1
|
Ying Q, Zhang J, Zhang H, Yan M, Ruan Z. Highly stable measurement for nanoparticle extinction cross section by analyzing aperture-edge blurriness. OPTICS EXPRESS 2021; 29:16323-16333. [PMID: 34154198 DOI: 10.1364/oe.426163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
In order to stabilize the extinction cross section measurement of a single nanoparticle, we propose to analyze the blurriness parameter of aperture edge images in real time, which provides a feedback to lock the sample position. Unlike the conventional spatial modulation spectroscopy (SMS) technique, a probe beam experiences both the spatial modulation by a piezo stage and the temporal modulation by a chopper. We experimentally demonstrate that the measurement uncertainty is one order magnitude less than that in the previous report. The proposed method can be readily implemented in conventional SMS systems and can help to achieve high stability for sensing based on light extinction by a single nanoparticle, which alleviate the impact from laboratory environment and increase the experimental sensitivity.
Collapse
|
2
|
Devkota T, Devadas MS, Brown A, Talghader J, Hartland GV. Spatial modulation spectroscopy imaging of nano-objects of different sizes and shapes. APPLIED OPTICS 2016; 55:796-801. [PMID: 26836082 DOI: 10.1364/ao.55.000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Spatial modulation spectroscopy (SMS) is a powerful method for interrogating single nanoparticles. In these experiments optical extinction is measured by moving the particle in and out of a tightly focused laser beam. SMS is typically used for particles that are much smaller than the laser spot size. In this paper, we extend the analysis of the SMS signal to particles with sizes comparable to or larger than the laser spot, where the shape of the particle matters. These results are important for the analysis of polydisperse samples that have a wide range of sizes. The presented example images and analysis of a carbon microparticle sample show the utility of the derived expressions. In particular, we show that SMS can be used to generate extinction cross-section information about micrometer-sized particles with complex shapes.
Collapse
|
3
|
Devadas MS, Devkota T, Johns P, Li Z, Lo SS, Yu K, Huang L, Hartland GV. Imaging nano-objects by linear and nonlinear optical absorption microscopies. NANOTECHNOLOGY 2015; 26:354001. [PMID: 26266335 DOI: 10.1088/0957-4484/26/35/354001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Absorption based microscopy measurements are emerging as important tools for studying nanomaterials. This review discusses the three most common techniques for performing these experiments: transient absorption microscopy, photothermal heterodyne imaging, and spatial modulation spectroscopy. The focus is on the application of these techniques to imaging and detection, using examples taken from the authors' laboratory. The advantages and disadvantages of the three methods are discussed, with an emphasis on the unique information that can be obtained from these experiments, in comparison to conventional emission or scattering based microscopy experiments.
Collapse
Affiliation(s)
- Mary Sajini Devadas
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Devadas MS, Devkota T, Guha S, Shaw SK, Smith BD, Hartland GV. Spatial modulation spectroscopy for imaging and quantitative analysis of single dye-doped organic nanoparticles inside cells. NANOSCALE 2015; 7:9779-9785. [PMID: 25964049 PMCID: PMC4465101 DOI: 10.1039/c5nr01614b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Imaging of non-fluorescent nanoparticles in complex biological environments, such as the cell cytosol, is a challenging problem. For metal nanoparticles, Rayleigh scattering methods can be used, but for organic nanoparticles, such as dye-doped polymer beads or lipid nanoparticles, light scattering does not provide good contrast. In this paper, spatial modulation spectroscopy (SMS) is used to image single organic nanoparticles doped with non-fluorescent, near-IR croconaine dye. SMS is a quantitative imaging technique that yields the absolute extinction cross-section of the nanoparticles, which can be used to determine the number of dye molecules per particle. SMS images were recorded for particles within EMT-6 breast cancer cells. The measurements allowed mapping of the nanoparticle location and the amount of dye in a single cell. The results demonstrate how SMS can facilitate efforts to optimize dye-doped nanoparticles for effective photothermal therapy of cancer.
Collapse
Affiliation(s)
- Mary Sajini Devadas
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Yorulmaz M, Nizzero S, Hoggard A, Wang LY, Cai YY, Su MN, Chang WS, Link S. Single-particle absorption spectroscopy by photothermal contrast. NANO LETTERS 2015; 15:3041-7. [PMID: 25849105 DOI: 10.1021/nl504992h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Removing effects of sample heterogeneity through single-molecule and single-particle techniques has advanced many fields. While background free luminescence and scattering spectroscopy is widely used, recording the absorption spectrum only is rather difficult. Here we present an approach capable of recording pure absorption spectra of individual nanostructures. We demonstrate the implementation of single-particle absorption spectroscopy on strongly scattering plasmonic nanoparticles by combining photothermal microscopy with a supercontinuum laser and an innovative calibration procedure that accounts for chromatic aberrations and wavelength-dependent excitation powers. Comparison of the absorption spectra to the scattering spectra of the same individual gold nanoparticles reveals the blueshift of the absorption spectra, as predicted by Mie theory but previously not detectable in extinction measurements that measure the sum of absorption and scattering. By covering a wavelength range of 300 nm, we are furthermore able to record absorption spectra of single gold nanorods with different aspect ratios. We find that the spectral shift between absorption and scattering for the longitudinal plasmon resonance decreases as a function of nanorod aspect ratio, which is in agreement with simulations.
Collapse
Affiliation(s)
- Mustafa Yorulmaz
- †Department of Chemistry, ‡Applied Physics Graduate Program, §Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Sara Nizzero
- †Department of Chemistry, ‡Applied Physics Graduate Program, §Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Anneli Hoggard
- †Department of Chemistry, ‡Applied Physics Graduate Program, §Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Lin-Yung Wang
- †Department of Chemistry, ‡Applied Physics Graduate Program, §Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Yi-Yu Cai
- †Department of Chemistry, ‡Applied Physics Graduate Program, §Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Man-Nung Su
- †Department of Chemistry, ‡Applied Physics Graduate Program, §Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Wei-Shun Chang
- †Department of Chemistry, ‡Applied Physics Graduate Program, §Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Stephan Link
- †Department of Chemistry, ‡Applied Physics Graduate Program, §Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Devadas MS, Li Z, Hartland GV. Imaging and Analysis of Single Optically Trapped Gold Nanoparticles Using Spatial Modulation Spectroscopy. J Phys Chem Lett 2014; 5:2910-2915. [PMID: 26278098 DOI: 10.1021/jz501409q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The extinction cross sections and spectra of single nanoparticles can be directly measured by moving the particle in and out of a tightly focused laser beam. This technique, known as spatial modulation spectroscopy, yields detailed information about the size, shape, and environment of the particles. These experiments are typically done on particles immobilized on a substrate. Here we demonstrate for the first time the use of spatial modulation spectroscopy to interrogate single, optically trapped nanoparticles in solution. Gold nanoparticles as small as 15 nm were trapped and imaged. The experiments were performed by modulating the position of the probe laser beam while scanning it over the trapped particle with a galvo-scanning mirror system. This technique opens up the possibility of precisely measuring the optical properties of single nanoparticles in liquid environments, free from the influence of a surface.
Collapse
Affiliation(s)
- Mary Sajini Devadas
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Zhongming Li
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Gregory V Hartland
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|