1
|
Pham TTH, Huang WY, Chen CS, Chiu WT, Chuang HS. Effects of electrotactic exercise and antioxidant EUK-134 on oxidative stress relief in Caenorhabditis elegans. PLoS One 2021; 16:e0245474. [PMID: 33471830 PMCID: PMC7817057 DOI: 10.1371/journal.pone.0245474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/03/2021] [Indexed: 11/18/2022] Open
Abstract
Antioxidant uptake and regular exercise are two well-acknowledged measures used for rejuvenation and oxidative stress elimination. Previous studies have revealed that moderate exercise mildly increases intracellular signaling oxidant levels and strengthens the ability of an organism to deal with escalating oxidative stress by upregulating antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase. Antioxidant supplementation directly scavenges intracellular reactive oxygen species (ROS) to reduce oxidative stress. However, research to understand the impacts of these enzymes on mitigating oxidative stress from the perspective of simple animals is limited. Herein, we show that exercise combined with antioxidant supplementation ameliorates the physiological phenotypes and markers of aging in wild-type and SOD/CAT-deficient Caenorhabditis elegans. We discovered that treated wild-type and gene-deficient worms show better survivorship, reproduction, and motility compared with their control counterparts. Assays of biochemical indices revealed that variations in sod-3 expression under different stress levels imply an inducible enzyme response resulting from exercise training and antioxidant supplementation. In addition, induced ROS resistance obtained from any type of treatment could persist for several days even after treatment cessation, thus suggesting a potential long-term antioxidative stress effect. Our findings confirm that exercise, antioxidant supplementation, and their combination could significantly improve the ability of C. elegans to withstand adverse stress. Our observations provide promising insights into future therapies of anti-oxidative stress in higher animals.
Collapse
Affiliation(s)
- Thi Thanh Huong Pham
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Wan-Ying Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Chang-Shi Chen
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan City, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
- Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan City, Taiwan
- * E-mail:
| |
Collapse
|
2
|
Analyzing the locomotory gaitprint of Caenorhabditis elegans on the basis of empirical mode decomposition. PLoS One 2017; 12:e0181469. [PMID: 28742107 PMCID: PMC5524362 DOI: 10.1371/journal.pone.0181469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/30/2017] [Indexed: 01/09/2023] Open
Abstract
The locomotory gait analysis of the microswimmer, Caenorhabditis elegans, is a commonly adopted approach for strain recognition and examination of phenotypic defects. Gait is also a visible behavioral expression of worms under external stimuli. This study developed an adaptive data analysis method based on empirical mode decomposition (EMD) to reveal the biological cues behind intricate motion. The method was used to classify the strains of worms according to their gaitprints (i.e., phenotypic traits of locomotion). First, a norm of the locomotory pattern was created from the worm of interest. The body curvature of the worm was decomposed into four intrinsic mode functions (IMFs). A radar chart showing correlations between the predefined database and measured worm was then obtained by dividing each IMF into three parts, namely, head, mid-body, and tail. A comprehensive resemblance score was estimated after k-means clustering. Simulated data that use sinusoidal waves were generated to assess the feasibility of the algorithm. Results suggested that temporal frequency is the major factor in the process. In practice, five worm strains, including wild-type N2, TJ356 (zIs356), CL2070 (dvIs70), CB0061 (dpy-5), and CL2120 (dvIs14), were investigated. The overall classification accuracy of the gaitprint analyses of all the strains reached nearly 89%. The method can also be extended to classify some motor neuron-related locomotory defects of C. elegans in the same fashion.
Collapse
|
3
|
Exercise in an electrotactic flow chamber ameliorates age-related degeneration in Caenorhabditis elegans. Sci Rep 2016; 6:28064. [PMID: 27305857 PMCID: PMC4910109 DOI: 10.1038/srep28064] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/31/2016] [Indexed: 01/09/2023] Open
Abstract
Degeneration is a senescence process that occurs in all living organisms. Although tremendous efforts have been exerted to alleviate this degenerative tendency, minimal progress has been achieved to date. The nematode, Caenorhabditis elegans (C. elegans), which shares over 60% genetic similarities with humans, is a model animal that is commonly used in studies on genetics, neuroscience, and molecular gerontology. However, studying the effect of exercise on C. elegans is difficult because of its small size unlike larger animals. To this end, we fabricated a flow chamber, called “worm treadmill,” to drive worms to exercise through swimming. In the device, the worms were oriented by electrotaxis on demand. After the exercise treatment, the lifespan, lipofuscin, reproductive capacity, and locomotive power of the worms were analyzed. The wild-type and the Alzheimer’s disease model strains were utilized in the assessment. Although degeneration remained irreversible, both exercise-treated strains indicated an improved tendency compared with their control counterparts. Furthermore, low oxidative stress and lipofuscin accumulation were also observed among the exercise-treated worms. We conjecture that escalated antioxidant enzymes imparted the worms with an extra capacity to scavenge excessive oxidative stress from their bodies, which alleviated the adverse effects of degeneration. Our study highlights the significance of exercise in degeneration from the perspective of the simple life form, C. elegans.
Collapse
|
4
|
Koren Y, Sznitman R, Arratia PE, Carls C, Krajacic P, Brown AEX, Sznitman J. Model-independent phenotyping of C. elegans locomotion using scale-invariant feature transform. PLoS One 2015; 10:e0122326. [PMID: 25816290 PMCID: PMC4376858 DOI: 10.1371/journal.pone.0122326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/11/2015] [Indexed: 11/29/2022] Open
Abstract
To uncover the genetic basis of behavioral traits in the model organism C. elegans, a common strategy is to study locomotion defects in mutants. Despite efforts to introduce (semi-)automated phenotyping strategies, current methods overwhelmingly depend on worm-specific features that must be hand-crafted and as such are not generalizable for phenotyping motility in other animal models. Hence, there is an ongoing need for robust algorithms that can automatically analyze and classify motility phenotypes quantitatively. To this end, we have developed a fully-automated approach to characterize C. elegans’ phenotypes that does not require the definition of nematode-specific features. Rather, we make use of the popular computer vision Scale-Invariant Feature Transform (SIFT) from which we construct histograms of commonly-observed SIFT features to represent nematode motility. We first evaluated our method on a synthetic dataset simulating a range of nematode crawling gaits. Next, we evaluated our algorithm on two distinct datasets of crawling C. elegans with mutants affecting neuromuscular structure and function. Not only is our algorithm able to detect differences between strains, results capture similarities in locomotory phenotypes that lead to clustering that is consistent with expectations based on genetic relationships. Our proposed approach generalizes directly and should be applicable to other animal models. Such applicability holds promise for computational ethology as more groups collect high-resolution image data of animal behavior.
Collapse
Affiliation(s)
- Yelena Koren
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Israel
| | - Raphael Sznitman
- Ophthalmic Technology Group, ARTORG Center, University of Bern, Switzerland
| | - Paulo E. Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia PA, USA
| | - Christopher Carls
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg WV, USA
| | - Predrag Krajacic
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg WV, USA
| | - André E. X. Brown
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, UK
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Israel
- * E-mail:
| |
Collapse
|
5
|
Qiu Z, Tu L, Huang L, Zhu T, Nock V, Yu E, Liu X, Wang W. An integrated platform enabling optogenetic illumination of Caenorhabditis elegans neurons and muscular force measurement in microstructured environments. BIOMICROFLUIDICS 2015; 9:014123. [PMID: 25759756 PMCID: PMC4336256 DOI: 10.1063/1.4908595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/06/2015] [Indexed: 06/01/2023]
Abstract
Optogenetics has been recently applied to manipulate the neural circuits of Caenorhabditis elegans (C. elegans) to investigate its mechanosensation and locomotive behavior, which is a fundamental topic in model biology. In most neuron-related research, free C. elegans moves on an open area such as agar surface. However, this simple environment is different from the soil, in which C. elegans naturally dwells. To bridge up the gap, this paper presents integration of optogenetic illumination of C. elegans neural circuits and muscular force measurement in a structured microfluidic chip mimicking the C. elegans soil habitat. The microfluidic chip is essentially a ∼1 × 1 cm(2) elastomeric polydimethylsiloxane micro-pillar array, configured in either form of lattice (LC) or honeycomb (HC) to mimic the environment in which the worm dwells. The integrated system has four key modules for illumination pattern generation, pattern projection, automatic tracking of the worm, and force measurement. Specifically, two optical pathways co-exist in an inverted microscope, including built-in bright-field illumination for worm tracking and pattern generation, and added-in optogenetic illumination for pattern projection onto the worm body segment. The behavior of a freely moving worm in the chip under optogenetic manipulation can be recorded for off-line force measurements. Using wild-type N2 C. elegans, we demonstrated optical illumination of C. elegans neurons by projecting light onto its head/tail segment at 14 Hz refresh frequency. We also measured the force and observed three representative locomotion patterns of forward movement, reversal, and omega turn for LC and HC configurations. Being capable of stimulating or inhibiting worm neurons and simultaneously measuring the thrust force, this enabling platform would offer new insights into the correlation between neurons and locomotive behaviors of the nematode under a complex environment.
Collapse
Affiliation(s)
- Zhichang Qiu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Long Tu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Taoyuanmin Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Volker Nock
- Department of Electrical and Computer Engineering, University of Canterbury , Christchurch, New Zealand
| | - Enchao Yu
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Xiao Liu
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| |
Collapse
|
6
|
Kuo WJ, Sie YS, Chuang HS. Characterizations of kinetic power and propulsion of the nematode Caenorhabditis elegans based on a micro-particle image velocimetry system. BIOMICROFLUIDICS 2014; 8:024116. [PMID: 24803965 PMCID: PMC4000384 DOI: 10.1063/1.4872061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 04/10/2014] [Indexed: 06/02/2023]
Abstract
Quantifying the motility of micro-organisms is beneficial in understanding their biomechanical properties. This paper presents a simple image-based algorithm to derive the kinetic power and propulsive force of the nematode Caenorhabditis elegans. To avoid unnecessary disturbance, each worm was confined in an aqueous droplet of 0.5 μl. The droplet was sandwiched between two glass slides and sealed with mineral oil to prevent evaporation. For motion visualization, 3-μm fluorescent particles were dispersed in the droplet. Since the droplet formed an isolated environment, the fluid drag and energy loss due to wall frictions were associated with the worm's kinetic power and propulsion. A microparticle image velocimetry system was used to acquire consecutive particle images for fluid analysis. The short-time interval (Δt < 20 ms) between images enabled quasi real-time measurements. A numerical simulation of the flow in a straight channel showed that the relative error of this algorithm was significantly mitigated as the image was divided into small interrogation windows. The time-averaged power and propulsive force of a N2 adult worm over three swimming cycles were estimated to be 5.2 ± 3.1 pW and 1.0 ± 0.8 nN, respectively. In addition, a mutant, KG532 [kin-2(ce179) X], and a wild-type (N2) worm in a viscous medium were investigated. Both cases showed an increase in the kinetic power as compared with the N2 worm in the nematode growth medium due to the hyperactive nature of the kin-2 mutant and the high viscosity medium used. Overall, the technique deals with less sophisticated calculations and is automation possible.
Collapse
Affiliation(s)
- Wan-Jung Kuo
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yue-Syun Sie
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan ; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|