1
|
Lu L, Song Y, Liu W, Jiang L. Excitation-Dependence of Excited-State Dynamics and Vibrational Relaxation of Lutein Explored by Multiplex Transient Grating. ACS OMEGA 2022; 7:48250-48260. [PMID: 36591184 PMCID: PMC9798734 DOI: 10.1021/acsomega.2c06371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Multiplex transient grating (MTG) spectroscopy was applied to lutein in ethanol to investigate the excitation-energy dependence of the excited-state dynamics and vibrational relaxation. The transient spectra obtained upon low (480 nm) and high-energy (380 nm) excitation both recorded a strong excited-state absorption (ESA) of S1 → S n as well as a broad band in the blue wavelength that was previously proposed as the S* state. By means of Gaussian decomposition and global fitting of the ESA band, a long-time component assigned to the triplet state was derived from the kinetic trace of 480 nm excitation. Moreover, the MTG signal with a resolution of 110 fs displayed the short-time quantum beat signal. In order to unveil the vibrational coherence in the excited-state decay, the linear and non-linear simulations of the steady spectrum and dynamic signals were presented in which at least three fundamental modes standing for C-C stretching (ν1), C=C stretching (ν2), and O-H valence vibrations (ν3) were considered to analyze the experimental signals. It was identified that the vibrational coherence between ν1 and ν3 or ν2 and ν3 was responsible for quantum beat that may be associated with the triplet state. We concluded that upon low- or high-energy excitation into the S2 state, the photo-isomerization of the molecule and structural recovery on the time-scale of vibrational cooling are the key factors to form a mixed conformation in the hot-S1 state that is the precursor of a long life-time triplet.
Collapse
Affiliation(s)
- Liping Lu
- College
of Science, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Yunfei Song
- National
Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan621900, China
| | - Weilong Liu
- Department
of Physics, Harbin Institute of Technology, Harbin, Heilongjiang150080, China
| | - Lilin Jiang
- Office
of Academic Research, Hezhou University, Hezhou, Guangxi542899, China
| |
Collapse
|
2
|
Du M, Qin M, Cui H, Wang C, Xu Y, Ma X, Yi X. Role of Spatially Correlated Fluctuations in Photosynthetic Excitation Energy Transfer with an Equilibrium and a Nonequilibrium Initial Bath. J Phys Chem B 2021; 125:6417-6430. [PMID: 34105973 DOI: 10.1021/acs.jpcb.1c02041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transfer of excitation energy in photosynthetic light-harvesting complexes has inspired growing interest for its scientific and engineering significance. Recent experimental findings have suggested that spatially correlated environmental fluctuations may account for the existence of long-lived quantum coherent energy transfer observed even at physiological temperature. In this paper, we investigate the effects of spatial correlations on the excitation energy transfer dynamics by including a nonequilibrium initial bath in a simulated donor-acceptor model. The initial bath state, which is assumed to be either equilibrium or nonequilibrium, is expanded in powers of coupling strength within the polaron formalism of a quantum master equation. The spatial correlations of bath fluctuations strongly influence the decay of coherence in the dynamics. The role of a nonequilibrium initial bath is also influenced by spatial correlations and becomes the most conspicuous for certain degrees of spatial correlations from which we propose a picture that the spatial correlations of bath fluctuations open up new energy transfer pathways, playing a role of protecting coherence. Besides, we apply the polaron master equation approach to study the dynamics in a two-site subsystem of the FMO complex and provide a practical example that shows the versatility of this approach.
Collapse
Affiliation(s)
- Min Du
- College of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Ming Qin
- College of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.,Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
| | - Haitao Cui
- College of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China.,Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
| | - Chunyang Wang
- College of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Yuqing Xu
- College of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Xiaoguang Ma
- College of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Xuexi Yi
- Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
3
|
Seibt J, Kühn O. Exciton transfer using rates extracted from the “hierarchical equations of motion”. J Chem Phys 2020; 153:194112. [DOI: 10.1063/5.0027373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Joachim Seibt
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Oliver Kühn
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| |
Collapse
|
4
|
Chen L, Palacino-González E, Gelin MF, Domcke W. Nonperturbative response functions: A tool for the interpretation of four-wave-mixing signals beyond third order. J Chem Phys 2017; 147:234104. [DOI: 10.1063/1.5004763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lipeng Chen
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | | | - Maxim F. Gelin
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| |
Collapse
|
5
|
Perlík V, Šanda F. Vibrational relaxation beyond the linear damping limit in two-dimensional optical spectra of molecular aggregates. J Chem Phys 2017; 147:084104. [DOI: 10.1063/1.4999680] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Václav Perlík
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 121 16, Czech Republic
| | - František Šanda
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 121 16, Czech Republic
| |
Collapse
|
6
|
Seibt J, Mančal T. Ultrafast energy transfer with competing channels: Non-equilibrium Förster and Modified Redfield theories. J Chem Phys 2017; 146:174109. [PMID: 28477589 DOI: 10.1063/1.4981523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joachim Seibt
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Tomáš Mančal
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| |
Collapse
|
7
|
Lim J, Ing DJ, Rosskopf J, Jeske J, Cole JH, Huelga SF, Plenio MB. Signatures of spatially correlated noise and non-secular effects in two-dimensional electronic spectroscopy. J Chem Phys 2017; 146:024109. [DOI: 10.1063/1.4973975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
Seibt J, Sláma V, Mančal T. Optical spectroscopy and system–bath interactions in molecular aggregates with full configuration interaction Frenkel exciton model. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Dahlberg PD, Norris GJ, Wang C, Viswanathan S, Singh VP, Engel GS. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy. J Chem Phys 2016; 143:101101. [PMID: 26373989 DOI: 10.1063/1.4930539] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850(∗) states of LH2 in each of the 3 samples with a lifetime of ∼40-60 fs.
