1
|
Yang H, Zheng Y. Extracting the Geometric Phase from the Ensemble of Trajectories. J Phys Chem A 2024; 128:9519-9525. [PMID: 39437167 DOI: 10.1021/acs.jpca.4c02013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Traditionally, methods designed to investigate the effects of the geometric phase in reaction dynamics, such as including a vector potential in the nuclear Hamiltonian, necessitate the explicit manipulation of geometric phase-related terms in the adiabatic representation. In contrast, the diabatic representation provides an alternative approach that implicitly addresses the geometric phase and nonadiabatic issues. In this study, we present a method to directly extract the phase information on the geometric phase from the ensemble of interdependent trajectories utilizing the diabatic representation. This approach presents a direct means of quantitatively examining the geometric phase effects in dynamics and has the potential to yield observables suitable for experimental measurement.
Collapse
Affiliation(s)
- Huan Yang
- School of Physics, Shandong University, Jinan 250100, China
| | - Yujun Zheng
- School of Physics, Shandong University, Jinan 250100, China
| |
Collapse
|
2
|
Wu Y, Subotnik JE. A quantum-classical Liouville formalism in a preconditioned basis and its connection with phase-space surface hopping. J Chem Phys 2023; 158:024115. [PMID: 36641414 DOI: 10.1063/5.0124835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We revisit a recent proposal to model nonadiabatic problems with a complex-valued Hamiltonian through a phase-space surface hopping (PSSH) algorithm employing a pseudo-diabatic basis. Here, we show that such a pseudo-diabatic PSSH (PD-PSSH) ansatz is consistent with a quantum-classical Liouville equation (QCLE) that can be derived following a preconditioning process, and we demonstrate that a proper PD-PSSH algorithm is able to capture some geometric magnetic effects (whereas the standard fewest switches surface hopping approach cannot capture such effects). We also find that a preconditioned QCLE can outperform the standard QCLE in certain cases, highlighting the fact that there is no unique QCLE. Finally, we also point out that one can construct a mean-field Ehrenfest algorithm using a phase-space representation similar to what is done for PSSH. These findings would appear extremely helpful as far as understanding and simulating nonadiabatic dynamics with complex-valued Hamiltonians and/or spin degeneracy.
Collapse
Affiliation(s)
- Yanze Wu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
3
|
Ten Brink M, Gräber S, Hopjan M, Jansen D, Stolpp J, Heidrich-Meisner F, Blöchl PE. Real-time non-adiabatic dynamics in the one-dimensional Holstein model: Trajectory-based vs exact methods. J Chem Phys 2022; 156:234109. [PMID: 35732530 DOI: 10.1063/5.0092063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We benchmark a set of quantum-chemistry methods, including multitrajectory Ehrenfest, fewest-switches surface-hopping, and multiconfigurational-Ehrenfest dynamics, against exact quantum-many-body techniques by studying real-time dynamics in the Holstein model. This is a paradigmatic model in condensed matter theory incorporating a local coupling of electrons to Einstein phonons. For the two-site and three-site Holstein model, we discuss the exact and quantum-chemistry methods in terms of the Born-Huang formalism, covering different initial states, which either start on a single Born-Oppenheimer surface, or with the electron localized to a single site. For extended systems with up to 51 sites, we address both the physics of single Holstein polarons and the dynamics of charge-density waves at finite electron densities. For these extended systems, we compare the quantum-chemistry methods to exact dynamics obtained from time-dependent density matrix renormalization group calculations with local basis optimization (DMRG-LBO). We observe that the multitrajectory Ehrenfest method, in general, only captures the ultrashort time dynamics accurately. In contrast, the surface-hopping method with suitable corrections provides a much better description of the long-time behavior but struggles with the short-time description of coherences between different Born-Oppenheimer states. We show that the multiconfigurational Ehrenfest method yields a significant improvement over the multitrajectory Ehrenfest method and can be converged to the exact results in small systems with moderate computational efforts. We further observe that for extended systems, this convergence is slower with respect to the number of configurations. Our benchmark study demonstrates that DMRG-LBO is a useful tool for assessing the quality of the quantum-chemistry methods.
