• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4604935)   Today's Articles (4491)   Subscriber (49371)
For: Pollard T, Beck TL. Quasichemical analysis of the cluster-pair approximation for the thermodynamics of proton hydration. J Chem Phys 2014;140:224507. [DOI: 10.1063/1.4881602] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
Zheng JW, Green WH. Experimental Compilation and Computation of Hydration Free Energies for Ionic Solutes. J Phys Chem A 2023;127:10268-10281. [PMID: 38010212 DOI: 10.1021/acs.jpca.3c05514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
2
Shi Y, Doyle CC, Beck TL. Condensed Phase Water Molecular Multipole Moments from Deep Neural Network Models Trained on Ab Initio Simulation Data. J Phys Chem Lett 2021;12:10310-10317. [PMID: 34662132 DOI: 10.1021/acs.jpclett.1c02328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
3
Solvation free energy of the proton in acetonitrile. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
4
Herbert JM. Dielectric continuum methods for quantum chemistry. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1519] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
5
Malloum A, Fifen JJ, Conradie J. Determination of the absolute solvation free energy and enthalpy of the proton in solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114919] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
6
Absolute ion hydration free energy scale and the surface potential of water via quantum simulation. Proc Natl Acad Sci U S A 2020;117:30151-30158. [PMID: 33203676 DOI: 10.1073/pnas.2017214117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]  Open
7
Duignan TT, Zhao XS. The Born model can accurately describe electrostatic ion solvation. Phys Chem Chem Phys 2020;22:25126-25135. [DOI: 10.1039/d0cp04148c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
8
Basdogan Y, Groenenboom MC, Henderson E, De S, Rempe SB, Keith JA. Machine Learning-Guided Approach for Studying Solvation Environments. J Chem Theory Comput 2019;16:633-642. [PMID: 31809056 DOI: 10.1021/acs.jctc.9b00605] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
9
Houriez C, Réal F, Vallet V, Mautner M, Masella M. Ion hydration free energies and water surface potential in water nano drops: The cluster pair approximation and the proton hydration Gibbs free energy in solution. J Chem Phys 2019;151:174504. [PMID: 31703526 DOI: 10.1063/1.5109777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
10
Doyle CC, Shi Y, Beck TL. The Importance of the Water Molecular Quadrupole for Estimating Interfacial Potential Shifts Acting on Ions Near the Liquid–Vapor Interface. J Phys Chem B 2019;123:3348-3358. [DOI: 10.1021/acs.jpcb.9b01289] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
11
Prasetyo N, Hünenberger PH, Hofer TS. Single-Ion Thermodynamics from First Principles: Calculation of the Absolute Hydration Free Energy and Single-Electrode Potential of Aqueous Li+ Using ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations. J Chem Theory Comput 2018;14:6443-6459. [PMID: 30284829 DOI: 10.1021/acs.jctc.8b00729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
12
Leśniewski M, Śmiechowski M. Communication: Inside the water wheel: Intrinsic differences between hydrated tetraphenylphosphonium and tetraphenylborate ions. J Chem Phys 2018;149:171101. [DOI: 10.1063/1.5056237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
13
Duignan TT, Baer MD, Mundy CJ. Understanding the scale of the single ion free energy: A critical test of the tetra-phenyl arsonium and tetra-phenyl borate assumption. J Chem Phys 2018;148:222819. [PMID: 29907030 DOI: 10.1063/1.5020171] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
14
Pollard TP, Beck TL. Re-examining the tetraphenyl-arsonium/tetraphenyl-borate (TATB) hypothesis for single-ion solvation free energies. J Chem Phys 2018;148:222830. [DOI: 10.1063/1.5024209] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
15
Hofer TS, Hünenberger PH. Absolute proton hydration free energy, surface potential of water, and redox potential of the hydrogen electrode from first principles: QM/MM MD free-energy simulations of sodium and potassium hydration. J Chem Phys 2018;148:222814. [DOI: 10.1063/1.5000799] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]  Open
16
Duignan TT, Baer MD, Schenter GK, Mundy CJ. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions. J Chem Phys 2017;147:161716. [DOI: 10.1063/1.4994912] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]  Open
17
Silva NM, Deglmann P, Pliego JR. CMIRS Solvation Model for Methanol: Parametrization, Testing, and Comparison with SMD, SM8, and COSMO-RS. J Phys Chem B 2016;120:12660-12668. [DOI: 10.1021/acs.jpcb.6b10249] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
18
Toward a quantitative theory of Hofmeister phenomena: From quantum effects to thermodynamics. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.06.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
19
Chen Z, Beck TL. Free Energies of Ion Binding in the Bacterial CLC-ec1 Chloride Transporter with Implications for the Transport Mechanism and Selectivity. J Phys Chem B 2016;120:3129-39. [DOI: 10.1021/acs.jpcb.6b01150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
20
Rossini E, Knapp EW. Proton solvation in protic and aprotic solvents. J Comput Chem 2016;37:1082-91. [DOI: 10.1002/jcc.24297] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/08/2015] [Accepted: 12/17/2015] [Indexed: 12/29/2022]
21
Cendagorta JR, Ichiye T. The Surface Potential of the Water–Vapor Interface from Classical Simulations. J Phys Chem B 2015;119:9114-22. [DOI: 10.1021/jp508878v] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
22
Vlcek L, Uhlik F, Moucka F, Nezbeda I, Chialvo AA. Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry. J Phys Chem A 2015;119:488-500. [DOI: 10.1021/jp509401d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
23
Pollard TP, Beck TL. The thermodynamics of proton hydration and the electrochemical surface potential of water. J Chem Phys 2014;141:18C512. [DOI: 10.1063/1.4896217] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
24
Ion Interactions with the Air–Water Interface Using a Continuum Solvent Model. J Phys Chem B 2014;118:8700-10. [DOI: 10.1021/jp502887e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA