1
|
Tran T, Worth GA, Robb MA. Coherent Excitation of the CH Stretching Vibrations in C 2H 4 +: The Role of the Derivative Coupling Studied by the Quantum Ehrenfest Method. J Comput Chem 2025; 46:e70028. [PMID: 39797603 PMCID: PMC11724349 DOI: 10.1002/jcc.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025]
Abstract
We report nonadiabatic dynamics computations on C2H4 + initiated on a coherent superposition of the five lowest cationic states, employing the Quantum Ehrenfest method. In addition to the totally symmetric carbon-carbon double bond stretch and carbon-hydrogen stretches, we see that the three non-totally symmetric modes become stimulated; torsion and three different CH stretching patterns. Thus, a coherent superposition of states, of the type involved in an attochemistry experiment, leads to the stimulation of specific non-totally symmetric motions. The computations were also performed on the specific combination of the A and C states. In each case normal mode 9 (cis-asymmetric H2CCH2 stretch), out of the set of non-totally-symmetric normal modes, dominates. Thus, we can steer the nuclear motion along specific non-totally symmetric normal modes using a defined coherent superposition.
Collapse
Affiliation(s)
- Thierry Tran
- Nantes University, CNRS, CEISAM UMR 6230NantesFrance
| | | | - Michael A. Robb
- Department of ChemistryMolecular Sciences Research Hub, Imperial College LondonLondonUK
| |
Collapse
|
2
|
Gu Y, Gu B, Sun S, Yong H, Chernyak VY, Mukamel S. Manipulating Attosecond Charge Migration in Molecules by Optical Cavities. J Am Chem Soc 2023. [PMID: 37390450 DOI: 10.1021/jacs.3c03821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The ultrafast electronic charge dynamics in molecules upon photoionization while the nuclear motions are frozen is known as charge migration. In a theoretical study of the quantum dynamics of photoionized 5-bromo-1-pentene, we show that the charge migration process can be induced and enhanced by placing the molecule in an optical cavity, and can be monitored by time-resolved photoelectron spectroscopy. The collective nature of the polaritonic charge migration process is investigated. We find that, unlike spectroscopy, molecular charge dynamics in a cavity is local and does not show many-molecule collective effects. The same conclusion applies to cavity polaritonic chemistry.
Collapse
Affiliation(s)
| | - Bing Gu
- Department of Chemistry, Westlake University, Hangzhou 310030, Zhejiang, China
| | | | | | - Vladimir Y Chernyak
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Department of Mathematics, Wayne State University, Detroit, Michigan 48202, United States
| | | |
Collapse
|
3
|
Folorunso AS, Mauger F, Hamer KA, Jayasinghe DD, Wahyutama IS, Ragains JR, Jones RR, DiMauro LF, Gaarde MB, Schafer KJ, Lopata K. Attochemistry Regulation of Charge Migration. J Phys Chem A 2023; 127:1894-1900. [PMID: 36791088 PMCID: PMC9986869 DOI: 10.1021/acs.jpca.3c00568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Charge migration (CM) is a coherent attosecond process that involves the movement of localized holes across a molecule. To determine the relationship between a molecule's structure and the CM dynamics it exhibits, we perform systematic studies of para-functionalized bromobenzene molecules (X-C6H4-R) using real-time time-dependent density functional theory. We initiate valence-electron dynamics by emulating rapid strong-field ionization leading to a localized hole on the bromine atom. The resulting CM, which takes on the order of 1 fs, occurs via an X localized → C6H4 delocalized → R localized mechanism. Interestingly, the hole contrast on the acceptor functional group increases with increasing electron-donating strength. This trend is well-described by the Hammett σ value of the group, which is a commonly used metric for quantifying the effect of functionalization on the chemical reactivity of benzene derivatives. These results suggest that simple attochemistry principles and a density-based picture can be used to predict and understand CM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robert R Jones
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Louis F DiMauro
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | |
Collapse
|
4
|
Yong H, Cavaletto SM, Mukamel S. Ultrafast Valence-Electron Dynamics in Oxazole Monitored by X-ray Diffraction Following a Stimulated X-ray Raman Excitation. J Phys Chem Lett 2021; 12:9800-9806. [PMID: 34606289 DOI: 10.1021/acs.jpclett.1c02740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct imaging of the ultrafast quantum motion of valence electrons in molecules is essential for understanding many elementary chemical and physical processes. We present a simulation study of valence-electron dynamics of oxazole. A valence-state electronic wavepacket is prepared with an attosecond soft X-ray pulse through a stimulated resonant X-ray Raman process and then probed with time-resolved off-resonant single-molecule X-ray diffraction. We find that the time dependent diffraction signal originates solely from the electronic coherences and can be detected by existing experimental techniques. We thus provide a feasible way of imaging electron dynamics in molecules. Moreover, the created electronic coherences and subsequent electron dynamics can be manipulated by the resonant X-ray Raman excitation tuned to different core-excited states.