Collapse
Affiliation(s)
- M Ten Brink
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - S Gräber
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - M Hopjan
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - D Jansen
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - J Stolpp
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - F Heidrich-Meisner
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - P E Blöchl
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Ravi S, Mukherjee S, Mukherjee B, Adhikari S, Sathyamurthy N, Baer M. Non-adiabatic coupling as a frictional force in (He, H, H)+ dynamics and the formation of HeH2+. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1811907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Satyam Ravi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Soumya Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Bijit Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | | | - Michael Baer
- The Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Chen HT, Zhou Z, Subotnik JE. On the proper derivation of the Floquet-based quantum classical Liouville equation and surface hopping describing a molecule or material subject to an external field. J Chem Phys 2020; 153:044116. [PMID: 32752688 DOI: 10.1063/5.0013873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate different approaches to derive the proper Floquet-based quantum-classical Liouville equation (F-QCLE) for laser-driven electron-nuclear dynamics. The first approach projects the operator form of the standard QCLE onto the diabatic Floquet basis and then transforms to the adiabatic representation. The second approach directly projects the QCLE onto the Floquet adiabatic basis. Both approaches yield a form that is similar to the usual QCLE with two modifications: (1) The electronic degrees of freedom are expanded to infinite dimension and (2) the nuclear motion follows Floquet quasi-energy surfaces. However, the second approach includes an additional cross derivative force due to the dual dependence on time and nuclear motion of the Floquet adiabatic states. Our analysis and numerical tests indicate that this cross derivative force is a fictitious artifact, suggesting that one cannot safely exchange the order of Floquet state projection with adiabatic transformation. Our results are in accord with similar findings by Izmaylov et al., [J. Chem. Phys. 140, 084104 (2014)] who found that transforming to the adiabatic representation must always be the last operation applied, although now we have extended this result to a time-dependent Hamiltonian. This paper and the proper derivation of the F-QCLE should lay the basis for further improvements of Floquet surface hopping.
Collapse
Affiliation(s)
- Hsing-Ta Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zeyu Zhou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
6
|
Martens CC. Classical and nonclassical effects in surface hopping methodology for simulating coupled electronic-nuclear dynamics. Faraday Discuss 2020; 221:449-477. [DOI: 10.1039/c9fd00042a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we analyze the detailed quantum-classical behavior of two alternative approaches to simulating molecular dynamics with electronic transitions: the popular fewest switches surface hopping (FSSH) method, introduced by Tully in 1990 [Tully, J. Chem. Phys., 1990, 93, 1061] and our recently developed quantum trajectory surface hopping (QTSH) method [Martens, J. Phys. Chem. A, 2019, 123, 1110].
Collapse
|
7
|
Schmidt B, Klein R, Cancissu Araujo L. WavePacket: A Matlab package for numerical quantum dynamics. III. Quantum-classical simulations and surface hopping trajectories. J Comput Chem 2019; 40:2677-2688. [PMID: 31411345 DOI: 10.1002/jcc.26045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/06/2022]
Abstract
WavePacket is an open-source program package for numerical simulations in quantum dynamics. Building on the previous Part I (Schmidt and Lorenz, Comput. Phys. Commun. 2017, 213, 223] and Part II (Schmidt and Hartmann, Comput. Phys. Commun. 2018, 228, 229] which dealt with quantum dynamics of closed and open systems, respectively, the present Part III adds fully classical and mixed quantum-classical propagation techniques to WavePacket. There classical phase-space densities are sampled by trajectories which follow (diabatic or adiabatic) potential energy surfaces. In the vicinity of (genuine or avoided) intersections of those surfaces, trajectories may switch between them. To model these transitions, two classes of stochastic algorithms have been implemented: (1) Tully's fewest switches surface hopping and (2) Landau-Zener-based single switch surface hopping. The latter one offers the advantage of being based on adiabatic energy gaps only, thus not requiring nonadiabatic coupling information any more. The present work describes the MATLAB version of WavePacket 6.1.0, which is essentially an object-oriented rewrite of previous versions, allowing to perform fully classical, quantum-classical and quantum-mechanical simulations on an equal footing, that is, for the same physical system described by the same WavePacket input. The software package is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous worked-out demonstration examples with animated graphics are available. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Burkhard Schmidt
