1
|
Fluorescent Multifunctional Organic Nanoparticles for Drug Delivery and Bioimaging: A Tutorial Review. Pharmaceutics 2022; 14:pharmaceutics14112498. [PMID: 36432688 PMCID: PMC9698844 DOI: 10.3390/pharmaceutics14112498] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Fluorescent organic nanoparticles (FONs) are a large family of nanostructures constituted by organic components that emit light in different spectral regions upon excitation, due to the presence of organic fluorophores. FONs are of great interest for numerous biological and medical applications, due to their high tunability in terms of composition, morphology, surface functionalization, and optical properties. Multifunctional FONs combine several functionalities in a single nanostructure (emission of light, carriers for drug-delivery, functionalization with targeting ligands, etc.), opening the possibility of using the same nanoparticle for diagnosis and therapy. The preparation, characterization, and application of these multifunctional FONs require a multidisciplinary approach. In this review, we present FONs following a tutorial approach, with the aim of providing a general overview of the different aspects of the design, preparation, and characterization of FONs. The review encompasses the most common FONs developed to date, the description of the most important features of fluorophores that determine the optical properties of FONs, an overview of the preparation methods and of the optical characterization techniques, and the description of the theoretical approaches that are currently adopted for modeling FONs. The last part of the review is devoted to a non-exhaustive selection of some recent biomedical applications of FONs.
Collapse
|
2
|
Spiropyran/Merocyanine Amphiphile in Various Solvents: A Joint Experimental–Theoretical Approach to Photophysical Properties and Self-Assembly. Int J Mol Sci 2022; 23:ijms231911535. [PMID: 36232836 PMCID: PMC9569490 DOI: 10.3390/ijms231911535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/20/2022] Open
Abstract
This joint experimental-theoretical work focuses on molecular and photophysical properties of the spiropyran-containing amphiphilic molecule in organic and aqueous solutions. Being dissolved in tested organic solvents, the system demonstrates positive photochromism, i.e., upon UV stimulus the colorless spiropyran form is transformed into colorful merocyanine isomer. However, the aqueous solution of the amphiphile possesses a negative photochromism: the orange-red merocyanine form becomes thermodynamically more stable in water, and both UV and vis stimuli lead to the partial or complete photobleaching of the solution. The explanation of this phenomenon is given on the basis of density functional theory calculations and classical modeling including thermodynamic integration. The simulations reveal that stabilization of merocyanine in water proceeds with the energy of ca. 70 kJ mol−1, and that the Helmholtz free energy of hydration of merocyanine form is 100 kJ mol−1 lower as compared to the behavior of SP isomer in water. The explanation of such a difference lies in the molecular properties of the merocyanine: after ring-opening reaction this molecule transforms into a zwitterionic form, as evidenced by the electrostatic potential plotted around the opened form. The presence of three charged groups on the periphery of a flat conjugated backbone stimulates the self-assembly of merocyanine molecules in water, ending up with the formation of elongated associates with stack-like building blocks, as shown in molecular dynamics simulations of the aqueous solution with the concentration above critical micelle concentration. Our quantitative evaluation of the hydrophilicity switching in spiropyran/merocyanine containing surfactants may prompt the search for new systems, including colloidal and polymeric ones, aiming at remote tuning of their morphology, which could give new promising shapes and patterns for the needs of modern nanotechnology.