Collapse
Affiliation(s)
- Haiwang Yong
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Stefano M Cavaletto
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| |
Collapse
|
5
|
Merritt ICD, Jacquemin D, Vacher M. Attochemistry: Is Controlling Electrons the Future of Photochemistry? J Phys Chem Lett 2021; 12:8404-8415. [PMID: 34436903 DOI: 10.1021/acs.jpclett.1c02016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlling matter with light has always been a great challenge, leading to the ever-expanding field of photochemistry. In addition, since the first generation of light pulses of attosecond (1 as = 10-18 s) duration, a great deal of effort has been devoted to observing and controlling electrons on their intrinsic time scale. Because of their short duration, attosecond pulses have a large spectral bandwidth populating several electronically excited states in a coherent manner, i.e., an electronic wavepacket. Because of interference, such a wavepacket has a new electronic distribution implying a potentially different and totally new reactivity as compared to traditional photochemistry, leading to the novel concept of "attochemistry". This nascent field requires the support of theory right from the start. In this Perspective, we discuss the opportunities offered by attochemistry, the related challenges, and the current and future state-of-the-art developments in theoretical chemistry needed to model it accurately.
Collapse
Affiliation(s)
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Morgane Vacher
- Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| |
Collapse
|
6
|
Folorunso AS, Bruner A, Mauger F, Hamer KA, Hernandez S, Jones RR, DiMauro LF, Gaarde MB, Schafer KJ, Lopata K. Molecular Modes of Attosecond Charge Migration. PHYSICAL REVIEW LETTERS 2021; 126:133002. [PMID: 33861123 DOI: 10.1103/physrevlett.126.133002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
First-principles calculations are employed to elucidate the modes of attosecond charge migration (CM) in halogenated hydrocarbon chains. We use constrained density functional theory (DFT) to emulate the creation of a localized hole on the halogen and follow the subsequent dynamics via time-dependent DFT. We find low-frequency CM modes (∼1 eV) that propagate across the molecule and study their dependence on length, bond order, and halogenation. We observe that the CM speed (∼4 Å/fs) is largely independent of molecule length, but is lower for triple-bonded versus double-bonded molecules. Additionally, as the halogen mass increases, the hole travels in a more particlelike manner as it moves across the molecule. These heuristics will be useful in identifying molecules and optimal CM detection methods for future experiments, especially for halogenated hydrocarbons which are promising targets for ionization-triggered CM.
