• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4662302)   Today's Articles (9152)   Subscriber (51565)
For: Benjamin R, Horbach J. Crystal-liquid interfacial free energy via thermodynamic integration. J Chem Phys 2014;141:044715. [DOI: 10.1063/1.4891220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
Fichthorn KA. Theory of Anisotropic Metal Nanostructures. Chem Rev 2023;123:4146-4183. [PMID: 36944096 DOI: 10.1021/acs.chemrev.2c00831] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
2
Sanchez-Burgos I, Espinosa JR. Direct Calculation of the Interfacial Free Energy between NaCl Crystal and Its Aqueous Solution at the Solubility Limit. PHYSICAL REVIEW LETTERS 2023;130:118001. [PMID: 37001068 DOI: 10.1103/physrevlett.130.118001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 06/19/2023]
3
Yeandel S, Freeman C, Harding J. A General Method for Calculating Solid/Liquid Interfacial Free Energies from Atomistic Simulations: Application to CaSO4.xH2O. J Chem Phys 2022;157:084117. [DOI: 10.1063/5.0095130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
4
Di Pasquale N, Davidchack RL. Cleaving Method for Molecular Crystals and Its Application to Calculation of the Surface Free Energy of Crystalline β-d-Mannitol at Room Temperature. J Phys Chem A 2022;126:2134-2141. [PMID: 35324191 PMCID: PMC9007450 DOI: 10.1021/acs.jpca.2c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
5
Rozas RE, MacDowell LG, Toledo PG, Horbach J. Crystal growth of bcc titanium from the melt and interfacial properties: A molecular dynamics simulation study. J Chem Phys 2021;154:184704. [PMID: 34241033 DOI: 10.1063/5.0049131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]  Open
6
Addula RKR, Punnathanam SN. Computation of solid-fluid interfacial free energy in molecular systems using thermodynamic integration. J Chem Phys 2020;153:154504. [PMID: 33092349 DOI: 10.1063/5.0028653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]  Open
7
Montero de Hijes P, Espinosa JR, Sanz E, Vega C. Interfacial free energy of a liquid-solid interface: Its change with curvature. J Chem Phys 2019;151:144501. [PMID: 31615240 DOI: 10.1063/1.5121026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]  Open
8
Cheng B, Ceriotti M. Communication: Computing the Tolman length for solid-liquid interfaces. J Chem Phys 2018;148:231102. [PMID: 29935495 DOI: 10.1063/1.5038396] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]  Open
9
Zepeda-Ruiz LA, Sadigh B, Chernov AA, Haxhimali T, Samanta A, Oppelstrup T, Hamel S, Benedict LX, Belof JL. Extraction of effective solid-liquid interfacial free energies for full 3D solid crystallites from equilibrium MD simulations. J Chem Phys 2018;147:194704. [PMID: 29166088 DOI: 10.1063/1.4997595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]  Open
10
Valdès LC, Gerges J, Mizuguchi T, Affouard F. Crystallization tendencies of modelled Lennard-Jones liquids with different attractions. J Chem Phys 2018;148:014501. [DOI: 10.1063/1.5004659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]  Open
11
Qi X, Fichthorn KA. Theory of the thermodynamic influence of solution-phase additives in shape-controlled nanocrystal synthesis. NANOSCALE 2017;9:15635-15642. [PMID: 28991308 DOI: 10.1039/c7nr05765b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
12
Cheng B, Tribello GA, Ceriotti M. The Gibbs free energy of homogeneous nucleation: From atomistic nuclei to the planar limit. J Chem Phys 2017;147:104707. [DOI: 10.1063/1.4997180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]  Open
13
Cheng B, Ceriotti M. Bridging the gap between atomistic and macroscopic models of homogeneous nucleation. J Chem Phys 2017;146:034106. [DOI: 10.1063/1.4973883] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]  Open
14
Kaminska E, Madejczyk O, Tarnacka M, Jurkiewicz K, Kaminski K, Paluch M. Studying of crystal growth and overall crystallization of naproxen from binary mixtures. Eur J Pharm Biopharm 2016;113:75-87. [PMID: 28034808 DOI: 10.1016/j.ejpb.2016.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/09/2016] [Accepted: 12/20/2016] [Indexed: 11/19/2022]
15
Qi X, Zhou Y, Fichthorn KA. Obtaining the solid-liquid interfacial free energy via multi-scheme thermodynamic integration: Ag-ethylene glycol interfaces. J Chem Phys 2016;145:194108. [DOI: 10.1063/1.4967521] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]  Open
16
Shou W, Pan H. Silicon-wall interfacial free energy via thermodynamics integration. J Chem Phys 2016;145:184702. [PMID: 27846694 DOI: 10.1063/1.4966975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]  Open
17
Espinosa JR, Vega C, Valeriani C, Sanz E. Seeding approach to crystal nucleation. J Chem Phys 2016;144:034501. [PMID: 26801035 DOI: 10.1063/1.4939641] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
18
Palberg T, Wette P, Herlach DM. Equilibrium fluid-crystal interfacial free energy of bcc-crystallizing aqueous suspensions of polydisperse charged spheres. Phys Rev E 2016;93:022601. [PMID: 26986371 DOI: 10.1103/physreve.93.022601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Indexed: 06/05/2023]
19
Benjamin R, Horbach J. Free energy cost of forming an interface between a crystal and its frozen version. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015;92:042408. [PMID: 26565258 DOI: 10.1103/physreve.92.042408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Indexed: 06/05/2023]
20
Gerges J, Affouard F. Predictive Calculation of the Crystallization Tendency of Model Pharmaceuticals in the Supercooled State from Molecular Dynamics Simulations. J Phys Chem B 2015;119:10768-83. [DOI: 10.1021/acs.jpcb.5b05557] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
21
Espinosa JR, Vega C, Valeriani C, Sanz E. The crystal-fluid interfacial free energy and nucleation rate of NaCl from different simulation methods. J Chem Phys 2015;142:194709. [DOI: 10.1063/1.4921185] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]  Open
22
Espinosa JR, Vega C, Sanz E. The mold integration method for the calculation of the crystal-fluid interfacial free energy from simulations. J Chem Phys 2015;141:134709. [PMID: 25296830 DOI: 10.1063/1.4896621] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
23
Schmitz F, Virnau P. The ensemble switch method for computing interfacial tensions. J Chem Phys 2015;142:144108. [DOI: 10.1063/1.4916317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]  Open
24
Benet J, MacDowell LG, Sanz E. Interfacial free energy of the NaCl crystal-melt interface from capillary wave fluctuations. J Chem Phys 2015;142:134706. [DOI: 10.1063/1.4916398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
25
Benjamin R, Horbach J. Crystal-liquid interfacial free energy of hard spheres via a thermodynamic integration scheme. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015;91:032410. [PMID: 25871126 DOI: 10.1103/physreve.91.032410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 06/04/2023]
26
Das SK. Atomistic simulations of liquid–liquid coexistence in confinement: comparison of thermodynamics and kinetics with bulk. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2014.998214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
27
Benjamin R, Horbach J. Excess free energy of supercooled liquids at disordered walls. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014;90:060101. [PMID: 25615031 DOI: 10.1103/physreve.90.060101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 06/04/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA