1
|
Pokhilko P, Yeh CN, Morales MA, Zgid D. Tensor hypercontraction for fully self-consistent imaginary-time GF2 and GWSOX methods: Theory, implementation, and role of the Green's function second-order exchange for intermolecular interactions. J Chem Phys 2024; 161:084108. [PMID: 39185845 DOI: 10.1063/5.0215954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
We present an efficient MPI-parallel algorithm and its implementation for evaluating the self-consistent correlated second-order exchange term (SOX), which is employed as a correction to the fully self-consistent GW scheme called scGWSOX (GW plus the SOX term iterated to achieve full Green's function self-consistency). Due to the application of the tensor hypercontraction (THC) in our computational procedure, the scaling of the evaluation of scGWSOX is reduced from O(nτnAO5) to O(nτN2nAO2). This fully MPI-parallel and THC-adapted approach enabled us to conduct the largest fully self-consistent scGWSOX calculations with over 1100 atomic orbitals with only negligible errors attributed to THC fitting. Utilizing our THC implementation for scGW, scGF2, and scGWSOX, we evaluated energies of intermolecular interactions. This approach allowed us to circumvent issues related to reference dependence and ambiguity in energy evaluation, which are common challenges in non-self-consistent calculations. We demonstrate that scGW exhibits a slight overbinding tendency for large systems, contrary to the underbinding observed with non-self-consistent RPA. Conversely, scGWSOX exhibits a slight underbinding tendency for such systems. This behavior is both physical and systematic and is caused by exclusion-principle violating diagrams or corresponding corrections. Our analysis elucidates the role played by these different diagrams, which is crucial for the construction of rigorous, accurate, and systematic methods. Finally, we explicitly show that all perturbative fully self-consistent Green's function methods are size-extensive and size-consistent.
Collapse
Affiliation(s)
- Pavel Pokhilko
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Chia-Nan Yeh
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Miguel A Morales
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
2
|
Rettig A, Lee J, Head-Gordon M. Even Faster Exact Exchange for Solids via Tensor Hypercontraction. J Chem Theory Comput 2023; 19:5773-5784. [PMID: 37586065 DOI: 10.1021/acs.jctc.3c00407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Hybrid density functional theory (DFT) remains intractable for large periodic systems due to the demanding computational cost of exact exchange. We apply the tensor hypercontraction (THC) (or interpolative separable density fitting) approximation to periodic hybrid DFT calculations with Gaussian-type orbitals using the Gaussian plane wave approach. This is done to lower the computational scaling with respect to the number of basis functions (N) and k-points (Nk) at a fixed system size. Additionally, we propose an algorithm to fit only occupied orbital products via THC (i.e., a set of points, NISDF) to further reduce computation time and memory usage. This algorithm has linear scaling cost with k-points, no explicit dependence of NISDF on basis set size, and overall cubic scaling with unit cell size. Significant speedups and reduced memory usage may be obtained for moderately sized k-point meshes, with additional gains for large k-point meshes. Adequate accuracy can be obtained using THC-oo-K for self-consistent calculations. We perform illustrative hybrid density function theory calculations on the benzene crystal in the basis set and thermodynamic limits to highlight the utility of this algorithm.
Collapse
Affiliation(s)
- Adam Rettig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joonho Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Abstract
![]()
In this paper, we extend the rank-reduced coupled-cluster
formalism
to the calculation of non-iterative energy corrections due to quadruple
excitations. There are two major components of the proposed formalism.
The first is an approximate compression of the quadruple excitation
amplitudes using the Tucker format. The second is a modified functional
used for the evaluation of the corrections which gives exactly the
same results for the exact amplitudes, but is less susceptible to
errors resulting from the aforementioned compression. We show, both
theoretically and numerically, that the computational cost of the
proposed method scales as the seventh power of the system size. Using
reference results for a set of small molecules, the method is calibrated
to deliver relative accuracy of a few percent in energy corrections.
To illustrate the potential of the theory, we calculate the isomerization
energy of ortho/meta benzyne (C6H4) and the barrier height for the Cope rearrangement
in bullvalene (C10H10). The method retains a
near-black-box nature of the conventional coupled-cluster formalism
and depends on only one additional parameter that controls the accuracy.
