
Collapse
|
24
|
Xu Y, Xiong B, Chang YC, Pan Y, Lo PK, Lau KC, Ng CY. A quantum-rovibrational-state-selected study of the reaction in the collision energy range of 0.05-10.00 eV: translational, rotational, and vibrational energy effects. Phys Chem Chem Phys 2017; 19:9778-9789. [PMID: 28352920 DOI: 10.1039/c7cp00937b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report detailed absolute integral cross sections (σ's) for the quantum-rovibrational-state-selected ion-molecule reaction in the center-of-mass collision energy (Ecm) range of 0.05-10.00 eV, where (vvv) = (000), (100), and (020), and . Three product channels, HCO+ + OH, HOCO+ + H, and CO+ + H2O, are identified. The measured σ(HCO+) curve [σ(HCO+) versus Ecm plot] supports the hypothesis that the formation of the HCO+ + OH channel follows an exothermic pathway with no potential energy barriers. Although the HOCO+ + H channel is the most exothermic, the σ(HOCO+) is found to be significantly lower than the σ(HCO+). The σ(HOCO+) curve is bimodal, indicating two distinct mechanisms for the formation of HOCO+. The σ(HOCO+) is strongly inhibited at Ecm < 0.4 eV, but is enhanced at Ecm > 0.4 eV by (100) vibrational excitation. The Ecm onsets of σ(CO+) determined for the (000) and (100) vibrational states are in excellent agreement with the known thermochemical thresholds. This observation, along with the comparison of the σ(CO+) curves for the (100) and (000) states, shows that kinetic and vibrational energies are equally effective in promoting the CO+ channel. We have also performed high-level ab initio quantum calculations on the potential energy surface, intermediates, and transition state structures for the titled reaction. The calculations reveal potential barriers of ≈0.5-0.6 eV for the formation of HOCO+, and thus account for the low σ(HOCO+) and its bimodal profile observed. The Ecm enhancement for σ(HOCO+) at Ecm ≈ 0.5-5.0 eV can be attributed to the direct collision mechanism, whereas the formation of HOCO+ at low Ecm < 0.4 eV may involve a complex mechanism, which is mediated by the formation of a loosely sticking complex between HCO+ and OH. The direct collision and complex mechanisms proposed also allow the rationalization of the vibrational inhibition at low Ecm and the vibrational enhancement at high Ecm observed for the σ(HOCO+).
Collapse
Affiliation(s)
- Yuntao Xu
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Xu Y, Xiong B, Chang YC, Ng CY. Isotopic and quantum-rovibrational-state effects for the ion-molecule reaction in the collision energy range of 0.03-10.00 eV. Phys Chem Chem Phys 2017; 19:8694-8705. [PMID: 28295117 DOI: 10.1039/c7cp00295e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report detailed quantum-rovibrational-state-selected integral cross sections for the formation of H3O+via H-transfer (σHT) and H2DO+via D-transfer (σDT) from the reaction in the center-of-mass collision energy (Ecm) range of 0.03-10.00 eV, where (vvv) = (000), (100), and (020) and . The Ecm inhibition and rotational enhancement observed for these reactions at Ecm < 0.5 eV are generally consistent with those reported previously for H2O+ + H2(D2) reactions. However, in contrast to the vibrational inhibition observed for the latter reactions at low Ecm < 0.5 eV, both the σHT and σDT for the H2O+ + HD reaction are found to be enhanced by (100) vibrational excitation, which is not predicted by the current state-of-the-art theoretical dynamics calculations. Furthermore, the (100) vibrational enhancement for the H2O+ + HD reaction is observed in the full Ecm range of 0.03-10.00 eV. The fact that vibrational enhancement is only observed for the reaction of H2O+ + HD, and not for H2O+ + H2(D2) reactions suggests that the asymmetry of HD may play a role in the reaction dynamics. In addition to the strong isotopic effect favoring the σHT channel of the H2O+ + HD reaction at low Ecm < 0.5 eV, competition between the σHT and σDT of the H2O+ + HD reaction is also observed at Ecm = 0.3-10.0 eV. The present state-selected study of the H2O+ + HD reaction, along with the previous studies of the H2O+ + H2(D2) reactions, clearly shows that the chemical reactivity of H2O+ toward H2 (HD, D2) depends not only on Ecm, but also on the rotational and vibrational states of H2O+(X2B1). The detailed σHT and σDT values obtained here with single rovibrational-state selections of the reactant H2O+ are expected to be valuable benchmarks for state-of-the-art theoretical calculations on the chemical dynamics of the title reaction.