Collapse
Affiliation(s)
- Aderonke S Folorunso
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Adam Bruner
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - François Mauger
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kyle A Hamer
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Samuel Hernandez
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Robert R Jones
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Louis F DiMauro
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Mette B Gaarde
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kenneth J Schafer
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kenneth Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
- Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
7
|
Palacios A, Martín F. The quantum chemistry of attosecond molecular science. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1430] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alicia Palacios
- Departamento de Química Universidad Autónoma de Madrid Madrid Spain
- Institute of Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid Madrid Spain
| | - Fernando Martín
- Departamento de Química Universidad Autónoma de Madrid Madrid Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA‐Nano) Madrid Spain
- Condensed Matter Physics Center (IFIMAC) Universidad Autónoma de Madrid Madrid Spain
| |
Collapse
|
8
|
Polyak I, Jenkins AJ, Vacher M, Bouduban MEF, Bearpark MJ, Robb MA. Charge migration engineered by localisation: electron-nuclear dynamics in polyenes and glycine. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1478136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Iakov Polyak
- Department of Chemistry, Imperial College London, London, UK
- School of Chemistry, Cardiff University, Cardiff, UK
| | - Andrew J. Jenkins
- Department of Chemistry, Imperial College London, London, UK
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Morgane Vacher
- Department of Chemistry, Imperial College London, London, UK
- Department of Chemistry-Ångström, The Theoretical Chemistry Programme, Uppsala University, Uppsala, Sweden
| | - Marine E. F. Bouduban
- Department of Chemistry, Imperial College London, London, UK
- Photochemical Dynamics Group, Institute of Chemical Sciences & Engineering and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Michael A. Robb
- Department of Chemistry, Imperial College London, London, UK
| |
Collapse
|
9
|
Wörner HJ, Arrell CA, Banerji N, Cannizzo A, Chergui M, Das AK, Hamm P, Keller U, Kraus PM, Liberatore E, Lopez-Tarifa P, Lucchini M, Meuwly M, Milne C, Moser JE, Rothlisberger U, Smolentsev G, Teuscher J, van Bokhoven JA, Wenger O. Charge migration and charge transfer in molecular systems. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061508. [PMID: 29333473 PMCID: PMC5745195 DOI: 10.1063/1.4996505] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/25/2017] [Indexed: 05/12/2023]
Abstract
The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review.
Collapse
Affiliation(s)
| | - Christopher A Arrell
- Laboratory of Ultrafast Spectroscopy and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Natalie Banerji
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Majed Chergui
- Laboratory of Ultrafast Spectroscopy and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Akshaya K Das
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Ursula Keller
- Department of Physics, ETH Zürich, Zürich, Switzerland
| | | | - Elisa Liberatore
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pablo Lopez-Tarifa
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Chris Milne
- SwissFEL, Paul-Scherrer Institute, Villigen, Switzerland
| | - Jacques-E Moser
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ursula Rothlisberger
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Joël Teuscher
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Oliver Wenger
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| |
Collapse
|
10
|
Role of electron-nuclear coupled dynamics on charge migration induced by attosecond pulses in glycine. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Nisoli M, Decleva P, Calegari F, Palacios A, Martín F. Attosecond Electron Dynamics in Molecules. Chem Rev 2017; 117:10760-10825. [DOI: 10.1021/acs.chemrev.6b00453] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mauro Nisoli
- Department
of Physics, Politecnico di Milano, 20133 Milano, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
| | - Piero Decleva
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá di Trieste and IOM- CNR, 34127 Trieste, Italy
| | - Francesca Calegari
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department
of Physics, University of Hamburg, 20355 Hamburg, Germany
| | - Alicia Palacios
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
12
|
Vacher M, Bearpark MJ, Robb MA, Malhado JP. Electron Dynamics upon Ionization of Polyatomic Molecules: Coupling to Quantum Nuclear Motion and Decoherence. PHYSICAL REVIEW LETTERS 2017; 118:083001. [PMID: 28282194 DOI: 10.1103/physrevlett.118.083001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Indexed: 05/23/2023]
Abstract
Knowledge about the electronic motion in molecules is essential for our understanding of chemical reactions and biological processes. The advent of attosecond techniques opens up the possibility to induce electronic motion, observe it in real time, and potentially steer it. A fundamental question remains the factors influencing electronic decoherence and the role played by nuclear motion in this process. Here, we simulate the dynamics upon ionization of the polyatomic molecules paraxylene and modified bismethylene-adamantane, with a quantum mechanical treatment of both electron and nuclear dynamics using the direct dynamics variational multiconfigurational Gaussian method. Our simulations give new important physical insights about the expected decoherence process. We have shown that the decoherence of electron dynamics happens on the time scale of a few femtoseconds, with the interplay of different mechanisms: the dephasing is responsible for the fast decoherence while the nuclear overlap decay may actually help maintain it and is responsible for small revivals.
