1
|
Minecka A, Tarnacka M, Soszka N, Hachuła B, Kamiński K, Kamińska E. Studying the Intermolecular Interactions, Structural Dynamics, and Non-Equilibrium Kinetics of Cilnidipine Infiltrated into Alumina and Silica Pores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:533-544. [PMID: 36575053 DOI: 10.1021/acs.langmuir.2c02816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the present study, the behavior of the calcium channel blocker cilnidipine (CLN) infiltrated into silica (SiO2) and anodic aluminum oxide (AAO) porous membranes characterized by a similar pore size (d = 8 nm and d = 10 nm, respectively) as well as the bulk sample has been investigated using differential scanning calorimetry, broadband dielectric spectroscopy (BDS), and Fourier-transform infrared spectroscopy (FTIR) techniques. The obtained data suggested the existence of two sets of CLN molecules in both confined systems (core and interfacial). They also revealed the lack of substantial differences in inter- and intramolecular dynamics of nanospatially restricted samples independently of the applied porous membranes. Moreover, the annealing experiments (isothermal time-dependent measurements) performed on the confined CLN clearly indicated that the whole equilibration process under confinement is governed by structural relaxation. It was also found that the βanneal parameters obtained from BDS and FTIR data upon equilibration of both confined samples are comparable (within 10%) to each other, while the equilibration constants are significantly different. This finding strongly emphasizes that there is a close connection between the inter- and intramolecular dynamics under nanospatial restriction.
Collapse
Affiliation(s)
- Aldona Minecka
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200Sosnowiec, Poland
| | - Magdalena Tarnacka
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500Chorzow, Poland
| | - Natalia Soszka
- Institute of Chemistry, University of Silesia, 40-006Katowice, Poland
| | - Barbara Hachuła
- Institute of Chemistry, University of Silesia, 40-006Katowice, Poland
| | - Kamil Kamiński
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 41-500Chorzow, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200Sosnowiec, Poland
| |
Collapse
|
2
|
Ngono F, Willart JF, Cuello GJ, Jimenez-Ruiz M, Yelles CMHB, Affouard F. Impact of Amorphization Methods on the Physicochemical Properties of Amorphous Lactulose. Mol Pharm 2020; 17:1-9. [PMID: 31647674 DOI: 10.1021/acs.molpharmaceut.9b00740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The influence of the amorphization technique on the physicochemical properties of amorphous lactulose was investigated. Four different amorphization techniques were used: quenching of the melt, milling, spray-drying, and freeze-drying, and amorphous samples were analyzed by differential scanning calorimetry, NMR spectroscopy, and powder X-ray diffraction analysis. Special attention was paid to the tautomeric composition and to the glass transition of amorphized materials. It was found that the tautomeric composition of the starting physical state (crystal, liquid, or solution) is preserved during the amorphization process and has a strong repercussion on the glass transition of the material. The correlation between these two properties as well as the plasticizing effect of the different tautomers was clarified by molecular dynamics simulations.
Collapse
Affiliation(s)
- Frederic Ngono
- Univ. Lille, CNRS, INRA, ENSCL, UMR 8207-UMET-Unité Matériaux et Transformations , F-59000 Lille , France.,Institut Laue Langevin , 71 Av. des Martyrs , CS 20156, F-38042 , Grenoble , France
| | - Jean-Francois Willart
- Univ. Lille, CNRS, INRA, ENSCL, UMR 8207-UMET-Unité Matériaux et Transformations , F-59000 Lille , France
| | - Gabriel Julio Cuello
- Institut Laue Langevin , 71 Av. des Martyrs , CS 20156, F-38042 , Grenoble , France
| | - Monica Jimenez-Ruiz
- Institut Laue Langevin , 71 Av. des Martyrs , CS 20156, F-38042 , Grenoble , France
| | | | - Frederic Affouard
- Univ. Lille, CNRS, INRA, ENSCL, UMR 8207-UMET-Unité Matériaux et Transformations , F-59000 Lille , France
| |
Collapse
|
3
|
Wolnica K, Dulski M, Kamińska E, Tarnacka M, Wrzalik R, Zięba A, Kasprzycka A, Nowak M, Jurkiewicz K, Szeja W, Kamiński K, Paluch M. Dramatic slowing down of the conformational equilibrium in the silyl derivative of glucose in the vicinity of the glass transition temperature. SOFT MATTER 2019; 15:7429-7437. [PMID: 31468042 DOI: 10.1039/c9sm01259a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The vitrification process is usually preceded by a significant change (around 6-8 decades) in the viscosity, structural relaxation times, or diffusion that occurs in a relatively small range of temperatures in fragile liquids. Along with this phenomenon, conformations of the molecules vary as well. In fact, this process is studied in bulk polymers and high molecular weight materials deposited in the form of thin films. On the other hand, spatial rearrangement of small glass formers in the supercooled liquid state has not been intensively investigated, so far. Herein, data obtained from measurements carried out using various experimental techniques on supercooled 1,2,3,4,6-penta-O-(trimethylsilyl)-d-glucopyranose (S-GLU) have revealed that rotations of silyl moieties along with the deformation in the saccharide ring are significantly slowed down in the vicinity of the glass transition temperature (Tg). These intramolecular reorganizations affect the structural relaxation time, atomic pair distribution function, integrated intensity, as well as a number of bands and signals observed, respectively, in the Raman and NMR spectra. Data reported herein offer a better understanding of the conformational variation and time scale of this process in the complex and flexible molecules around the Tg.