Collapse
Affiliation(s)
- Yuntao Xu
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA.
| | - Bo Xiong
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA.
| | - Yih Chung Chang
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA.
| | - C Y Ng
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
26
|
Xiong B, Chang YC, Ng CY. Quantum-state-selected integral cross sections for the charge transfer collision of O2+(a4Πu5/2,3/2,1/2,−1/2: v+= 1–2; J+) [O2+(X2Πg3/2,1/2: v+= 22–23; J+)] + Ar at center-of-mass collision energies of 0.05–10.00 eV. Phys Chem Chem Phys 2017; 19:29057-29067. [DOI: 10.1039/c7cp04886f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Study of spin–orbit and rovibronically selected ion-molecule reactions between O2+(a4Πu,ν+= 1–2; X2Πg,ν+= 22–23) and Ar.
Collapse
Affiliation(s)
- Bo Xiong
- Department of Chemistry
- University of California
- Davis
- USA
| | | | - Cheuk-Yiu Ng
- Department of Chemistry
- University of California
- Davis
- USA
| |
Collapse
|
27
|
Jiang B, Li J, Guo H. Potential energy surfaces from high fidelity fitting ofab initiopoints: the permutation invariant polynomial - neural network approach. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1200347] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Qi J, Song H, Yang M, Palma J, Manthe U, Guo H. Communication: Mode specific quantum dynamics of the F + CHD3 → HF + CD3 reaction. J Chem Phys 2016; 144:171101. [DOI: 10.1063/1.4948547] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ji Qi
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hongwei Song
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Juliana Palma
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Sáenz Peña 352, Bernal B1876BXD, Argentina
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
29
|
Pan H, Cheng Y, Liu K. Rotational Mode Specificity in Cl + CH4(v3=1,|jNl⟩): Role of Reactant’s Vibrational Angular Momentum. J Phys Chem A 2016; 120:4799-804. [DOI: 10.1021/acs.jpca.5b12156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huilin Pan
- Institute of Atomic and Molecular
Sciences (IAMS), Academia Sinica, P.O. Box 23-166, Taipei, Taiwan 10617
| | - Yuan Cheng
- Institute of Atomic and Molecular
Sciences (IAMS), Academia Sinica, P.O. Box 23-166, Taipei, Taiwan 10617
| | - Kopin Liu
- Institute of Atomic and Molecular
Sciences (IAMS), Academia Sinica, P.O. Box 23-166, Taipei, Taiwan 10617
| |
Collapse
|
30
|
Song H, Li A, Guo H. Rotational and Isotopic Effects in the H2 + OH+ → H + H2O+ Reaction. J Phys Chem A 2016; 120:4742-8. [DOI: 10.1021/acs.jpca.5b11574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongwei Song
- Department of Chemistry and
Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Anyang Li
- Department of Chemistry and
Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hua Guo
- Department of Chemistry and
Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
31
|
Song H, Li A, Guo H, Xu Y, Xiong B, Chang YC, Ng CY. Comparison of experimental and theoretical quantum-state-selected integral cross-sections for the H2O+ + H2 (D2) reactions in the collision energy range of 0.04–10.00 eV. Phys Chem Chem Phys 2016; 18:22509-15. [DOI: 10.1039/c6cp04598g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined experimental–theoretical study of the rovibrationally state-selected ion–molecule reactions H2O+(X2B1; v1+v2+v3+; NKa+Kc++) + H2 (D2) → H3O+ (H2DO+) + H (D), where (v1+v2+v3+) = (000), (020), and (100) and NKa+Kc++ = 000, 111, and 211.
