1
|
LeCroy G, Ghosh R, Sommerville P, Burke C, Makki H, Rozylowicz K, Cheng C, Weber M, Khelifi W, Stingelin N, Troisi A, Luscombe C, Spano FC, Salleo A. Using Molecular Structure to Tune Intrachain and Interchain Charge Transport in Indacenodithiophene-Based Copolymers. J Am Chem Soc 2024; 146:21778-21790. [PMID: 39058936 DOI: 10.1021/jacs.4c06006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In this work, we compare two structurally near-amorphous rigid-rod polymers─poly(indacenodithiophene-co-benzothiadiazole), p(IDT-BT), and poly(indacenodithiophene-co-benzopyrollodione), p(IDT-BPD)─with orders of magnitude different mobilities to understand the effect charge carrier intrachain delocalization has on electronic transport. Quantum chemical calculations show that p(IDT-BPD) has a barrier to torsion that is significantly lower than that of p(IDT-BT) and is thus more likely to have reduced conjugation lengths. We utilize absorption and photoluminescence spectroscopy to characterize energetic disorder and show that p(IDT-BPD) has higher energetic disorder. Charge modulation spectroscopy (CMS) and model calculations are used to show that charge carriers are substantially delocalized in p(IDT-BT) and occupy near-uniform energetic environments. We find that mobility activated hopping barriers are similar in these two materials. Electronic structure calculations show that both intrachain and interchain couplings of monomer units are poor enough in p(IDT-BPD) that charge carriers collapse to single IDT units and transport via a through-space tunneling mechanism. This work highlights the remarkable charge transport properties of p(IDT-BT) by showing that high mobilities are achievable on device-relevant length scales with only 1D carrier delocalization.
Collapse
Affiliation(s)
- Garrett LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Raja Ghosh
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Parker Sommerville
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Colm Burke
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Hesam Makki
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Kalee Rozylowicz
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Christina Cheng
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Mark Weber
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Wissem Khelifi
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Natalie Stingelin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Christine Luscombe
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Frank C Spano
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
LeCroy G, Ghosh R, Untilova V, Guio L, Stone KH, Brinkmann M, Luscombe C, Spano FC, Salleo A. Polaron absorption in aligned conjugated polymer films: breakdown of adiabatic treatments and going beyond the conventional mid-gap state model. MATERIALS HORIZONS 2024; 11:545-553. [PMID: 37982315 DOI: 10.1039/d3mh01278f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
This study provides the first experimental polarized intermolecular and intramolecular optical absorption components of field-induced polarons in regioregular poly(3-hexylthiophene-2,5-diyl), rr-P3HT, a polymer semiconductor. Highly aligned rr-P3HT thin films were prepared by a high temperature shear-alignment process that orients polymer backbones along the shearing direction. rr-P3HT in-plane molecular orientation was measured by electron diffraction, and out-of-plane orientation was measured through series of synchrotron X-ray scattering techniques. Then, with molecular orientation quantified, polarized charge modulation spectroscopy was used to probe mid-IR polaron absorption in the ℏω = 0.075 - 0.75 eV range and unambiguously assign intermolecular and intramolecular optical absorption components of hole polarons in rr-P3HT. This data represents the first experimental quantification of these polarized components and allowed long-standing theoretical predictions to be compared to experimental results. The experimental data is discrepant with predictions of polaron absorption based on an adiabatic framework that works under the Born-Oppenheimer approximation, but the data is entirely consistent with a more recent nonadiabatic treatment of absorption based on a modified Holstein Hamiltonian. This nonadiabatic treatment was used to show that both intermolecular and intramolecular polaron coherence break down at length scales significantly smaller than estimated structural coherence in either direction. This strongly suggests that polaron delocalization is fundamentally limited by energetic disorder in rr-P3HT.
