1
|
Käser S, Meuwly M. Numerical Accuracy Matters: Applications of Machine Learned Potential Energy Surfaces. J Phys Chem Lett 2024:3419-3424. [PMID: 38506827 DOI: 10.1021/acs.jpclett.3c03405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The role of numerical accuracy in training and evaluating neural network-based potential energy surfaces is examined for different experimental observables. For observables that require third- and fourth-order derivatives of the potential energy with respect to Cartesian coordinates single-precision arithmetics as is typically used in ML-based approaches is insufficient and leads to roughness of the underlying PES as is explicitly demonstrated. Increasing the numerical accuracy to double-precision gives a smooth PES with higher-order derivatives that are numerically stable and yield meaningful anharmonic frequencies and tunneling splitting as is demonstrated for H2CO and malonaldehyde. For molecular dynamics simulations, which only require first-order derivatives, single-precision arithmetics appears to be sufficient, though.
Collapse
Affiliation(s)
- Silvan Käser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
2
|
Lauvergnat D, Nauts A. Smolyak Scheme for solving the Schrödinger equation: Application to Malonaldehyde in Full Dimensionality. Chemphyschem 2023; 24:e202300501. [PMID: 37555577 DOI: 10.1002/cphc.202300501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
In 1963 Smolyak introduced an approach to overcome the exponential scaling with respect to the number of variables of the direct product size [S. A. Smolyak Soviet Mathematics Doklady, 4, 240 (1963)]. The main idea is to replace a single large direct product by a sum of selected small direct products. It was first used in quantum dynamics in 2009 by Avila and Carrington [G. Avila and T. Carrington, J. Chem. Phys., 131, 174103 (2009)]. Since then, several calculations have been published by Avila and Carrington and by other groups. In the present study, and to push the limit to larger and more complex systems, this scheme is combined with the use of an on-the-fly calculation of the kinetic energy operator and a Block-Davidson procedure to obtain eigenstates in our home-made Fortran codes, ElVibRot and Tnum-Tana. This was applied to compute the tunneling splitting of malonaldehyde in full dimensionality (21D) using the potential of Mizukami et al. [W. Mizukami, S. Habershon, and D.P. Tew, J. Chem. Phys. 141, 1443-10 (2014)]. Our tunneling splitting calculations, 21.7±0.3 cm-1 and 2.9±0.1 cm-1 , show excellent agreement with the experimental values, 21.6 cm-1 and 2.9 cm-1 for the normal isotopologue and the mono-deuterated one, respectively.
Collapse
Affiliation(s)
- David Lauvergnat
- Institut de Chimie Physique, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - André Nauts
- Institut de Chimie Physique, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
- Institute of Condensed Matter and Nanosciences (NAPS), Université Catholique de Louvain, 2 Chemin du Cyclotron, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Käser S, Vazquez-Salazar LI, Meuwly M, Töpfer K. Neural network potentials for chemistry: concepts, applications and prospects. DIGITAL DISCOVERY 2023; 2:28-58. [PMID: 36798879 PMCID: PMC9923808 DOI: 10.1039/d2dd00102k] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Artificial Neural Networks (NN) are already heavily involved in methods and applications for frequent tasks in the field of computational chemistry such as representation of potential energy surfaces (PES) and spectroscopic predictions. This perspective provides an overview of the foundations of neural network-based full-dimensional potential energy surfaces, their architectures, underlying concepts, their representation and applications to chemical systems. Methods for data generation and training procedures for PES construction are discussed and means for error assessment and refinement through transfer learning are presented. A selection of recent results illustrates the latest improvements regarding accuracy of PES representations and system size limitations in dynamics simulations, but also NN application enabling direct prediction of physical results without dynamics simulations. The aim is to provide an overview for the current state-of-the-art NN approaches in computational chemistry and also to point out the current challenges in enhancing reliability and applicability of NN methods on a larger scale.
Collapse
Affiliation(s)
- Silvan Käser
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | - Kai Töpfer
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| |
Collapse
|
4
|
Käser S, Richardson JO, Meuwly M. Transfer Learning for Affordable and High-Quality Tunneling Splittings from Instanton Calculations. J Chem Theory Comput 2022; 18:6840-6850. [DOI: 10.1021/acs.jctc.2c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Silvan Käser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
5
|
Bowman JM, Qu C, Conte R, Nandi A, Houston PL, Yu Q. The MD17 datasets from the perspective of datasets for gas-phase “small” molecule potentials. J Chem Phys 2022; 156:240901. [DOI: 10.1063/5.0089200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There has been great progress in developing methods for machine-learned potential energy surfaces. There have also been important assessments of these methods by comparing so-called learning curves on datasets of electronic energies and forces, notably the MD17 database. The dataset for each molecule in this database generally consists of tens of thousands of energies and forces obtained from DFT direct dynamics at 500 K. We contrast the datasets from this database for three “small” molecules, ethanol, malonaldehyde, and glycine, with datasets we have generated with specific targets for the potential energy surfaces (PESs) in mind: a rigorous calculation of the zero-point energy and wavefunction, the tunneling splitting in malonaldehyde, and, in the case of glycine, a description of all eight low-lying conformers. We found that the MD17 datasets are too limited for these targets. We also examine recent datasets for several PESs that describe small-molecule but complex chemical reactions. Finally, we introduce a new database, “QM-22,” which contains datasets of molecules ranging from 4 to 15 atoms that extend to high energies and a large span of configurations.
Collapse
Affiliation(s)
- Joel M. Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Chen Qu
- Independent Researcher, Toronto, Canada
| | - Riccardo Conte
- Dipartimento di Chimica, Università Degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Apurba Nandi
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Paul L. Houston
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Qi Yu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
6
|
Jahr E, Laude G, Richardson JO. Instanton theory of tunneling in molecules with asymmetric isotopic substitutions. J Chem Phys 2020; 153:094101. [PMID: 32891112 DOI: 10.1063/5.0021831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We consider quantum tunneling in asymmetric double-well systems for which the local minima in the two wells have the same energy, but the frequencies differ slightly. In a molecular context, this situation can arise if the symmetry is broken by isotopic substitutions. We derive a generalization of instanton theory for these asymmetric systems, leading to a semiclassical expression for the tunneling matrix element and hence the energy-level splitting. We benchmark the method using a set of one- and two-dimensional models, for which the results compare favorably with numerically exact quantum calculations. Using the ring-polymer instanton approach, we apply the method to compute the level splittings in various isotopomers of malonaldehyde in full dimensionality and analyze the relative contributions from the zero-point energy difference and tunneling effects.
Collapse
Affiliation(s)
- Elena Jahr
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Gabriel Laude
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
7
|
Wu Y, Car R. Quantum momentum distribution and quantum entanglement in the deep tunneling regime. J Chem Phys 2020; 152:024106. [PMID: 31941303 DOI: 10.1063/1.5133053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we consider the momentum operator of a quantum particle directed along the displacement of two of its neighbors. A modified open-path path integral molecular dynamics is presented to sample the distribution of this directional momentum distribution, where we derive and use a new estimator for this distribution. Variationally enhanced sampling is used to obtain this distribution for an example molecule, malonaldehyde, in the very low temperature regime where deep tunneling happens. We find no secondary feature in the directional momentum distribution and that its absence is due to quantum entanglement through a further study of the reduced density matrix.
Collapse
Affiliation(s)
- Yantao Wu
- The Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Roberto Car
- The Department of Chemistry and the Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
8
|
Avila G, Matyus E. Full-dimensional (12D) variational vibrational states of CH 4·F -: Interplay of anharmonicity and tunneling. J Chem Phys 2019; 151:154301. [PMID: 31640378 DOI: 10.1063/1.5124532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The complex of a methane molecule and a fluoride anion represents a 12-dimensional (12D), four-well vibrational problem with multiple large-amplitude motions, which has challenged the quantum dynamics community for years. The present work reports vibrational band origins and tunneling splittings obtained in a full-dimensional variational vibrational computation using the GENIUSH program and the Smolyak quadrature scheme. The converged 12D vibrational band origins and tunneling splittings confirm complementary aspects of the earlier full- and reduced-dimensionality studies: (1) the tunneling splittings are smaller than 0.02 cm-1; (2) a single-well treatment is not sufficient (except perhaps the zero-point vibration) due to a significant anharmonicity over the wells; and thus, (3) a full-dimensional treatment appears to be necessary. The present computations extend to a higher energy range than earlier work, show that the tunneling splittings increase upon vibrational excitation of the complex, and indicate non-negligible "heavy-atom" tunneling.