Collapse
Affiliation(s)
- Michał Lesiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| |
Collapse
|
4
|
Bangerter F, Glasbrenner M, Ochsenfeld C. Tensor-Hypercontracted MP2 First Derivatives: Runtime and Memory Efficient Computation of Hyperfine Coupling Constants. J Chem Theory Comput 2022; 18:5233-5245. [PMID: 35943450 PMCID: PMC9476664 DOI: 10.1021/acs.jctc.2c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We employ our recently introduced tensor-hypercontracted (THC) second-order Møller-Plesset perturbation theory (MP2) method [Bangerter, F. H., Glasbrenner, M., Ochsenfeld, C. J. Chem. Theory Comput. 2021, 17, 211-221] for the computation of hyperfine coupling constants (HFCCs). The implementation leverages the tensor structure of the THC factorized electron repulsion integrals for an efficient formation of the integral-based intermediates. The computational complexity of the most expensive and formally quintic scaling exchange-like contribution is reduced to effectively subquadratic, by making use of the intrinsic, exponentially decaying coupling between tensor indices through screening based on natural blocking. Overall, this yields an effective subquadratic scaling with a low prefactor for the presented THC-based AO-MP2 method for the computation of isotropic HFCCs on DNA fragments with up to 500 atoms and 5000 basis functions. Furthermore, the implementation achieves considerable speedups with up to a factor of roughly 600-1000 compared to previous implementations [Vogler, S., Ludwig, M., Maurer, M., Ochsenfeld, C. J. Chem. Phys. 2017, 147, 024101] for medium-sized organic radicals, while also significantly reducing storage requirements.
Collapse
Affiliation(s)
- Felix
H. Bangerter
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| | - Michael Glasbrenner
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair
of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany,Max
Planck Institute for Solid State Research, D-70569 Stuttgart, Germany,
| |
Collapse
|
5
|
Loos PF, Romaniello P. Static and dynamic Bethe-Salpeter equations in the T-matrix approximation. J Chem Phys 2022; 156:164101. [PMID: 35490009 DOI: 10.1063/5.0088364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
While the well-established GW approximation corresponds to a resummation of the direct ring diagrams and is particularly well suited for weakly correlated systems, the T-matrix approximation does sum ladder diagrams up to infinity and is supposedly more appropriate in the presence of strong correlation. Here, we derive and implement, for the first time, the static and dynamic Bethe-Salpeter equations when one considers T-matrix quasiparticle energies and a T-matrix-based kernel. The performance of the static scheme and its perturbative dynamical correction are assessed by computing the neutral excited states of molecular systems. A comparison with more conventional schemes as well as other wave function methods is also reported. Our results suggest that the T-matrix-based formalism performs best in few-electron systems where the electron density remains low.
Collapse
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pina Romaniello
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
6
|
Lesiuk M. Near-Exact CCSDT Energetics from Rank-Reduced Formalism Supplemented by Non-iterative Corrections. J Chem Theory Comput 2021; 17:7632-7647. [PMID: 34860018 DOI: 10.1021/acs.jctc.1c00933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We introduce a non-iterative energy correction, added on top of the rank-reduced coupled-cluster method with single, double, and triple substitutions, that accounts for excitations excluded from the parent triple excitation subspace. The formula for the correction is derived by employing the coupled-cluster Lagrangian formalism, with an additional assumption that the parent excitation subspace is closed under the action of the Fock operator. Owing to the rank-reduced form of the triple excitation amplitudes tensor, the computational cost of evaluating the correction scales as N7, where N is the system size. The accuracy and computational efficiency of the proposed method is assessed for both total and relative correlation energies. We show that the non-iterative correction can fulfill two separate roles. If the accuracy level of a fraction of kJ/mol is sufficient for a given system, the correction significantly reduces the dimension of the parent triple excitation subspace needed in the iterative part of the calculations. Simultaneously, it enables reproducing the exact CCSDT results to an accuracy level below 0.1 kJ/mol, with a larger, yet still reasonable, dimension of the parent excitation subspace. This typically can be achieved at a computational cost only several times larger than required for the CCSD(T) method. The proposed method retains the black-box features of the single-reference coupled-cluster theory; the dimension of the parent excitation subspace remains the only additional parameter that has to be specified.