Collapse
Affiliation(s)
- Garrett LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Raja Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92037, USA
| | | | - Lorenzo Guio
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Kevin H Stone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Martin Brinkmann
- Université de Strasbourg, CNRS, ICS UPR 22, F-67000 Strasbourg, France
| | - Christine Luscombe
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Frank C Spano
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Nicolaidou E, Parker AW, Sazanovich IV, Towrie M, Hayes SC. Unraveling Excited State Dynamics of a Single-Stranded DNA-Assembled Conjugated Polyelectrolyte. J Phys Chem Lett 2023; 14:9794-9803. [PMID: 37883808 PMCID: PMC10641883 DOI: 10.1021/acs.jpclett.3c01803] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Conformational templating of conjugated polyelectrolytes with single-stranded DNAs (ssDNAs) has the prospect of tailoring excited state dynamics for specific optoelectronic applications. We use ultrafast time-resolved infrared spectroscopy to study the photophysics of a cationic polythiophene assembled with different ssDNAs, inducing distinct conformations (flexible disordered structures vs more rigid complexes with increased backbone planarity). Intrachain polarons are always produced upon selective excitation of the polymer, the extent being dependent on backbone torsional order. Polaron formation and decay were monitored through evolution of IR-active vibrational modes that interfere with mid-IR polaron electronic absorption giving rise to Fano-antiresonances. Selective UV excitation of ssDNAs revealed that stacking interactions between thiophene rings and nucleic acid bases can promote the formation of an intermolecular charge transfer complex. The findings inform designers of functional conjugated polymers by identifying that involvement of the scaffold in the photophysics needs to be considered when developing such structures for optoelectronic applications.
Collapse
Affiliation(s)
- Eliana Nicolaidou
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Anthony W. Parker
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Igor V. Sazanovich
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Michael Towrie
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Sophia C. Hayes
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| |
Collapse
|
4
|
Ghosh R, Paesani F. Connecting the dots for fundamental understanding of structure-photophysics-property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chem Sci 2023; 14:1040-1064. [PMID: 36756323 PMCID: PMC9891456 DOI: 10.1039/d2sc03793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Photoactive organic and hybrid organic-inorganic materials such as conjugated polymers, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and layered perovskites, display intriguing photophysical signatures upon interaction with light. Elucidating structure-photophysics-property relationships across a broad range of functional materials is nontrivial and requires our fundamental understanding of the intricate interplay among excitons (electron-hole pair), polarons (charges), bipolarons, phonons (vibrations), inter-layer stacking interactions, and different forms of structural and conformational defects. In parallel with electronic structure modeling and data-driven science that are actively pursued to successfully accelerate materials discovery, an accurate, computationally inexpensive, and physically-motivated theoretical model, which consistently makes quantitative connections with conceptually complicated experimental observations, is equally important. Within this context, the first part of this perspective highlights a unified theoretical framework in which the electronic coupling as well as the local coupling between the electronic and nuclear degrees of freedom can be efficiently described for a broad range of quasiparticles with similarly structured Holstein-style vibronic Hamiltonians. The second part of this perspective discusses excitonic and polaronic photophysical signatures in polymers, COFs, MOFs, and perovskites, and attempts to bridge the gap between different research fields using a common theoretical construct - the Multiparticle Holstein Formalism. We envision that the synergistic integration of state-of-the-art computational approaches with the Multiparticle Holstein Formalism will help identify and establish new, transformative design strategies that will guide the synthesis and characterization of next-generation energy materials optimized for a broad range of optoelectronic, spintronic, and photonic applications.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
- San Diego Supercomputer Center, University of California La Jolla San Diego California 92093 USA
- Materials Science and Engineering, University of California La Jolla San Diego California 92093 USA
| |
Collapse
|
5
|
Kim SH, Yook H, Sung W, Choi J, Lim H, Chung S, Han JW, Cho K. Extremely Suppressed Energetic Disorder in a Chemically Doped Conjugated Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207320. [PMID: 36271732 DOI: 10.1002/adma.202207320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Chemical doping can be used to tune the optoelectronic properties of conjugated polymers (CPs), extending their applications as conducting materials. Unfortunately, chemically doped CP films containing excess dopants exhibit an increase in energetic disorder upon structural alteration, and Coulomb interactions between charge carriers and dopants also affect such disorder. The increase in energetic disorder leads to a broadening of the density of states, which consequently impedes efficient charge transport in chemically doped CPs. However, the molecular origins that are inherently resistant to such incidental increase of energetic disorder in chemically doped CPs have not been sufficiently explored. Here, it is discovered that energetic disorder in chemically doped CPs can be suppressed to a level close to the theoretical limit. Indacenodithiophene-co-benzothiadiazole (IDTBT) doped with triethyloxonium hexachloroantimonate (OA) exhibits disorder-free charge-transport characteristics and band-like transport behavior with astonishing carrier mobility as a result of reinforced 1D intramolecular transport. Molecular structure of IDTBT provides a capability to lower the energetic disorder that generally arises from the inclusion of heterogeneous dopants. The results suggest the possibilities of implementing disorder-free CPs that exhibit excellent charge transport characteristics in the chemically doped state and satisfy a prerequisite for their availability in the industry.
