1
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Structural investigation, computational analysis, and theoretical cryoprotectant approach of antifreeze protein type IV mutants. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024:10.1007/s00249-024-01719-7. [PMID: 39327310 DOI: 10.1007/s00249-024-01719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 09/28/2024]
Abstract
Antifreeze proteins (AFPs) have unique features to sustain life in sub-zero environments due to ice recrystallization inhibition (IRI) and thermal hysteresis (TH). AFPs are in demand as agents in cryopreservation, but some antifreeze proteins have low levels of activity. This research aims to improve the cryopreservation activity of an AFPIV. In this in silico study, the helical peptide afp1m from an Antarctic yeast AFP was modeled into a sculpin AFPIV, to replace each of its four α-helices in turn, using various computational tools. Additionally, a new linker between the first two helices of AFPIV was designed, based on a flounder AFPI, to boost the ice interaction activity of the mutants. Bioinformatics tools such as ExPASy Prot-Param, Pep-Wheel, SOPMA, GOR IV, Swiss-Model, Phyre2, MODFOLD, MolPropity, and ProQ were used to validate and analyze the structural and functional properties of the model proteins. Furthermore, to evaluate the AFP/ice interaction, molecular dynamics (MD) simulations were executed for 20, 100, and 500 ns at various temperatures using GROMACS software. The primary, secondary, and 3D modeling analysis showed the best model for a redesigned antifreeze protein (AFP1mb, with afp1m in place of the fourth AFPIV helix) with a QMEAN (Swiss-Model) Z score value of 0.36, a confidence of 99.5%, a coverage score of 22%, and a p value of 0.01. The results of the MD simulations illustrated that AFP1mb had more rigidity and better ice interactions as a potential cryoprotectant than the other models; it also displayed enhanced activity in limiting ice growth at different temperatures.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Zhang B, Cao HJ, Lin HM, Deng SG, Wu H. Insights into ice-growth inhibition by trehalose and alginate oligosaccharides in peeled Pacific white shrimp (Litopenaeus vannamei) during frozen storage. Food Chem 2019; 278:482-490. [DOI: 10.1016/j.foodchem.2018.11.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 10/27/2022]
|
3
|
Zhang B, Zhang XL, Shen CL, Deng SG. Understanding the influence of carrageenan oligosaccharides and xylooligosaccharides on ice-crystal growth in peeled shrimp (Litopenaeus vannamei) during frozen storage. Food Funct 2018; 9:4394-4403. [DOI: 10.1039/c8fo00364e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cryoprotective saccharides are widely accepted antifreeze additives that reduce thawing loss, maintain texture, and retard protein denaturation in frozen seafood.
Collapse
Affiliation(s)
- Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province
- College of Food Science and Pharmacy
- Zhejiang Ocean University
- Zhoushan
- 316022 P. R. China
| | - Xiao-li Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province
- College of Food Science and Pharmacy
- Zhejiang Ocean University
- Zhoushan
- 316022 P. R. China
| | - Chun-lei Shen
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province
- College of Food Science and Pharmacy
- Zhejiang Ocean University
- Zhoushan
- 316022 P. R. China
| | - Shang-gui Deng
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province
- College of Food Science and Pharmacy
- Zhejiang Ocean University
- Zhoushan
- 316022 P. R. China
| |
Collapse
|
4
|
Nguyen H, Le L. Investigation of changes in structure and thermodynamic of spruce budworm antifreeze protein under subfreezing temperature. Sci Rep 2017; 7:40032. [PMID: 28106056 PMCID: PMC5247755 DOI: 10.1038/srep40032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/30/2016] [Indexed: 11/29/2022] Open
Abstract
The aim of this theoretical work is to investigate of the changes in structure and thermodynamics of spruce budworm antifreeze protein (sbAFP) at low temperatures by using molecular dynamics simulation. The aqueous solution will form ice crystal network under the vaguely hexagonal shape at low temperature and fully represented the characteristics of hydrophobic interaction. Like ice crystal network, the cyclohexane region (including cyclohexane molecules) have enough of the characteristics of hydrophobic interaction. Therefore, in this research the cyclohexane region will be used as a representation of ice crystal network to investigate the interactions of sbAFP and ice crystal network at low temperature. The activity of sbAFP in subfreezing environment, therefore, can be clearly observed via the changes of the hydrophobic (cyclohexane region) and hydrophilic (water region) interactions. The obtained results from total energies, hydrogen bond lifetime correlation C(t), radial distribution function, mean square deviation and snapshots of sbAFP complexes indicated that sbAFP has some special changes in structure and interaction with water and cyclohexane regions at 278 K, as being transition temperature point of water molecules in sbAFP complex at low temperatures, which is more structured and support the experimental observation that the sbAFP complex becomes more rigid as the temperature is lowered.
