1
|
Koverga V, Juhász Á, Dudariev D, Lebedev M, Idrissi A, Jedlovszky P. Local Structure of DMF-Water Mixtures, as Seen from Computer Simulations and Voronoi Analysis. J Phys Chem B 2022; 126:6964-6978. [PMID: 36044401 DOI: 10.1021/acs.jpcb.2c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics simulations of mixtures of N,N-dimethylformamide (DMF) with water of various compositions, covering the entire composition range, are performed on the canonical (N,V,T) ensemble. The local structure of the mixtures is analyzed in terms of radial distribution functions and the contributions of the first five neighbors to them, various order parameters of the water molecules around each other, and properties of the Voronoi polyhedra of the molecules. The analyses lead to the following main conclusions. The two molecules are mixing with each other even on the molecular scale; however, small self-aggregates of both components persist even at their small mole fraction values. In particular, water-water H-bonds exist in the entire composition range, while water clusters larger than 3 and 2 molecules disappear above the DMF mole fraction values of about 0.7 and 0.9, respectively. The O atoms of the DMF molecules can well replace water O atoms in the hydrogen-bonding network. Further, the H-bonding structure is enhanced by the presence of the hydrophobic CH3 groups of the DMF molecules. On the other hand, the H-bonding network of the molecules gradually breaks down upon the addition of DMF to the system due to the lack of H-donating groups of the DMF molecules. Finally, in neat DMF, the molecules form weak, CH-donated H-bonds with each other; however, these H-bonds disappear upon the addition of water due to the increasing competition with the considerably stronger OH-donated H-bonds DMF can form with the water molecules.
Collapse
Affiliation(s)
- Volodymyr Koverga
- University of Lille, CNRS UMR 8516 - LASIRe─Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, 59000 Lille, France
| | - Ákos Juhász
- University of Lille, CNRS UMR 8516 - LASIRe─Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, 59000 Lille, France.,Department of Biophysics Radiation Biology, Laboratory of Nanochemistry, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Dmytro Dudariev
- University of Lille, CNRS UMR 8516 - LASIRe─Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, 59000 Lille, France.,Department of Inorganic Chemistry, V.N. Karazin Kharkiv National University, Svoboda sq. 4, 61022 Kharkiv, Ukraine
| | - Maxim Lebedev
- University of Lille, CNRS UMR 8516 - LASIRe─Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, 59000 Lille, France.,Department of Inorganic Chemistry, Laboratory of Luminescent Molecular Devices, Ivanovo State University of Chemistry and Technology, Sheremetievskiy Avenue 7, Ivanovo 153000, Russia
| | - Abdenacer Idrissi
- University of Lille, CNRS UMR 8516 - LASIRe─Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, 59000 Lille, France
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly University, Leányka u. 6, 3300 Eger, Hungary
| |
Collapse
|
2
|
Basma N, Cullen PL, Clancy AJ, Shaffer MSP, Skipper NT, Headen TF, Howard CA. The liquid structure of the solvents dimethylformamide (DMF) and dimethylacetamide (DMA). Mol Phys 2019. [DOI: 10.1080/00268976.2019.1649494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- N. Basma
- Department of Physics & Astronomy, University College London, London, UK
- Department of Chemistry and Department of Materials, Imperial College London, London, UK
| | - P. L. Cullen
- Department of Chemical Engineering, University College London, London, UK
| | - A. J. Clancy
- Department of Physics & Astronomy, University College London, London, UK
- Department of Chemistry, University College London, London, UK
| | - M. S. P. Shaffer
- Department of Chemistry and Department of Materials, Imperial College London, London, UK
| | - N. T. Skipper
- Department of Physics & Astronomy, University College London, London, UK
| | - T. F. Headen
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, UK
| | - C. A. Howard
- Department of Physics & Astronomy, University College London, London, UK
| |
Collapse
|
3
|
Liu F, Wang F, Jia G. The molecular dynamic simulation of dimethyl sulfoxide aqueous solution under the electric magnetic field. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Gao W, She F, Zhang J, Dumée L, Tung KL, Hodgson PD, Kong L. Molecular dynamics approach to the structural characterization and transport properties of poly(acrylonitrile)/N,N-dimethylformamide solutions. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Liu F, Tian W, Yang X, Jia G. Hydrogen-bonding and dielectric response of N,N-dimethylacetamide aqueous solutions under E/M fields using molecular dynamics. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.04.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|