Collapse
Affiliation(s)
- Seong Hyeon Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hyunwoo Yook
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Woong Sung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Jinhyeok Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hyungsub Lim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| |
Collapse
|
6
|
Ghosh R, Paesani F. Unraveling the effect of defects, domain size, and chemical doping on photophysics and charge transport in covalent organic frameworks. Chem Sci 2021; 12:8373-8384. [PMID: 34221318 PMCID: PMC8221171 DOI: 10.1039/d1sc01262b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/12/2021] [Indexed: 11/21/2022] Open
Abstract
Understanding the underlying physical mechanisms that govern charge transport in two-dimensional (2D) covalent organic frameworks (COFs) will facilitate the development of novel COF-based devices for optoelectronic and thermoelectric applications. In this context, the low-energy mid-infrared absorption contains valuable information about the structure-property relationships and the extent of intra- and inter-framework "hole" polaron delocalization in doped and undoped polymeric materials. In this study, we provide a quantitative characterization of the intricate interplay between electronic defects, domain sizes, pore volumes, chemical dopants, and three dimensional anisotropic charge migration in 2D COFs. We compare our simulations with recent experiments on doped COF films and establish the correlations between polaron coherence, conductivity, and transport signatures. By obtaining the first quantitative agreement with the measured absorption spectra of iodine doped (aza)triangulene-based COF, we highlight the fundamental differences between the underlying microstructure, spectral signatures, and transport physics of polymers and COFs. Our findings provide conclusive evidence of why iodine doped COFs exhibit lower conductivity compared to doped polythiophenes. Finally, we propose new research directions to address existing limitations and improve charge transport in COFs for applications in functional molecular electronic devices.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
- San Diego Supercomputer Center, University of California San Diego La Jolla California 92093 USA
- Materials Science and Engineering, University of California San Diego La Jolla California 92093 USA
| |
Collapse
|
7
|
Abstract
ConspectusExcitons and polarons play a central role in the electronic and optical properties of organic semiconducting polymers and molecular aggregates and are of fundamental importance in understanding the operation of organic optoelectronic devices such as solar cells and light-emitting diodes. For many conjugated organic molecules and polymers, the creation of neutral electronic excitations or ionic radicals is associated with significant nuclear relaxation, the bulk of which occurs along the vinyl-stretching mode or the aromatic-quinoidal stretching mode when conjugated rings are present. Within a polymer chain or molecular aggregate, nuclear relaxation competes with energy- and charge-transfer, mediated by electronic interactions between the constituent units (repeat units for polymers and individual chromophores for a molecular aggregate); for neutral electronic excitations, such inter-unit interactions lead to extended excited states or excitons, while for positive (or negative) charges, interactions lead to delocalized hole (or electron) polarons. The electronic coupling as well as the local coupling between electronic and nuclear degrees of freedom in both excitons and polarons can be described with a Holstein Hamiltonian. However, although excitons and polarons derive from similarly structured Hamiltonians, their optical signatures are quite distinct, largely due to differing ground states and optical selection rules.In this Account, we explore the similarities and differences in the spectral response of excitons and polarons in organic polymers and molecular aggregates. We limit our analysis to the subspace of excitons and hole polarons containing at most one excitation; hence we omit the influence of bipolarons, biexcitons, and