Collapse
Affiliation(s)
- K Wolnica
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Smiszek-Lindert WE, Kamińska E, Minecka A, Heczko D, Madejczyk O, Tarnacka M, Jurkiewicz K, Dzienia A, Kamiński K, Paluch M. Studies on dynamics and isomerism in supercooled photochromic compound Aberchrome 670 with the use of different experimental techniques. Phys Chem Chem Phys 2018; 20:18009-18019. [PMID: 29931011 DOI: 10.1039/c8cp02993h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Differential Scanning Calorimetry (DSC), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) and Broadband Dielectric (BD) spectroscopies were applied to investigate the thermal, structural, photochemical and dynamical properties of a fulgide-type photochromic compound, Aberchrome 670 (Ab670). In the original crystals, characterized by a pale yellow color, molecules take the E conformation. However, upon UV irradiation of either the crystalline or glassy compound, it isomerizes to the closed (C) form, characterized by the intense red tone. Although, we have found that such conversion is not complete (far below 100%). It was shown that due to UV irradiation as well as heating of the studied fulgide to high temperature (above the melting point), the Z isomer is formed. Further FTIR measurements performed on the UV irradiated and molten compound indicated that upon annealing of the sample in the vicinity of the glass transition temperature the Z isomer reverts back to the original E form. The final confirmation of this supposition has come from BDS studies, where the strong shift of the structural relaxation process during time-dependent isothermal measurements was noticed. One can add that a similar pattern of behavior has been observed previously by some of us in the case of tautomerism or mutarotation [Z. Wojnarowska et al., J. Chem. Phys., 2010, 133, 094507; W. Kossack et al., J. Chem. Phys., 2014, 140, 215101; P. Wlodarczyk et al., J. Phys. Chem. B, 2009, 113, 4379-4383; P. Wlodarczyk et al., J. Non-Cryst. Solids, 2010, 356, 738-742]. From the analysis of the time variation of the structural relaxation times, the activation barrier, EA = 18 kJ mol-1, for Z to E isomerization in Ab670 was calculated. Interestingly, it agrees well with the one determined for a similar kind of transformation in stilbenes. Therefore, we found that dielectric spectroscopy can be a very useful technique to track Z to E interconversion in the highly viscous supercooled state. Consequently, a unique opportunity to follow this kind of isomerism at high pressures, high electric fields and under nanometric spatial confinement in pure supercooled compounds appeared.
Collapse
Affiliation(s)
- Wioleta Edyta Smiszek-Lindert
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Unexpected Crossover in the kinetics of mutarotation in the supercooled region: the role of H-bonds. Sci Rep 2018; 8:5312. [PMID: 29593302 PMCID: PMC5871794 DOI: 10.1038/s41598-018-23117-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/26/2018] [Indexed: 12/01/2022] Open
Abstract
Intra- and intermolecular studies on the molten L-sorbose have been carried out at variable temperature conditions to determine the crosover temperature (Tc). In addition, isothermal time-dependent FTIR and Raman measurements were performed to probe the pace of mutarotation and activation energy of this reaction in the studied saccharide, which varied from 53–62 kJ/mol up to 177–192 kJ/mol below and above Tc, respectively. To explain the change in activation barrier for the mutarotation a complementary analysis using difference FTIR spectra collected around Tc = 365 K in the hydroxyl region has been done. It was found that the alteration of kinetic parameters and molecular dynamics around Tc are strictly related to the variation in the strength of H-bonds which above Tc are significantly weaken, increasing the freedom of rotation of functional groups and movement of individual molecules. That phenomenon most likely affects the proton transfer, underlying molecular mechanism of mutarotation, which may lead to the significant increase in activation barrier. The new insight into a molecular aspect of the mutarotation around Tc has created an opportunity to better understanding the relationship between physics of condensed matter and the potential role of H-bonds dynamics on the progress of the chemical reaction in highly viscous systems.