Collapse
Affiliation(s)
- Morgane Vacher
- Department of Chemistry-Ångström, Uppsala University, Uppsala 75120, Sweden and Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael J Bearpark
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael A Robb
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - João Pedro Malhado
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
13
|
Using quantum dynamics simulations to follow the competition between charge migration and charge transfer in polyatomic molecules. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Jenkins AJ, Vacher M, Twidale RM, Bearpark MJ, Robb MA. Charge migration in polycyclic norbornadiene cations: Winning the race against decoherence. J Chem Phys 2016; 145:164103. [DOI: 10.1063/1.4965436] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Andrew J. Jenkins
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Morgane Vacher
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Rebecca M. Twidale
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael J. Bearpark
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael A. Robb
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
15
|
Jenkins AJ, Vacher M, Bearpark MJ, Robb MA. Nuclear spatial delocalization silences electron density oscillations in 2-phenyl-ethyl-amine (PEA) and 2-phenylethyl-N,N-dimethylamine (PENNA) cations. J Chem Phys 2016; 144:104110. [DOI: 10.1063/1.4943273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrew J. Jenkins
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Morgane Vacher
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael J. Bearpark
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael A. Robb
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
16
|
Vacher M, Albertani FEA, Jenkins AJ, Polyak I, Bearpark MJ, Robb MA. Electron and nuclear dynamics following ionisation of modified bismethylene-adamantane. Faraday Discuss 2016; 194:95-115. [DOI: 10.1039/c6fd00067c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have simulated the coupled electron and nuclear dynamics using the Ehrenfest method upon valence ionisation of modified bismethylene-adamantane (BMA) molecules where there is an electron transfer between the two π bonds. We have shown that the nuclear motion significantly affects the electron dynamics after a few fs when the electronic states involved are close in energy. We have also demonstrated how the non-stationary electronic wave packet determines the nuclear motion, more precisely the asymmetric stretching of the two π bonds, illustrating “charge-directed reactivity”. Taking into account the nuclear wave packet width results in the dephasing of electron dynamics with a half-life of 8 fs; this eventually leads to the equal delocalisation of the hole density over the two methylene groups and thus symmetric bond lengths.
Collapse
Affiliation(s)
| | | | | | - Iakov Polyak
- Department of Chemistry
- Imperial College London
- UK
| | | | | |
Collapse
|
17
|
Meisner J, Vacher M, Bearpark MJ, Robb MA. Geometric Rotation of the Nuclear Gradient at a Conical Intersection: Extension to Complex Rotation of Diabatic States. J Chem Theory Comput 2015; 11:3115-22. [PMID: 26575748 DOI: 10.1021/acs.jctc.5b00364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonadiabatic dynamics in the vicinity of conical intersections is of essential importance in photochemistry. It is well known that if the branching space is represented in polar coordinates, then for a geometry represented by angle θ, the corresponding adiabatic states are obtained from the diabatic states with the mixing angle θ/2. In an equivalent way, one can study the relation between the real rotation of diabatic states and the resulting nuclear gradient. In this work, we extend the concept to allow a complex rotation of diabatic states to form a nonstationary superposition of electronic states. Our main result is that this leads to an elliptical transformation of the effective potential energy surfaces; i.e., the magnitude of the initial nuclear gradient changes as well as its direction. We fully explore gradient changes that result from varying both θ and ϕ (the complex rotation angle) as a way of electronically controlling nuclear motion, through Ehrenfest dynamics simulations for benzene cation.