Collapse
Affiliation(s)
- Peter D Dahlberg
- Graduate Program in the Biophysical Sciences, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Graham J Norris
- Department of Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Cheng Wang
- Department of Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Subha Viswanathan
- Department of Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Ved P Singh
- Department of Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gregory S Engel
- Department of Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
10
|
Perlík V, Seibt J, Cranston LJ, Cogdell RJ, Lincoln CN, Savolainen J, Šanda F, Mančal T, Hauer J. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters. J Chem Phys 2016; 142:212434. [PMID: 26049454 DOI: 10.1063/1.4919548] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system's Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.
Collapse
Affiliation(s)
- Václav Perlík
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16, Czech Republic
| | - Joachim Seibt
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16, Czech Republic
| | - Laura J Cranston
- Institute of Molecular Cell and System Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, Scotland
| | - Richard J Cogdell
- Institute of Molecular Cell and System Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, Scotland
| | - Craig N Lincoln
- Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, 1040 Vienna, Austria
| | - Janne Savolainen
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany
| | - František Šanda
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16, Czech Republic
| | - Tomáš Mančal
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16, Czech Republic
| | - Jürgen Hauer
- Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, 1040 Vienna, Austria
| |
Collapse
|
11
|
Butkus V, Dong H, Fleming GR, Abramavicius D, Valkunas L. Disorder-Induced Quantum Beats in Two-Dimensional Spectra of Excitonically Coupled Molecules. J Phys Chem Lett 2016; 7:277-282. [PMID: 26720834 DOI: 10.1021/acs.jpclett.5b02642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Quantum superposition of molecular electronic states is very fragile because of thermal energy fluctuations and the static conformational disorder induced by the intimate surrounding of constituent molecules of the system. However, the nature of the long-lived quantum beats, observed in time-resolved spectra of molecular aggregates at physiological conditions, is still being debated. We present our study of the conditions when long-lived electronic quantum coherences originating from recently proposed inhomogeneous broadening mechanism are enhanced and reflected in the two-dimensional electronic spectra of the excitonically coupled molecular dimer. We show that depending on the amount of inhomogeneous broadening, the excitonically coupled molecular system can establish long-lived electronic coherences, caused by a disordered subensemble, for which the dephasing due to static energy disorder becomes significantly reduced. On the basis of these considerations, we present explanations for why the electronic or vibrational coherences were or were not observed in a range of recent experiments.
Collapse
Affiliation(s)
- Vytautas Butkus
- Department of Theoretical Physics, Faculty of Physics, Vilnius University , Sauletekio 9-III, 10222 Vilnius, Lithuania
- Center for Physical Sciences and Technology, Gostauto 9, 01108 Vilnius, Lithuania
| | - Hui Dong
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Graham R Fleming
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Darius Abramavicius
- Department of Theoretical Physics, Faculty of Physics, Vilnius University , Sauletekio 9-III, 10222 Vilnius, Lithuania
| | - Leonas Valkunas
- Department of Theoretical Physics, Faculty of Physics, Vilnius University , Sauletekio 9-III, 10222 Vilnius, Lithuania
- Center for Physical Sciences and Technology, Gostauto 9, 01108 Vilnius, Lithuania
| |
Collapse
|
12
|
Balevičius V, Valkunas L, Abramavicius D. Modeling of ultrafast time-resolved fluorescence applied to a weakly coupled chromophore pair. J Chem Phys 2015; 143:074101. [DOI: 10.1063/1.4928281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- V. Balevičius
- Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9, Building 3, LT-10222 Vilnius, Lithuania
| | - L. Valkunas
- Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9, Building 3, LT-10222 Vilnius, Lithuania
- Center for Physical Sciences and Technology, Institute of Physics, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| | - D. Abramavicius
- Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9, Building 3, LT-10222 Vilnius, Lithuania
| |
Collapse
|