Collapse
|
6
|
The indications of tautomeric conversion in amorphous bicalutamide drug. Eur J Pharm Sci 2017; 110:117-123. [DOI: 10.1016/j.ejps.2017.06.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
|
7
|
Minecka A, Kamińska E, Tarnacka M, Dzienia A, Madejczyk O, Waliłko P, Kasprzycka A, Kamiński K, Paluch M. High pressure studies on structural and secondary relaxation dynamics in silyl derivative of D-glucose. J Chem Phys 2017; 147:064502. [DOI: 10.1063/1.4989679] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
8
|
Wolnica K, Dulski M, Kaminska E, Cecotka A, Tarnacka M, Wrzalik R, Kaminski K, Paluch M. A study on the progress of mutarotation above and below the T g and the relationship between constant rates and structural relaxation times. Phys Chem Chem Phys 2017; 19:20949-20958. [PMID: 28745754 DOI: 10.1039/c7cp02046e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Comprehensive FTIR studies on the progress of mutarotation in d-fructose mixed with maltitol have been carried out over a wide range of temperatures, both above and below the glass transition temperature Tg. In addition to the analysis of single bands, we have developed a completely new approach considering the full spectral range to follow the overall progress of the reaction. We have found that at the calorimetric Tg, there is a clear change in the temperature dependence of constant rates. The activation barrier for mutarotation changes from around 59 kJ mol-1 (the supercooled state) to around 249 kJ mol-1 (the glassy state). This dramatic variation in the activation barrier is consistent with the change in the mechanism of this specific chemical conversion, as theoretically considered by Wlodarczyk et al. [Phys. Chem. Chem. Phys., 2014, 16, 4694-4698]. Alternatively, it can also be connected to the change in the viscosity of the sample. Additionally, we investigated the relationship between constant rates (k) of mutarotation, structural relaxation times (τα), and dc conductivity (σdc) above and below the glass transition temperature. It was found that there was a linear correlation between all these quantities; they scale with various exponents changing at Tg. Our results also indicate that a single activation barrier might not be sufficient to describe the mutarotation process.
Collapse
Affiliation(s)
- K Wolnica
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Szczepaniak M, Moc J. Anomerization reaction of bare and microhydrated d-erythrose via explicitly correlated coupled cluster approach. Two water molecules are optimal. J Comput Chem 2017; 38:288-303. [PMID: 27896831 DOI: 10.1002/jcc.24680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 01/23/2023]
Abstract
We present a comprehensive benchmark computational study which has explored a complete path of the anomerization reaction of bare d-erythrose involving a pair of the low-energy α- and β-furanose anomers, the former of which was observed spectroscopically (Cabezas et al., Chem. Commun. 2013, 49, 10826). We find that the ring opening of the α-anomer yields the most stable open-chain tautomer which step is followed by the rotational interconversion of the open-chain rotamers and final ring closing to form the β-anomer. Our results indicate the flatness of the reaction's potential energy surface (PES) corresponding to the rotational interconversion path and its sensitivity to the computational level. By using the explicitly correlated coupled cluster CCSD(T)-F12/cc-pVTZ-F12 energies, we determine the free energy barrier for the α-furanose ring-opening (rate-determining) step as 170.3 kJ/mol. The question of the number of water molecules (n) needed for optimal stabilization of the erythrose anomerization reaction rate-determining transition state is addressed by a systematic exploration of the PES of the ring opening in the α-anomer-(H2 O)n and various β-anomer-(H2 O)n (n = 1-3) clusters using density functional and CCSD(T)-F12 computations. These computations suggest the lowest free energy barrier of the ring opening for doubly hydrated α-anomer, achieved by a mechanism that involves water-mediated multiple proton transfer coupled with the furanose CO bond breakage. Among the methods used, the G4 performed best against the CCSD(T)-F12 reference at estimating the ring-opening barrier heights for both the hydrated and bare erythrose conformers. Our results for the hydrated species are most relevant to an experimental study of the anomerization reaction of d-erythrose to be carried out in microsolvation environment. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marek Szczepaniak
- Faculty of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw, 50-383, Poland
| | - Jerzy Moc
- Faculty of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw, 50-383, Poland
| |
Collapse
|
10
|
Lamelas FJ. Compressed-tube pressure cell for optical studies at ocean pressures: Application to glucose mutarotation kinetics. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:124101. [PMID: 28040945 DOI: 10.1063/1.4971417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A self-contained compressed-tube pressure cell is tested to 25 MPa. The cell is very simple to construct and offers stable pressure control with optical access to fluid samples. The physical path length of light through the cell is large enough to measure optical activity. The entire system is relatively small and portable, and it is vibration-free, since a compressor is not used. Operation of the cell is demonstrated by measuring the mutarotation rate of aqueous glucose solutions at 25 °C. A logarithmic plot of the rate constant vs. pressure yields an activation volume for mutarotation of -22 cm3/mol, approximately twice the value measured previously at higher pressures.