Collapse
|
3
|
Lescos L, Beaujean P, Tonnelé C, Aurel P, Blanchard-Desce M, Rodriguez V, de Wergifosse M, Champagne B, Muccioli L, Castet F. Self-assembling, structure and nonlinear optical properties of fluorescent organic nanoparticles in water. Phys Chem Chem Phys 2021; 23:23643-23654. [PMID: 34664043 DOI: 10.1039/d1cp03741b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Owing to their intense emission, low toxicity and solubility in aqueous medium, fluorescent organic nanoparticles (FONs) have emerged as promising alternatives to inorganic ones for the realization of exogenous probes for bioimaging applications. However, the intimate structure of FONs in solution, as well as the role played by intermolecular interactions on their optical properties, remains challenging to study. Following a recent Second-Harmonic Scattering (SHS) investigation led by two of us [Daniel et al., ACS Photonics, 2015, 2, 1209], we report herein a computational study of the structural organization and second-order nonlinear optical (NLO) properties of FONs based on dipolar chromophores incorporating a hydrophobic triphenylamine electron-donating unit and a slightly hydrophilic aldehyde electron-withdrawing unit at their extremities. Molecular dynamics simulations of the FON formation in water are associated with quantum chemical calculations, to provide insight into the molecular aggregation process, the molecular orientation of the dipolar dyes within the nanoparticles, and the dynamical behavior of their NLO properties. Moreover, the impact of intermolecular interactions on the NLO responses of the FONs is investigated by employing the tight-binding version of the recently developed simplified time-dependent density functional theory (sTD-DFT) approach, allowing the all-atom quantum mechanics treatment of nanoparticles.
Collapse
Affiliation(s)
- Laurie Lescos
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| | - Pierre Beaujean
- Unité de Chimie Physique Théorique et Structurale, Chemistry Department, Namur Institute of Structured Matter, University of Namur, Belgium.
| | - Claire Tonnelé
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain
| | - Philippe Aurel
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| | | | - Vincent Rodriguez
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| | - Marc de Wergifosse
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Beringstr. 4, 53115 Bonn, Germany.
| | - Benoît Champagne
- Unité de Chimie Physique Théorique et Structurale, Chemistry Department, Namur Institute of Structured Matter, University of Namur, Belgium.
| | - Luca Muccioli
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France. .,Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
4
|
Komarov PV, Malyshev MD, Yang TC, Chiang CT, Liao HL, Guseva DV, Rudyak VY, Ivanov VA, Tung SH. Additive-induced ordered structures formed by PC 71BM fullerene derivatives. SOFT MATTER 2021; 17:810-814. [PMID: 33480935 DOI: 10.1039/d0sm02240c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report the results of an experimental and theoretical study of structure formation in mixtures of phenyl-C71-butyric acid methyl ester (PC71BM) with high boiling octane based solvent additives 1,8-octanedithiol (ODT), 1,8-dibromooctane, and 1,8-diiodooctane obtained by evaporation of a host-solvent (chlorobenzene). Experimental studies by DSC, SAXS and WAXS methods found evidence of crystallization of fullerenes in the presence of the high boiling additives in the mixtures. A molecular dynamics simulation of a PC71BM/ODT mixture revealed the self-assembly of fullerenes into sponge-like network structures.
Collapse
|
5
|
Koch M, Saphiannikova M, Santer S, Guskova O. Photoisomers of Azobenzene Star with a Flat Core: Theoretical Insights into Multiple States from DFT and MD Perspective. J Phys Chem B 2017; 121:8854-8867. [PMID: 28832166 DOI: 10.1021/acs.jpcb.7b07350] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study focuses on comparing physical properties of photoisomers of an azobenzene star with benzene-1,3,5-tricarboxamide core. Three azobenzene arms of the molecule undergo a reversible trans-cis isomerization upon UV-vis light illumination giving rise to multiple states from the planar all-trans one, via two mixed states to the kinked all-cis isomer. Employing density functional theory, we characterize the structural and photophysical properties of each state indicating a role the planar core plays in the coupling between azobenzene chromophores. To characterize the light-triggered switching of solvophilicity/solvophobicity of the star, the difference in solvation free energy is calculated for the transfer of an azobenzene star from its gas phase to implicit or explicit solvents. For the latter case, classical all-atom molecular dynamics simulations of aqueous solutions of azobenzene star are performed employing the polymer consistent force field to shed light on the thermodynamics of explicit hydration as a function of the isomerization state and on the structuring of water around the star. From the analysis of two contributions to the free energy of hydration, the nonpolar van der Waals and the electrostatic terms, it is concluded that isomerization specificity largely determines the polarity of the molecule and the solute-solvent electrostatic interactions. This convertible hydrophilicity/hydrophobicity together with readjustable occupied volume and the surface area accessible to water, affects the self-assembly/disassembly of the azobenzene star with a flat core triggered by light.