higher multiparticle excitations. Using a generic linear array of coupled units as a model host for both excitons and polarons, we compare and contrast the optical responses of both quasiparticles, with a particular emphasis on the spatial coherence length, the length over which an exciton or polaron possesses wave-like properties important for more efficient transport. For excitons, the UV-vis absorption spectrum is generally represented by a distorted vibronic progression with H-like or J-like signatures depending on the sign of the electronic coupling, Jex. The spectrum broadens with increasing site disorder, with the spectral area preserved due to an oscillator strength sum rule. For (hole) polarons, the generally stronger electronic coupling results in a mid-IR spectrum consisting of a narrow, low-energy peak (A) with energy near a vibrational quantum of the vinyl stretching mode, and a broader, higher-energy feature (B). In contrast to the UV-vis spectrum, the mid-IR spectrum is invariant to the sign of the electronic coupling, th, and completely resistant to long-range disorder, where it remains entirely homogeneously broadened. Even in the presence of short-range disorder, the width of peak A remains surprisingly narrow as long as |th| remains sufficiently large, a property that can be understood in terms of Herzberg-Teller coupling. Unlike for excitons, for polarons, the absorption spectral area decreases with increasing short-range disorder σ (i.e., there is no oscillator sum rule) reflective of a decreasing polaron coherence length. The intensity of the low-energy peak A in relation to B is an important signature of polaron coherence. By contrast, for excitons, the absorption spectrum contains no unambiguous signs of exciton coherence. One must instead resort to the shape of the steady-state photoluminescence spectrum. The Holstein-based model has been highly successful in accounting for the spectral properties of molecular aggregates as well as conjugated polymers like poly(3-hexylthiophene) (P3HT) in the mid-IR and UV-vis spectral regions.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Frank C. Spano
- Department of Chemistry Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
8
|
Aubry TJ, Winchell KJ, Salamat CZ, Basile VM, Lindemuth JR, Stauber JM, Axtell JC, Kubena RM, Phan MD, Bird MJ, Spokoyny AM, Tolbert SH, Schwartz BJ. Tunable Dopants with Intrinsic Counterion Separation Reveal the Effects of Electron Affinity on Dopant Intercalation and Free Carrier Production in Sequentially Doped Conjugated Polymer Films. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2001800. [PMID: 32684909 PMCID: PMC7357248 DOI: 10.1002/adfm.202001800] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Carrier mobility in doped conjugated polymers is limited by Coulomb interactions with dopant counterions. This complicates studying the effect of the dopant's oxidation potential on carrier generation because different dopants have different Coulomb interactions with polarons on the polymer backbone. Here, dodecaborane (DDB)-based dopants are used, which electrostatically shield counterions from carriers and have tunable redox potentials at constant size and shape. DDB dopants produce mobile carriers due to spatial separation of the counterion, and those with greater energetic offsets produce more carriers. Neutron reflectometry indicates that dopant infiltration into conjugated polymer films is redox-potential-driven. Remarkably, X-ray scattering shows that despite their large 2-nm size, DDBs intercalate into the crystalline polymer lamellae like small molecules, indicating that this is the preferred location for dopants of any size. These findings elucidate why doping conjugated polymers usually produces integer, rather than partial charge transfer: dopant counterions effectively intercalate into the lamellae, far from the polarons on the polymer backbone. Finally, it is shown that the IR spectrum provides a simple way to determine polaron mobility. Overall, higher oxidation potentials lead to higher doping efficiencies, with values reaching 100% for driving forces sufficient to dope poorly crystalline regions of the film.