Collapse
Affiliation(s)
- F J Lamelas
- Department of Earth, Environment, and Physics, Worcester State University, 486 Chandler St., Worcester, Massachusetts 01602, USA
| |
Collapse
|
11
|
Dulski M, Cecotka A, Tripathy SN, Sakalouski A, Wolnica K, Tarnacka M, Wrzalik R, Kamiński K, Paluch M. Experimental (FTIR, BDS) and theoretical analysis of mutarotation kinetics of d-fructose mixed with different alcohols in the supercooled region. RSC Adv 2016. [DOI: 10.1039/c6ra13266a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mutarotation kinetics of pure molten d-fructose and its binary mixture with alcohols (i.e., sorbitol and maltitol) have been reported using Fourier transform infrared, broadband dielectric spectroscopy and density functional theory calculations.
Collapse
Affiliation(s)
- M. Dulski
- Institute of Material Science
- University of Silesia
- 41-500 Chorzow
- Poland
- Silesian Center for Education and Interdisciplinary Research
| | - A. Cecotka
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzow
- Poland
- A. Chelkowski Institute of Physics
- University of Silesia
| | - S. N. Tripathy
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzow
- Poland
- A. Chelkowski Institute of Physics
- University of Silesia
| | - A. Sakalouski
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzow
- Poland
- A. Chelkowski Institute of Physics
- University of Silesia
| | - K. Wolnica
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzow
- Poland
- A. Chelkowski Institute of Physics
- University of Silesia
| | - M. Tarnacka
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzow
- Poland
- A. Chelkowski Institute of Physics
- University of Silesia
| | - R. Wrzalik
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzow
- Poland
- A. Chelkowski Institute of Physics
- University of Silesia
| | - K. Kamiński
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzow
- Poland
- A. Chelkowski Institute of Physics
- University of Silesia
| | - M. Paluch
- Silesian Center for Education and Interdisciplinary Research
- 41-500 Chorzow
- Poland
- A. Chelkowski Institute of Physics
- University of Silesia
| |
Collapse
|
12
|
Cecotka A, Tripathy SN, Paluch M. Evidence of pressure induced intermolecular proton transfer via mutarotation: the case of supercooled d-fructose. Phys Chem Chem Phys 2015; 17:19394-400. [PMID: 26144525 DOI: 10.1039/c5cp02044a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This paper describes a systematic investigation on the role of pressure in mutarotation kinetics of supercooled d-fructose using dielectric spectroscopy. The structural relaxation time acts as a suitable dynamical observable to monitor the mutarotation process that enables the construction of the kinetic curves. The reaction kinetic shapes have been analyzed using the Avrami model. At low temperature, sigmoidal kinetic curves are noted, which correspond to the high concentration of furanosidic forms. The magnitude of activation energy of the process significantly decreases with increasing pressure and is comparable to the solvated systems at 100 MPa. A potential connection between cooperative motion and the origin of intermolecular proton transfer via mutarotation at elevated pressure is also discussed. These experimental observations have fundamental significance on theoretical explanation of the mechanism involving mutarotation in sugars.
Collapse
Affiliation(s)
- Adam Cecotka
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland.
| | | | | |
Collapse
|
13
|
Tarnacka M, Madejczyk O, Dulski M, Wikarek M, Pawlus S, Adrjanowicz K, Kaminski K, Paluch M. Kinetics and Dynamics of the Curing System. High Pressure Studies. Macromolecules 2014. [DOI: 10.1021/ma500802g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- M. Tarnacka
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzów, Poland
| | - O. Madejczyk
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzów, Poland
| | - M. Dulski
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzów, Poland
| | - M. Wikarek
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzów, Poland
| | - S. Pawlus
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzów, Poland
| | - K. Adrjanowicz
- NanoBioMedical
Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznan, Poland
| | - K. Kaminski
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzów, Poland
| | - M. Paluch
- Institute
of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian
Center of Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|