Collapse
Affiliation(s)
- Michał Lesiuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
7
|
Matthews DA. A critical analysis of least-squares tensor hypercontraction applied to MP3. J Chem Phys 2021; 154:134102. [PMID: 33832252 DOI: 10.1063/5.0038764] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The least-squares tensor hypercontraction (LS-THC) approach is a promising method of reducing the high polynomial scaling of wavefunction methods, for example, those based on many-body perturbation theory or coupled cluster. Here, we focus on LS-THC-MP3 and identify four variants with differing errors and efficiency characteristics. The performance of LS-THC-MP3 is analyzed for regular test systems with up to 40 first-row atoms. We also analyze the size-extensivity/size-consistency and grid- and basis set dependence of LS-THC-MP3. Overall, the errors observed are favorably small in comparison with standard density fitting, and a more streamlined method of generating grids via pruning is suggested. A practical crossover (the point at which LS-THC-MP3 is cheaper than the canonical method) is achieved around 240 correlated electrons. Despite several drawbacks of LS-THC that have been identified: an initial non-linearity of error when increasing system size, poor description of angular correlation, and a potentially large increase in error with the basis set size, the results show that LS-THC has significant potential for practical application to MP3 and other wavefunction methods.
Collapse
|
8
|
Bannwarth C, Yu JK, Hohenstein EG, Martínez TJ. Hole-hole Tamm-Dancoff-approximated density functional theory: A highly efficient electronic structure method incorporating dynamic and static correlation. J Chem Phys 2020; 153:024110. [PMID: 32668944 DOI: 10.1063/5.0003985] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The study of photochemical reaction dynamics requires accurate as well as computationally efficient electronic structure methods for the ground and excited states. While time-dependent density functional theory (TDDFT) is not able to capture static correlation, complete active space self-consistent field methods neglect much of the dynamic correlation. Hence, inexpensive methods that encompass both static and dynamic electron correlation effects are of high interest. Here, we revisit hole-hole Tamm-Dancoff approximated (hh-TDA) density functional theory for this purpose. The hh-TDA method is the hole-hole counterpart to the more established particle-particle TDA (pp-TDA) method, both of which are derived from the particle-particle random phase approximation (pp-RPA). In hh-TDA, the N-electron electronic states are obtained through double annihilations starting from a doubly anionic (N+2 electron) reference state. In this way, hh-TDA treats ground and excited states on equal footing, thus allowing for conical intersections to be correctly described. The treatment of dynamic correlation is introduced through the use of commonly employed density functional approximations to the exchange-correlation potential. We show that hh-TDA is a promising candidate to efficiently treat the photochemistry of organic and biochemical systems that involve several low-lying excited states-particularly those with both low-lying ππ* and nπ* states where inclusion of dynamic correlation is essential to describe the relative energetics. In contrast to the existing literature on pp-TDA and pp-RPA, we employ a functional-dependent choice for the response kernel in pp- and hh-TDA, which closely resembles the response kernels occurring in linear response and collinear spin-flip TDDFT.
Collapse
Affiliation(s)
- Christoph Bannwarth
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
| | - Jimmy K Yu
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
| | - Edward G Hohenstein
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
9
|
Matthews DA. Improved Grid Optimization and Fitting in Least Squares Tensor Hypercontraction. J Chem Theory Comput 2020; 16:1382-1385. [DOI: 10.1021/acs.jctc.9b01205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Devin A. Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
10
|
Lee J, Lin L, Head-Gordon M. Systematically Improvable Tensor Hypercontraction: Interpolative Separable Density-Fitting for Molecules Applied to Exact Exchange, Second- and Third-Order Møller–Plesset Perturbation Theory. J Chem Theory Comput 2019; 16:243-263. [DOI: 10.1021/acs.jctc.9b00820] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joonho Lee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lin Lin
- Department of Mathematics, University of California, Berkeley, California 94720, United States
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Beuerle M, Graf D, Schurkus HF, Ochsenfeld C. Efficient calculation of beyond RPA correlation energies in the dielectric matrix formalism. J Chem Phys 2018; 148:204104. [DOI: 10.1063/1.5025938] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matthias Beuerle
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany and Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5–13, D-81377 München, Germany
| | - Daniel Graf
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany and Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5–13, D-81377 München, Germany
| | - Henry F. Schurkus
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany and Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5–13, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany and Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5–13, D-81377 München, Germany
| |
Collapse
|
12
|
Zhang D, Su NQ, Yang W. Accurate Quasiparticle Spectra from the T-Matrix Self-Energy and the Particle-Particle Random Phase Approximation. J Phys Chem Lett 2017; 8:3223-3227. [PMID: 28654275 DOI: 10.1021/acs.jpclett.7b01275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The GW self-energy, especially G0W0 based on the particle-hole random phase approximation (phRPA), is widely used to study quasiparticle (QP) energies. Motivated by the desirable features of the particle-particle (pp) RPA compared to the conventional phRPA, we explore the pp counterpart of GW, that is, the T-matrix self-energy, formulated with the eigenvectors and eigenvalues of the ppRPA matrix. We demonstrate the accuracy of the T-matrix method for molecular QP energies, highlighting the importance of the pp channel for calculating QP spectra.