Collapse
Affiliation(s)
- Gustavo Avila
- Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Edit Matyus
- Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| |
Collapse
|
9
|
Pun GPP, Batra R, Ramprasad R, Mishin Y. Physically informed artificial neural networks for atomistic modeling of materials. Nat Commun 2019; 10:2339. [PMID: 31138813 PMCID: PMC6538760 DOI: 10.1038/s41467-019-10343-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/26/2019] [Indexed: 11/30/2022] Open
Abstract
Large-scale atomistic computer simulations of materials heavily rely on interatomic potentials predicting the energy and Newtonian forces on atoms. Traditional interatomic potentials are based on physical intuition but contain few adjustable parameters and are usually not accurate. The emerging machine-learning (ML) potentials achieve highly accurate interpolation within a large DFT database but, being purely mathematical constructions, suffer from poor transferability to unknown structures. We propose a new approach that can drastically improve the transferability of ML potentials by informing them of the physical nature of interatomic bonding. This is achieved by combining a rather general physics-based model (analytical bond-order potential) with a neural-network regression. This approach, called the physically informed neural network (PINN) potential, is demonstrated by developing a general-purpose PINN potential for Al. We suggest that the development of physics-based ML potentials is the most effective way forward in the field of atomistic simulations.
Collapse
Affiliation(s)
- G P Purja Pun
- Department of Physics and Astronomy, MSN 3F3, George Mason University, Fairfax, VA, 22030, USA
| | - R Batra
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - R Ramprasad
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Y Mishin
- Department of Physics and Astronomy, MSN 3F3, George Mason University, Fairfax, VA, 22030, USA.
| |
Collapse
|
10
|
Richings GW, Robertson C, Habershon S. Improved on-the-Fly MCTDH Simulations with Many-Body-Potential Tensor Decomposition and Projection Diabatization. J Chem Theory Comput 2018; 15:857-870. [DOI: 10.1021/acs.jctc.8b00819] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gareth W. Richings
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry, CV4 7AL, U.K
| | - Christopher Robertson
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry, CV4 7AL, U.K
| | - Scott Habershon
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry, CV4 7AL, U.K
| |
Collapse
|
11
|
Towards exact molecular dynamics simulations with machine-learned force fields. Nat Commun 2018; 9:3887. [PMID: 30250077 PMCID: PMC6155327 DOI: 10.1038/s41467-018-06169-2] [Citation(s) in RCA: 347] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/22/2018] [Indexed: 12/25/2022] Open
Abstract
Molecular dynamics (MD) simulations employing classical force fields constitute the cornerstone of contemporary atomistic modeling in chemistry, biology, and materials science. However, the predictive power of these simulations is only as good as the underlying interatomic potential. Classical potentials often fail to faithfully capture key quantum effects in molecules and materials. Here we enable the direct construction of flexible molecular force fields from high-level ab initio calculations by incorporating spatial and temporal physical symmetries into a gradient-domain machine learning (sGDML) model in an automatic data-driven way. The developed sGDML approach faithfully reproduces global force fields at quantum-chemical CCSD(T) level of accuracy and allows converged molecular dynamics simulations with fully quantized electrons and nuclei. We present MD simulations, for flexible molecules with up to a few dozen atoms and provide insights into the dynamical behavior of these molecules. Our approach provides the key missing ingredient for achieving spectroscopic accuracy in molecular simulations. Simultaneous accurate and efficient prediction of molecular properties relies on combined quantum mechanics and machine learning approaches. Here the authors develop a flexible machine-learning force-field with high-level accuracy for molecular dynamics simulations.