- Institut für Mathematik, Freie Universität Berlin, Arnimallee 6, D-14195, Berlin, Germany
| | - Rupert Klein
- Institut für Mathematik, Freie Universität Berlin, Arnimallee 6, D-14195, Berlin, Germany
| | | |
Collapse
|
8
|
Subotnik J, Miao G, Bellonzi N, Teh HH, Dou W. A demonstration of consistency between the quantum classical Liouville equation and Berry’s phase and curvature for the case of complex Hamiltonians. J Chem Phys 2019; 151:074113. [DOI: 10.1063/1.5116210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Joseph Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Gaohan Miao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Nicole Bellonzi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Hung-Hsuan Teh
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Wenjie Dou
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
9
|
Martens CC. Surface Hopping without Momentum Jumps: A Quantum-Trajectory-Based Approach to Nonadiabatic Dynamics. J Phys Chem A 2019; 123:1110-1128. [DOI: 10.1021/acs.jpca.8b10487] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Craig C. Martens
- University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
10
|
Duan HG, Qi DL, Sun ZR, Miller RD, Thorwart M. Signature of the geometric phase in the wave packet dynamics on hypersurfaces. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Li X, Xie Y, Hu D, Lan Z. Analysis of the Geometrical Evolution in On-the-Fly Surface-Hopping Nonadiabatic Dynamics with Machine Learning Dimensionality Reduction Approaches: Classical Multidimensional Scaling and Isometric Feature Mapping. J Chem Theory Comput 2017; 13:4611-4623. [DOI: 10.1021/acs.jctc.7b00394] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xusong Li
- CAS
Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Sino-Danish
Center for Education and Research/Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department
of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Yu Xie
- CAS
Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Deping Hu
- CAS
Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenggang Lan
- CAS
Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Sino-Danish
Center for Education and Research/Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Ryabinkin IG, Joubert-Doriol L, Izmaylov AF. Geometric Phase Effects in Nonadiabatic Dynamics near Conical Intersections. Acc Chem Res 2017; 50:1785-1793. [PMID: 28665584 DOI: 10.1021/acs.accounts.7b00220] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Dynamical consideration that goes beyond the common Born-Oppenheimer approximation (BOA) becomes necessary when energy differences between electronic potential energy surfaces become small or vanish. One of the typical scenarios of the BOA breakdown in molecules beyond diatomics is a conical intersection (CI) of electronic potential energy surfaces. CIs provide an efficient mechanism for radiationless electronic transitions: acting as "funnels" for the nuclear wave function, they enable rapid conversion of the excessive electronic energy into the nuclear motion. In addition, CIs introduce nontrivial geometric phases (GPs) for both electronic and nuclear wave functions. These phases manifest themselves in change of the wave function signs if one considers an evolution of the system around the CI. This sign change is independent of the shape of the encircling contour and thus has a topological character. How these extra phases affect nonadiabatic dynamics is the main question that is addressed in this Account. We start by considering the simplest model providing the CI topology: two-dimensional two-state linear vibronic coupling model. Selecting this model instead of a real molecule has the advantage that various dynamical regimes can be easily modeled in the model by varying parameters, whereas any fixed molecule provides the system specific behavior that may not be very illustrative. After demonstrating when GP effects are important and how they modify the dynamics for two sets of initial conditions (starting from the ground and excited electronic states), we give examples of molecular systems where the described GP effects are crucial for adequate description of nonadiabatic dynamics. Interestingly, although the GP has a topological character, the extent to which accounting for GPs affect nuclear dynamics profoundly depends on topography of potential energy surfaces. Understanding an extent of changes introduced by the GP in chemical dynamics poses a problem of capturing GP effects by approximate methods of simulating nonadiabatic dynamics that can go beyond simple models. We assess the performance of both fully quantum (wave packet dynamics) and quantum-classical (surface-hopping, Ehrenfest, and quantum-classical Liouville equation) approaches in various cases where GP effects are important. It has been identified that the key to success in approximate methods is a method organization that prevents the quantum nuclear kinetic energy operator to act directly on adiabatic electronic wave functions.
