Nabika H, Tsukada K, Itatani M, Ban T. Tunability of Self-Organized Structures Based on Thermodynamic Flux.
LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022;
38:11330-11336. [PMID:
36067357 DOI:
10.1021/acs.langmuir.2c01602]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nature establishes structures and functions via self-organization of constituents, including ions, molecules, and particles. Understanding the selection rule that determines the self-organized structure formed from many possible alternatives is fundamentally and technologically important. In this study, the selection rule for the self-organization associated with a reaction-diffusion system was explored using the Liesegang phenomenon, by which a periodic precipitation pattern is formed as a model system. Experiments were conducted by systematically changing the mass flux. At low mass fluxes, a vertically periodic pattern was formed, whereas at high mass fluxes, a horizontally periodic pattern was formed. The results inferred that a structural vertical-to-horizontal periodicity transition occurred in the self-organized periodic structure at the crossover flux at which the entropy production rate reversed. Numerical analyses attributed the as-observed flux-dependent structural transition to the selection of the self-organized pattern with a higher entropy production rate. These findings contribute to our understanding of how nature controls self-organized structures and geometry, potentially facilitating the development of novel designs, syntheses, and fabrication processes for well-controlled organized functional structures.
Collapse