Collapse
Affiliation(s)
- Taylor J. Aubry
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
| | - K. J. Winchell
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
| | - Charlene Z. Salamat
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
| | - Victoria M. Basile
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
| | | | - Julia M. Stauber
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
| | - Jonathan C. Axtell
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
| | - Rebecca M. Kubena
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
| | - Minh D. Phan
- Neutron Scattering DivisionOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Matthew J. Bird
- Chemistry DepartmentBrookhaven National LaboratoryUptonNY11973USA
| | - Alexander M. Spokoyny
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095‐7227USA
| | - Sarah H. Tolbert
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095‐7227USA
- Department of Materials Science and EngineeringUniversity of California, Los AngelesLos AngelesCA90095‐1595USA
| | - Benjamin J. Schwartz
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095‐1569USA
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095‐7227USA
| |
Collapse
|
9
|
Irgen-Gioro S, Roy P, Padgaonkar S, Harel E. Low energy excited state vibrations revealed in conjugated copolymer PCDTBT. J Chem Phys 2020; 152:044201. [DOI: 10.1063/1.5132299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Shawn Irgen-Gioro
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, Illinois 60208, USA
| | - Palas Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, Illinois 60208, USA
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Suyog Padgaonkar
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, Illinois 60208, USA
| | - Elad Harel
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston, Illinois 60208, USA
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
10
|
Aubry TJ, Axtell JC, Basile VM, Winchell KJ, Lindemuth JR, Porter TM, Liu JY, Alexandrova AN, Kubiak CP, Tolbert SH, Spokoyny AM, Schwartz BJ. Dodecaborane-Based Dopants Designed to Shield Anion Electrostatics Lead to Increased Carrier Mobility in a Doped Conjugated Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805647. [PMID: 30672037 DOI: 10.1002/adma.201805647] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/07/2018] [Indexed: 06/09/2023]
Abstract
One of the most effective ways to tune the electronic properties of conjugated polymers is to dope them with small-molecule oxidizing agents, creating holes on the polymer and molecular anions. Undesirably, strong electrostatic attraction from the anions of most dopants localizes the holes created on the polymer, reducing their mobility. Here, a new strategy utilizing a substituted boron cluster as a molecular dopant for conjugated polymers is employed. By designing the cluster to have a high redox potential and steric protection of the core-localized electron density, highly delocalized polarons with mobilities equivalent to films doped with no anions present are obtained. AC Hall effect measurements show that P3HT films doped with these boron clusters have conductivities and polaron mobilities roughly an order of magnitude higher than films doped with F4 TCNQ, even though the boron-cluster-doped films have poor crystallinity. Moreover, the number of free carriers approximately matches the number of boron clusters, yielding a doping efficiency of ≈100%. These results suggest that shielding the polaron from the anion is a critically important aspect for producing high carrier mobility, and that the high polymer crystallinity required with dopants such as F4 TCNQ is primarily to keep the counterions far from the polymer backbone.
Collapse
Affiliation(s)
- Taylor J Aubry
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
| | - Jonathan C Axtell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
| | - Victoria M Basile
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
| | - K J Winchell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
| | | | - Tyler M Porter
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ji-Yuan Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
| | - Clifford P Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sarah H Tolbert
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
| | - Benjamin J Schwartz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095-1569, USA
| |
Collapse
|
11
|
Bombile JH, Janik MJ, Milner ST. Polaron formation mechanisms in conjugated polymers. Phys Chem Chem Phys 2018; 20:317-331. [PMID: 29210368 DOI: 10.1039/c7cp04355d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In semiconducting polymers, interactions with conformational degrees of freedom can localize charge carriers, and strongly affect charge transport. Polarons can form when charges induce deformations of the surrounding medium, including local vibrational modes or dielectric polarization. These deformations then interact attractively with the charge, tending to localize it. First we investigate vibrational polaron formation in poly(3-hexylthiophene) [P3HT], with a tight-binding model for charges hopping between adjacent rings, coupled to ring distortions. We use density functional theory (DFT) calculations to determine coupling constants, including the "spring constant" for ring distortions and the coupling to the charge carrier. On single chains, we find only broad, weakly bound polarons by this mechanism. In 2d crystalline layers of P3HT, even weak transverse hopping between chains destabilizes this polaron. Then, we consider polarons stabilized by dielectric polarization, described semiclassically with a polarizable continuum interacting with the carrier wavefunction. In contrast to vibrational polarons, we find dielectrically stabilized polarons in P3HT are narrower, more strongly bound, and stable in 2d crystalline layers.
Collapse
Affiliation(s)
- Joel H Bombile
- Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
12
|
|
13
|
Chew AR, Ghosh R, Shang Z, Spano FC, Salleo A. Sequential Doping Reveals the Importance of Amorphous Chain Rigidity in Charge Transport of Semi-Crystalline Polymers. J Phys Chem Lett 2017; 8:4974-4980. [PMID: 28949140 DOI: 10.1021/acs.jpclett.7b01989] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sequential doping is a promising new doping technique for semicrystalline polymers that has been shown to produce doped films with higher conductivity and more uniform morphology than conventional doping processes, and where the dopant placement in the film can be controlled. As a relatively new technique, however, much work is needed to understand the resulting polymer-dopant interactions upon sequential doping. A combination of infrared spectroscopy and theoretical simulations shows that the dopants selectively placed in the amorphous regions in the film via sequential doping result in highly localized polarons. We find that the presence of dopants within the amorphous regions of the film leads to an increase in conjugation length of the amorphous chains upon doping, increasing film connectivity and hence improving the overall conductivity of the film compared with the conventional doping processes.