Collapse
Affiliation(s)
- Du Zhang
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Neil Qiang Su
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Weitao Yang
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
- Key Laboratory of Theoretical Chemistry of Environment, School of Chemistry and Environment, South China Normal University , Guangzhou 510006, China
| |
Collapse
|
13
|
Chen GP, Voora VK, Agee MM, Balasubramani SG, Furche F. Random-Phase Approximation Methods. Annu Rev Phys Chem 2017; 68:421-445. [DOI: 10.1146/annurev-physchem-040215-112308] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guo P. Chen
- Department of Chemistry, University of California, Irvine, California 92697-2025;,
| | - Vamsee K. Voora
- Department of Chemistry, University of California, Irvine, California 92697-2025;,
| | - Matthew M. Agee
- Department of Chemistry, University of California, Irvine, California 92697-2025;,
| | | | - Filipp Furche
- Department of Chemistry, University of California, Irvine, California 92697-2025;,
| |
Collapse
|
14
|
Luenser A, Schurkus HF, Ochsenfeld C. Vanishing-Overhead Linear-Scaling Random Phase Approximation by Cholesky Decomposition and an Attenuated Coulomb-Metric. J Chem Theory Comput 2017; 13:1647-1655. [DOI: 10.1021/acs.jctc.6b01235] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arne Luenser
- Chair of Theoretical Chemistry,
Department of Chemistry, University of Munich (LMU), Butenandtstrasse
5-13, D-81377 Munich, Germany
- Center for Integrated Protein Science Munich (CIPSM), Butenandtstrasse
5-13, D-81377 Munich, Germany
| | - Henry F. Schurkus
- Chair of Theoretical Chemistry,
Department of Chemistry, University of Munich (LMU), Butenandtstrasse
5-13, D-81377 Munich, Germany
- Center for Integrated Protein Science Munich (CIPSM), Butenandtstrasse
5-13, D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry,
Department of Chemistry, University of Munich (LMU), Butenandtstrasse
5-13, D-81377 Munich, Germany
- Center for Integrated Protein Science Munich (CIPSM), Butenandtstrasse
5-13, D-81377 Munich, Germany
| |
Collapse
|
15
|
Abstract
Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle-particle random-phase approximation calculation. The (1)Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state (3)B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state (1)B2u is a zwitterionic state to the short axis. The excited (1)Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the (1)B2u and excited (1)Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved.
Collapse
|
16
|
Schurkus HF, Ochsenfeld C. Communication: An effective linear-scaling atomic-orbital reformulation of the random-phase approximation using a contracted double-Laplace transformation. J Chem Phys 2016; 144:031101. [DOI: 10.1063/1.4939841] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Henry F. Schurkus
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| |
Collapse
|
17
|
Yang Y, Peng D, Lu J, Yang W. Excitation energies from particle-particle random phase approximation: Davidson algorithm and benchmark studies. J Chem Phys 2014; 141:124104. [DOI: 10.1063/1.4895792] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yang Yang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Degao Peng
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Jianfeng Lu
- Department of Mathematics, Department of Chemistry, and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Weitao Yang
- Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708, USA and Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|