Collapse
|
12
|
Vaillant CL, Wales DJ, Althorpe SC. Tunneling splittings from path-integral molecular dynamics using a Langevin thermostat. J Chem Phys 2018; 148:234102. [DOI: 10.1063/1.5029258] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- C. L. Vaillant
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - D. J. Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - S. C. Althorpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
13
|
Richings GW, Habershon S. Direct grid-based quantum dynamics on propagated diabatic potential energy surfaces. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.01.063] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Richings GW, Habershon S. Direct Quantum Dynamics Using Grid-Based Wave Function Propagation and Machine-Learned Potential Energy Surfaces. J Chem Theory Comput 2017; 13:4012-4024. [DOI: 10.1021/acs.jctc.7b00507] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gareth W. Richings
- Department of Chemistry and
Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Scott Habershon
- Department of Chemistry and
Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
15
|
Schmitz G, Christiansen O. Accuracy of Frequencies Obtained with the Aid of Explicitly Correlated Wave Function Based Methods. J Chem Theory Comput 2017; 13:3602-3613. [PMID: 28686442 DOI: 10.1021/acs.jctc.7b00476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We asses the basis set convergence of harmonic frequencies using different explicitly correlated wave function based methods. All commonly available CCSD(T) variants as well as MP2-F12 and MP4(F12*) are considered, and a hierarchy of the different approaches is established. As for reaction and atomization energies, CCSD(F12*)(T*) is a close approximation to CCSD(F12)(T*) and clearly superior to the other tested approximations. The used scaling for the triples correction enhances the accuracy relative to CCSD(F12*)(T) especially for small basis sets and is very attractive since no additional computational costs are added. However, this scaling slightly breaks size consistency, and therefore we additionally study the accuracy of CCSD(F12*)(T*) and CCSD(F12*)(T) in the context of calculating anharmonic frequencies to check if this causes problems in the generation of the potential energy surface (PES). We find a fast basis set convergence for harmonic and anharmonic frequencies. Already in the cc-pVDZ-F12 basis, the RMSD to the CBS limit is only around 4-5 cm-1.
Collapse
Affiliation(s)
- Gunnar Schmitz
- Department of Chemistry, Aarhus University , Aarhus, Denmark
| | | |
Collapse
|
16
|
Essafi S, Tew DP, Harvey JN. The Dynamics of the Reaction of FeO+
and H2
: A Model for Inorganic Oxidation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Stéphanie Essafi
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - David P. Tew
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Jeremy N. Harvey
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| |
Collapse
|
17
|
Essafi S, Tew DP, Harvey JN. The Dynamics of the Reaction of FeO+
and H2
: A Model for Inorganic Oxidation. Angew Chem Int Ed Engl 2017; 56:5790-5794. [DOI: 10.1002/anie.201702009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Stéphanie Essafi
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - David P. Tew
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | - Jeremy N. Harvey
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| |
Collapse
|
18
|
Tew DP, Mizukami W. Ab Initio Vibrational Spectroscopy of cis- and trans-Formic Acid from a Global Potential Energy Surface. J Phys Chem A 2016; 120:9815-9828. [DOI: 10.1021/acs.jpca.6b09952] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David P. Tew
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Wataru Mizukami
- School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| |
Collapse
|
19
|
Alborzpour JP, Tew DP, Habershon S. Efficient and accurate evaluation of potential energy matrix elements for quantum dynamics using Gaussian process regression. J Chem Phys 2016; 145:174112. [DOI: 10.1063/1.4964902] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jonathan P. Alborzpour
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David P. Tew
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Scott Habershon
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
20
|
Wu F. Quantum Mechanical Investigation of Mode-Specific Tunneling upon Fundamental Excitation in Malonaldehyde. J Phys Chem A 2016; 120:3849-54. [PMID: 27192182 DOI: 10.1021/acs.jpca.6b00340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a quantum mechanical study of mode-specific tunneling upon fundamental excitation in malonaldehyde with a multidimensional theory that utilizes the saddle-point normal coordinates. We find that a ring-deformation normal mode is as essential as the well-known imaginary-frequency normal mode in the multidimensional investigation. The changes in tunneling splittings upon fundamental excitation are calculated. The results are competitive with those from a recently developed mixed classical-quantum method. Moreover, the results are qualitatively consistent with experiment for about half of all the modes.
Collapse
Affiliation(s)
- Feng Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
21
|
Mátyus E, Wales DJ, Althorpe SC. Quantum tunneling splittings from path-integral molecular dynamics. J Chem Phys 2016; 144:114108. [DOI: 10.1063/1.4943867] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Edit Mátyus
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Stuart C. Althorpe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|