Collapse
Affiliation(s)
- Hung Nguyen
- Open Lab, Institute for Computational Sciences and Technology at Ho Chi Minh City, Vietnam
| | - Ly Le
- Open Lab, Institute for Computational Sciences and Technology at Ho Chi Minh City, Vietnam.,School of Biotechnology, International University, Vietnam National University at Ho Chi Minh, Vietnam
| |
Collapse
|
5
|
Nguyen H, Dac Van T, Tran N, Le L. Exploring the Effects of Subfreezing Temperature and Salt Concentration on Ice Growth Inhibition of Antarctic Gram-Negative Bacterium Marinomonas Primoryensis Using Coarse-Grained Simulation. Appl Biochem Biotechnol 2016; 178:1534-45. [PMID: 26758589 DOI: 10.1007/s12010-015-1966-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
The aim of this work is to study the freezing process of water molecules surrounding Antarctic Gram-negative bacterium Marinomonas primoryensis antifreeze protein (MpAFP) and the MpAFP interactions to the surface of ice crystals under various marine environments (at different NaCl concentrations of 0.3, 0.6, and 0.8 mol/l). Our result indicates that activating temperature region of MpAFPs reduced as NaCl concentration increased. Specifically, MpAFP was activated and functioned at 0.6 mol/l with temperatures equal or larger 278 K, and at 0.8 mol/l with temperatures equal or larger 270 K. Additionally, MpAFP was inhibited by ice crystal network from 268 to 274 K and solid-liquid hybrid from 276 to 282 K at 0.3 mol/l concentration. Our results shed lights on structural dynamics of MpAFP among different marine environments.
Collapse
Affiliation(s)
- Hung Nguyen
- Life Science Laboratory of Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam.
| | - Thanh Dac Van
- Life Science Laboratory of Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
- School of Biotechnology of Ho Chi Minh International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Nhut Tran
- Life Science Laboratory of Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
| | - Ly Le
- Life Science Laboratory of Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam.
- School of Biotechnology of Ho Chi Minh International University, Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
7
|
Duboué-Dijon E, Laage D. Comparative study of hydration shell dynamics around a hyperactive antifreeze protein and around ubiquitin. J Chem Phys 2015; 141:22D529. [PMID: 25494800 DOI: 10.1063/1.4902822] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hydration layer surrounding a protein plays an essential role in its biochemical function and consists of a heterogeneous ensemble of water molecules with different local environments and different dynamics. What determines the degree of dynamical heterogeneity within the hydration shell and how this changes with temperature remains unclear. Here, we combine molecular dynamics simulations and analytic modeling to study the hydration shell structure and dynamics of a typical globular protein, ubiquitin, and of the spruce budworm hyperactive antifreeze protein over the 230-300 K temperature range. Our results show that the average perturbation induced by both proteins on the reorientation dynamics of water remains moderate and changes weakly with temperature. The dynamical heterogeneity arises mostly from the distribution of protein surface topographies and is little affected by temperature. The ice-binding face of the antifreeze protein induces a short-ranged enhancement of water structure and a greater slowdown of water reorientation dynamics than the non-ice-binding faces whose effect is similar to that of ubiquitin. However, the hydration shell of the ice-binding face remains less tetrahedral than the bulk and is not "ice-like". We finally show that the hydrogen bonds between water and the ice-binding threonine residues are particularly strong due to a steric confinement effect, thereby contributing to the strong binding of the antifreeze protein on ice crystals.
Collapse
Affiliation(s)
- Elise Duboué-Dijon
- Département de Chimie, École Normale Supérieure-PSL Research University, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond, 75005 Paris, France
| | - Damien Laage
- Département de Chimie, École Normale Supérieure-PSL Research University, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond, 75005 Paris, France
| |
Collapse
|