Collapse
Affiliation(s)
- Annabel R Chew
- Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
| | - Raja Ghosh
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Zhengrong Shang
- Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
| | - Frank C Spano
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
14
|
De Sio A, Lienau C. Vibronic coupling in organic semiconductors for photovoltaics. Phys Chem Chem Phys 2017; 19:18813-18830. [DOI: 10.1039/c7cp03007j] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ultrafast two-dimensional electronic spectroscopy reveals vibronically-assisted coherent charge transport and separation in organic materials and opens up new perspectives for artificial light-to-current conversion.
Collapse
Affiliation(s)
- Antonietta De Sio
- Institut für Physik and Center of Interface Science
- Carl von Ossietzky Universität
- Oldenburg 26129
- Germany
| | - Christoph Lienau
- Institut für Physik and Center of Interface Science
- Carl von Ossietzky Universität
- Oldenburg 26129
- Germany
- Research Center Neurosensory Science
| |
Collapse
|
15
|
De Sio A, Troiani F, Maiuri M, Réhault J, Sommer E, Lim J, Huelga SF, Plenio MB, Rozzi CA, Cerullo G, Molinari E, Lienau C. Tracking the coherent generation of polaron pairs in conjugated polymers. Nat Commun 2016; 7:13742. [PMID: 27929115 PMCID: PMC5155154 DOI: 10.1038/ncomms13742] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/27/2016] [Indexed: 01/13/2023] Open
Abstract
The optical excitation of organic semiconductors not only generates charge-neutral electron-hole pairs (excitons), but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this charge separation have been debated for many years. Here we use ultrafast two-dimensional electronic spectroscopy to study the dynamics of polaron pair formation in a prototypical polymer thin film on a sub-20-fs time scale. We observe multi-period peak oscillations persisting for up to about 1 ps as distinct signatures of vibronic quantum coherence at room temperature. The measured two-dimensional spectra show pronounced peak splittings revealing that the elementary optical excitations of this polymer are hybridized exciton-polaron-pairs, strongly coupled to a dominant underdamped vibrational mode. Coherent vibronic coupling induces ultrafast polaron pair formation, accelerates the charge separation dynamics and makes it insensitive to disorder. These findings open up new perspectives for tailoring light-to-current conversion in organic materials.
Understanding of charge transfer dynamics is essential to the design of high-performance organic semiconductors for optoelectronic applications. Here, the authors show that excitons, polaron pairs and a long-lived vibrational mode are strongly coupled to each other up to 1 picosecond in polythiophene.
Collapse
Affiliation(s)
- Antonietta De Sio
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg 26129, Germany.,Center of Interface Science, Carl von Ossietzky Universität, Oldenburg 26129, Germany
| | - Filippo Troiani
- Istituto Nanoscienze-CNR, Centro S3, via Campi 213a, Modena 41125, Italy
| | - Margherita Maiuri
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Milano 20133, Italy
| | - Julien Réhault
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Milano 20133, Italy
| | - Ephraim Sommer
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg 26129, Germany.,Center of Interface Science, Carl von Ossietzky Universität, Oldenburg 26129, Germany
| | - James Lim
- Institut für Theoretische Physik and IQST, Universität Ulm, Ulm 89069, Germany
| | - Susana F Huelga
- Institut für Theoretische Physik and IQST, Universität Ulm, Ulm 89069, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik and IQST, Universität Ulm, Ulm 89069, Germany
| | - Carlo Andrea Rozzi
- Istituto Nanoscienze-CNR, Centro S3, via Campi 213a, Modena 41125, Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Milano 20133, Italy
| | - Elisa Molinari
- Istituto Nanoscienze-CNR, Centro S3, via Campi 213a, Modena 41125, Italy.,Dipartimento di Scienze Fisiche, Matematiche e Informatiche, Università di Modena e Reggio Emilia, via Campi 213a, Modena 41125, Italy
| | - Christoph Lienau
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg 26129, Germany.,Center of Interface Science, Carl von Ossietzky Universität, Oldenburg 26129, Germany.,Research Center Neurosensory Science, Carl von Ossietzky Universität, Oldenburg 26111, Germany