Collapse
Affiliation(s)
- Ilya G. Ryabinkin
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical
Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Loïc Joubert-Doriol
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical
Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Artur F. Izmaylov
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical
Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
13
|
Affiliation(s)
- Timothy J. H. Hele
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
14
|
Martens CC. Nonadiabatic dynamics in the semiclassical Liouville representation: Locality, transformation theory, and the energy budget. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Meek GA, Levine BG. The best of both Reps—Diabatized Gaussians on adiabatic surfaces. J Chem Phys 2016; 145:184103. [DOI: 10.1063/1.4966967] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Garrett A. Meek
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Benjamin G. Levine
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
16
|
Gherib R, Ye L, Ryabinkin IG, Izmaylov AF. On the inclusion of the diagonal Born-Oppenheimer correction in surface hopping methods. J Chem Phys 2016; 144:154103. [DOI: 10.1063/1.4945817] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rami Gherib
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Liyuan Ye
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Ilya G. Ryabinkin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Artur F. Izmaylov
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
17
|
Hele TJH, Ananth N. Deriving the exact nonadiabatic quantum propagator in the mapping variable representation. Faraday Discuss 2016; 195:269-289. [DOI: 10.1039/c6fd00106h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We derive an exact quantum propagator for nonadiabatic dynamics in multi-state systems using the mapping variable representation, where classical-like Cartesian variables are used to represent both continuous nuclear degrees of freedom and discrete electronic states. The resulting Liouvillian is a Moyal series that, when suitably approximated, can allow for the use of classical dynamics to efficiently model large systems. We demonstrate that different truncations of the exact Liouvillian lead to existing approximate semiclassical and mixed quantum–classical methods and we derive an associated error term for each method. Furthermore, by combining the imaginary-time path-integral representation of the Boltzmann operator with the exact Liouvillian, we obtain an analytic expression for thermal quantum real-time correlation functions. These results provide a rigorous theoretical foundation for the development of accurate and efficient classical-like dynamics to compute observables such as electron transfer reaction rates in complex quantized systems.
Collapse
Affiliation(s)
| | - Nandini Ananth
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
| |
Collapse
|
18
|
Gherib R, Ryabinkin IG, Izmaylov AF. Why Do Mixed Quantum-Classical Methods Describe Short-Time Dynamics through Conical Intersections So Well? Analysis of Geometric Phase Effects. J Chem Theory Comput 2015; 11:1375-82. [DOI: 10.1021/acs.jctc.5b00072] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rami Gherib
- Department of Physical and
Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical
Physics Theory Group,
Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ilya G. Ryabinkin
- Department of Physical and
Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical
Physics Theory Group,
Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Artur F. Izmaylov
- Department of Physical and
Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical
Physics Theory Group,
Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
19
|
Kapral R. Quantum dynamics in open quantum-classical systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:073201. [PMID: 25634784 DOI: 10.1088/0953-8984/27/7/073201] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.
Collapse
Affiliation(s)
- Raymond Kapral
- Department of Chemistry, Chemical Physics Theory Group, University of Toronto, Toronto, ON, M5S 3H6 Canada
| |
Collapse
|
20
|
Bai S, Xie W, Shi Q. A new trajectory branching approximation to propagate the mixed quantum-classical Liouville equation. J Phys Chem A 2014; 118:9262-71. [PMID: 24964189 DOI: 10.1021/jp503522g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Starting from the mixed quantum-classical Liouville (MQCL) equation, we derive a new trajectory branching method as a modification to the conventional mean field approximation. In the new method, the mean field approximation is used to propagate the mixed quantum-classical dynamics for short times. When the mean field description becomes invalid, new trajectories are added in the simulation by branching the single trajectory into multiple ones. To achieve this, a new set of variables are defined to monitor the deviations of the dynamics on different potential energy surfaces from the reference mean field trajectory, and their equations of motion are derived from the MQCL equation based on the method of first moment expansion. The new method is tested on several one-dimensional two surface problems and is shown to correctly solve the problem of the mean field approximation in several cases.
Collapse
Affiliation(s)
- Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Zhongguancun, Beijing 100190, China
| | | | | |
Collapse
|