Collapse
Affiliation(s)
- Hongwei Song
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| | - Anyang Li
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| | - Yuntao Xu
- Department of Chemistry
- University of California
- Davis
- USA
| | - Bo Xiong
- Department of Chemistry
- University of California
- Davis
- USA
| | | | - C. Y. Ng
- Department of Chemistry
- University of California
- Davis
- USA
| |
Collapse
|
32
|
Lu D, Qi J, Yang M, Behler J, Song H, Li J. Mode specific dynamics in the H2 + SH → H + H2S reaction. Phys Chem Chem Phys 2016; 18:29113-29121. [DOI: 10.1039/c6cp05780b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Full-dimensional quantum dynamics and quasi-classical trajectory studies indicate strong mode selectivity in the H2 + SH reaction.
Collapse
Affiliation(s)
- Dandan Lu
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| | - Ji Qi
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Jörg Behler
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- Bochum 44780
- Germany
| | - Hongwei Song
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- National Center for Magnetic Resonance in Wuhan
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Jun Li
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| |
Collapse
|
33
|
Martinez O, Ard SG, Li A, Shuman NS, Guo H, Viggiano AA. Temperature-dependent kinetic measurements and quasi-classical trajectory studies for the OH+ + H2/D2 → H2O+/HDO+ + H/D reactions. J Chem Phys 2015; 143:114310. [DOI: 10.1063/1.4931109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Oscar Martinez
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117-5776, USA
| | - Shaun G. Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117-5776, USA
| | - Anyang Li
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Nicholas S. Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117-5776, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Albert A. Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, New Mexico 87117-5776, USA
| |
Collapse
|
34
|
Szabó I, Czakó G. Rotational Mode Specificity in the F– + CH3Y [Y = F and Cl] SN2 Reactions. J Phys Chem A 2015; 119:12231-7. [DOI: 10.1021/acs.jpca.5b06212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- István Szabó
- Laboratory of Molecular Structure
and Dynamics, Institute of Chemistry, Eötvös University, P.O. Box
32, H-1518 Budapest 112, Hungary
| | - Gábor Czakó
- Laboratory of Molecular Structure
and Dynamics, Institute of Chemistry, Eötvös University, P.O. Box
32, H-1518 Budapest 112, Hungary
| |
Collapse
|
35
|
Wang F, Pan H, Liu K. Imaging the Effect of Reactant Rotations on the Dynamics of the Cl + CHD3(v1 = 1, |J,K⟩) Reaction. J Phys Chem A 2015; 119:11983-8. [DOI: 10.1021/acs.jpca.5b03524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fengyan Wang
- Institute
of Atomic and Molecular Sciences (IAMS), Academia Sinica, P.O. Box 23-166, Taipei, Taiwan 10617
- Department
of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Huilin Pan
- Institute
of Atomic and Molecular Sciences (IAMS), Academia Sinica, P.O. Box 23-166, Taipei, Taiwan 10617
| | - Kopin Liu
- Institute
of Atomic and Molecular Sciences (IAMS), Academia Sinica, P.O. Box 23-166, Taipei, Taiwan 10617
- Department
of Physics, National Taiwan University, Taipei, Taiwan 10617
| |
Collapse
|
36
|
Czakó G. Quasiclassical Trajectory Study of the Rotational Mode Specificity in the O(3P) + CHD3(v1 = 0, 1, JK) → OH + CD3 Reactions. J Phys Chem A 2014; 118:11683-7. [PMID: 25423322 DOI: 10.1021/jp509891w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gábor Czakó
- Laboratory of Molecular Structure and Dynamics, Institute
of Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest 112, Hungary
| |
Collapse
|
37
|