Collapse
Affiliation(s)
- Markus Koch
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden , Hohe Str. 6, 01069 Dresden, Germany.,Institute of Theoretical Physics, Technische Universität Dresden , Zellescher Weg 17, 01069 Dresden, Germany
| | - Marina Saphiannikova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden , Hohe Str. 6, 01069 Dresden, Germany.,Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden , 01069 Dresden, Germany
| | - Svetlana Santer
- Institute of Physics and Astronomy, University of Potsdam , Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Olga Guskova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden , Hohe Str. 6, 01069 Dresden, Germany.,Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden , 01069 Dresden, Germany
| |
Collapse
|
6
|
Thermodynamics of association of water soluble fullerene derivatives [ $$\hbox {C}_{60}\hbox {(OH)}_{\mathrm{n}}$$ C 60 (OH) n , n = 0, 2, 4, 8 and 12] in aqueous media. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1356-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Keshri S, Tembe BL. Thermodynamics of hydration of fullerols [C 60(OH) n] and hydrogen bond dynamics in their hydration shells. J Chem Phys 2017; 146:074501. [PMID: 28228041 DOI: 10.1063/1.4975230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Molecular dynamics simulations of fullerene and fullerols [C60(OH)n, where n = 2-30] in aqueous solutions have been performed for the purpose of obtaining a detailed understanding of the structural and dynamic properties of these nanoparticles in water. The structures, dynamics and hydration free energies of the solute molecules in water have been analysed. Radial distribution functions, spatial density distribution functions and hydrogen bond analyses are employed to characterize the solvation shells of water around the central solute molecules. We have found that water molecules form two solvation shells around the central solute molecule. Hydrogen bonding in the bulk solvent is unaffected by increasing n. The large decrease in solvation enthalpies of these solute molecules for n > 14 enhances solubilisation. The diffusion constants of solute molecules decrease with increasing n. The solvation free energy of C60 in water is positive (52.8 kJ/mol), whereas its value for C60(OH)30 is highly negative (-427.1 kJ/mol). The effects of surface hydroxylation become more dominant once the fullerols become soluble.
Collapse
Affiliation(s)
- Sonanki Keshri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - B L Tembe
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
8
|
Peerless JS, Bowers GH, Kwansa AL, Yingling YG. Fullerenes in Aromatic Solvents: Correlation between Solvation-Shell Structure, Solvate Formation, and Solubility. J Phys Chem B 2015; 119:15344-52. [PMID: 26560403 DOI: 10.1021/acs.jpcb.5b09386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this work, an all-atom molecular dynamics simulation technique was employed to gain insight into the dynamic structure of the solvation shell formed around C60 and phenyl-C61-butyric acid methyl ester (PCBM) in nine aromatic solvents. A new method was developed to visualize and quantify the distribution of solvent molecule orientations in the solvation shell. A strong positive correlation was found between the regularity of solvent molecule orientations in the solvation shell and the experimentally obtained solubility limits for both C60 and PCBM. This correlation was extended to predict a solubility of 36 g/L for PCBM in 1,2,4-trimethylbenze. The relationship between solvation-shell structure and solubility provided detailed insight into solvate formation of C60 and solvation in relation to solvent molecular structure and properties. The determined dependence of the solvation-shell structure on the geometric shape of the solvent might allow for enhanced control of fullerene solution-phase behavior during processing by chemically tailoring the solvent molecular structure, potentially diminishing the need for costly and environmentally harmful halogenated solvents and/or additives.
Collapse
Affiliation(s)
- James S Peerless
- Department of Materials Science and Engineering, North Carolina State University , 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - G Hunter Bowers
- Department of Materials Science and Engineering, North Carolina State University , 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Albert L Kwansa
- Department of Materials Science and Engineering, North Carolina State University , 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, North Carolina State University , 911 Partners Way, Raleigh, North Carolina 27695, United States
| |
Collapse
|
9
|
Affiliation(s)
- Chun I Wang
- Department
of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan R.O.C
| | - Chi C. Hua
- Department
of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan R.O.C
| |
Collapse
|
10
|
Varanasi SR, Guskova OA, John A, Sommer JU. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration. J Chem Phys 2015; 142:224308. [DOI: 10.1063/1.4922322] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|