| |
Collapse
|
16
|
Kahmann S, Fazzi D, Matt GJ, Thiel W, Loi MA, Brabec CJ. Polarons in Narrow Band Gap Polymers Probed over the Entire Infrared Range: A Joint Experimental and Theoretical Investigation. J Phys Chem Lett 2016; 7:4438-4444. [PMID: 27749079 DOI: 10.1021/acs.jpclett.6b02083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigate the photoinduced absorption (PIA) spectra of the prototypical donor-acceptor polymer [2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (C-PCPDTBT) and its silicon bridged variant Si-PCPDTBT over a spectral range from 0.07 to 1.5 eV. Comparison between time-dependent density functional theory simulations of the electronic and vibrational transitions of singlet excitons, triplet excitons, polarons, and bipolarons with the experimental results proves that the observed features are due to positive polarons delocalized on the polymer chains. We find that the more crystalline Si-bridged variant gives rise to a red-shift in the transition energies, especially in the mid-infrared (MIR) spectral range and furthermore observe that the pristine polymers' responses depend on the excitation energy. Blending with PCBM, on the other hand, leads to excitation-independent PIA spectra. By computing the response properties of molecular aggregates, we show that polarons are delocalized in not only the intra- but also the interchain direction, leading to intermolecular transitions which correspond well to experimental absorption features at the lowest energies.
Collapse
Affiliation(s)
- Simon Kahmann
- Institute for Materials in Electronics and Energy Technology (i-MEET), Friedrich-Alexander University Erlangen-Nuremberg , Martensstraße 7, D-91058 Erlangen, Germany
- Photophysics and OptoElectronics, Zernike Institute of Advanced Materials, Rijksuniversiteit Groningen , Nijenborgh 4 NL-9747 AG, Groningen, The Netherlands
| | - Daniele Fazzi
- Max-Planck-Institut für Kohlenforschung (MPI-KOFO), Kaiser-Wilhelm-Platz 1, D-45470 Mühlheim an der Ruhr, Germany
| | - Gebhard J Matt
- Institute for Materials in Electronics and Energy Technology (i-MEET), Friedrich-Alexander University Erlangen-Nuremberg , Martensstraße 7, D-91058 Erlangen, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung (MPI-KOFO), Kaiser-Wilhelm-Platz 1, D-45470 Mühlheim an der Ruhr, Germany
| | - Maria A Loi
- Photophysics and OptoElectronics, Zernike Institute of Advanced Materials, Rijksuniversiteit Groningen , Nijenborgh 4 NL-9747 AG, Groningen, The Netherlands
| | - Christoph J Brabec
- Institute for Materials in Electronics and Energy Technology (i-MEET), Friedrich-Alexander University Erlangen-Nuremberg , Martensstraße 7, D-91058 Erlangen, Germany
- Bavarian Center for Applied Energy Research (ZAE-Bayern), Haberstraße 2a, 91058 Erlangen, Germany
| |
Collapse
|
17
|
Rimshaw A, Grieco C, Asbury JB. Note: Using fast digitizer acquisition and flexible resolution to enhance noise cancellation for high performance nanosecond transient absorbance spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:066107. [PMID: 26133882 DOI: 10.1063/1.4923093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
We demonstrate a nanosecond transient absorbance spectrometer that utilizes flexible resolution and rapid data acquisition triggering modes. The instrument features signal-to-noise (S/N) levels enhanced by an order of magnitude especially within the first 100 ns. The primary gain in S/N comes from our sequential subtraction method, which requires a fast digitizer trigger rearm time to detect every laser trigger event.
Collapse
Affiliation(s)
- A Rimshaw
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - C Grieco
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - J B Asbury
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
18
|
Zhugayevych A, Tretiak S. Theoretical Description of Structural and Electronic Properties of Organic Photovoltaic Materials. Annu Rev Phys Chem 2015; 66:305-30. [DOI: 10.1146/annurev-physchem-040214-121440] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andriy Zhugayevych
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545;
- Skolkovo Institute of Science and Technology, Moscow, Russia 143025
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545;
| |
Collapse
|