Ard SG, Li A, Martinez O, Shuman NS, Viggiano AA, Guo H. Experimental and Theoretical Kinetics for the H2O+ + H2/D2 → H3O+/H2DO+ + H/D Reactions: Observation of the Rotational Effect in the Temperature Dependence. J Phys Chem A 2014; 118:11485-9. [DOI: 10.1021/jp510399v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shaun G. Ard
- Space
Vehicle Directorate, Air Force Research Laboratory, Kirtland AFB, Albuquerque, New Mexico 87117, United States
| | - Anyang Li
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Oscar Martinez
- Space
Vehicle Directorate, Air Force Research Laboratory, Kirtland AFB, Albuquerque, New Mexico 87117, United States
| | - Nicholas S. Shuman
- Space
Vehicle Directorate, Air Force Research Laboratory, Kirtland AFB, Albuquerque, New Mexico 87117, United States
| | - Albert A. Viggiano
- Space
Vehicle Directorate, Air Force Research Laboratory, Kirtland AFB, Albuquerque, New Mexico 87117, United States
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
38
|
Li A, Guo H. A Full-Dimensional Global Potential Energy Surface of H3O+(ã3A) for the OH+(X̃3Σ–) + H2(X̃1Σg+) → H(2S) + H2O+(X̃2B1) Reaction. J Phys Chem A 2014; 118:11168-76. [DOI: 10.1021/jp5100507] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anyang Li
- Department of Chemistry
and
Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hua Guo
- Department of Chemistry
and
Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
39
|
Bell DM, Howder CR, Anderson SL. Effects of translational and vibrational excitation on the reaction of HOD+ with C2H2 and C2D2: mode- and bond-specific effects in exoergic proton transfer. J Phys Chem A 2014; 118:8360-72. [PMID: 24678576 DOI: 10.1021/jp501304v] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactions of mode-selectively excited HOD(+) with C2H2 and C2D2 were studied over the center-of-mass collision energy (Ecol) range from 0.15 to 2.9 eV. HOD(+) was prepared in each of its fundamental vibrational states: ground state (000), bend (010), OD stretch (100), and the OH stretch (001). Charge transfer is the dominant reaction at all energies, although it is inhibited by increasing Ecol, and is accompanied by hydrogen exchange. The total charge transfer cross section is similar for C2H2 and C2D2, however, the tendency toward charge transfer with hydrogen exchange (CTHE) is significantly greater for C2D2 compared to C2H2. Charge transfer shows no significant effects of HOD(+) vibrational excitation, however, CTHE is significantly enhanced by vibration at Ecol < 0.62 eV. Both H(+) and D(+) transfer reactions (HT, and DT, respectively) are observed for both C2H2 and C2D2, with little dependence on collision energy, but with mode- and bond-specific enhancements from excitation of the OH and OD stretches. Recoil velocity measurements show that all channels are direct, except perhaps at the lowest collision energies. Mode-specific effects on the recoil velocity distributions are also observed, revealing how vibrational excitation affects reaction at different collision impact parameters.
Collapse
Affiliation(s)
- David M Bell
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | | | | |
Collapse
|
40
|
Liu R, Wang F, Jiang B, Czakó G, Yang M, Liu K, Guo H. Rotational mode specificity in the Cl + CHD3 → HCl + CD3 reaction. J Chem Phys 2014; 141:074310. [DOI: 10.1063/1.4892598] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Li A, Guo H. A nine-dimensional ab initio global potential energy surface for the H2O+ + H2 → H3O+ + H reaction. J Chem Phys 2014; 140:224313. [DOI: 10.1063/1.4881943] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Roncaratti LF, Cappelletti D, Pirani F. The spontaneous synchronized dance of pairs of water molecules. J Chem Phys 2014; 140:124318. [PMID: 24697452 DOI: 10.1063/1.4869595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Luiz F Roncaratti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - David Cappelletti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| |
Collapse
|