Collapse
Affiliation(s)
- Jan Meisner
- Computational Chemistry Group, Institute of Theoretical Chemistry, University of Stuttgart , Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Morgane Vacher
- Department of Chemistry, Imperial College London , London SW7 2AZ, United Kingdom
| | - Michael J Bearpark
- Department of Chemistry, Imperial College London , London SW7 2AZ, United Kingdom
| | - Michael A Robb
- Department of Chemistry, Imperial College London , London SW7 2AZ, United Kingdom
| |
Collapse
|
18
|
Vacher M, Mendive-Tapia D, Bearpark MJ, Robb MA. Electron dynamics upon ionization: Control of the timescale through chemical substitution and effect of nuclear motion. J Chem Phys 2015; 142:094105. [DOI: 10.1063/1.4913515] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Morgane Vacher
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - David Mendive-Tapia
- Laboratoire CEISAM - UMR CNR 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Michael J. Bearpark
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael A. Robb
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
19
|
Despré V, Marciniak A, Loriot V, Galbraith MCE, Rouzée A, Vrakking MJJ, Lépine F, Kuleff AI. Attosecond Hole Migration in Benzene Molecules Surviving Nuclear Motion. J Phys Chem Lett 2015; 6:426-31. [PMID: 26261959 DOI: 10.1021/jz502493j] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Hole migration is a fascinating process driven by electron correlation, in which purely electronic dynamics occur on a very short time scale in complex ionized molecules, prior to the onset of nuclear motion. However, it is expected that due to coupling to the nuclear dynamics, these oscillations will be rapidly damped and smeared out, which makes experimental observation of the hole migration process rather difficult. In this Letter, we demonstrate that the instantaneous ionization of benzene molecules initiates an ultrafast hole migration characterized by a periodic breathing of the hole density between the carbon ring and surrounding hydrogen atoms on a subfemtosecond time scale. We show that these oscillations survive the dephasing introduced by the nuclear motion for a long enough time to allow their observation. We argue that this offers an ideal benchmark for studying the influence of hole migration on molecular reactivity.
Collapse
Affiliation(s)
- V Despré
- †Institut Lumière Matière, Université Lyon 1, CNRS, UMR 5306, 10 Rue Ada Byron, 69622 Villeurbanne Cedex, France
| | - A Marciniak
- †Institut Lumière Matière, Université Lyon 1, CNRS, UMR 5306, 10 Rue Ada Byron, 69622 Villeurbanne Cedex, France
| | - V Loriot
- †Institut Lumière Matière, Université Lyon 1, CNRS, UMR 5306, 10 Rue Ada Byron, 69622 Villeurbanne Cedex, France
| | - M C E Galbraith
- ‡Max-Born-Institut, Max Born Strasse 2A, D-12489 Berlin, Germany
| | - A Rouzée
- ‡Max-Born-Institut, Max Born Strasse 2A, D-12489 Berlin, Germany
| | - M J J Vrakking
- ‡Max-Born-Institut, Max Born Strasse 2A, D-12489 Berlin, Germany
| | - F Lépine
- †Institut Lumière Matière, Université Lyon 1, CNRS, UMR 5306, 10 Rue Ada Byron, 69622 Villeurbanne Cedex, France
| | - A I Kuleff
- §Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Vacher M, Meisner J, Mendive-Tapia D, Bearpark MJ, Robb MA. Electronic Control of Initial Nuclear Dynamics Adjacent to a Conical Intersection. J Phys Chem A 2014; 119:5165-72. [DOI: 10.1021/jp509774t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Morgane Vacher
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jan Meisner
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - David Mendive-Tapia
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael J. Bearpark
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michael A. Robb
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|