1
|
Hunt NT. Biomolecular infrared spectroscopy: making time for dynamics. Chem Sci 2024; 15:414-430. [PMID: 38179520 PMCID: PMC10763549 DOI: 10.1039/d3sc05223k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Time resolved infrared spectroscopy of biological molecules has provided a wealth of information relating to structural dynamics, conformational changes, solvation and intermolecular interactions. Challenges still exist however arising from the wide range of timescales over which biological processes occur, stretching from picoseconds to minutes or hours. Experimental methods are often limited by vibrational lifetimes of probe groups, which are typically on the order of picoseconds, while measuring an evolving system continuously over some 18 orders of magnitude in time presents a raft of technological hurdles. In this Perspective, a series of recent advances which allow biological molecules and processes to be studied over an increasing range of timescales, while maintaining ultrafast time resolution, will be reviewed, showing that the potential for real-time observation of biomolecular function draws ever closer, while offering a new set of challenges to be overcome.
Collapse
Affiliation(s)
- Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York Heslington York YO10 5DD UK
| |
Collapse
|
2
|
Bozovic O, Jankovic B, Hamm P. Using azobenzene photocontrol to set proteins in motion. Nat Rev Chem 2021; 6:112-124. [PMID: 37117294 DOI: 10.1038/s41570-021-00338-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 02/06/2023]
Abstract
Controlling the activity of proteins with azobenzene photoswitches is a potent tool for manipulating their biological function. With the help of light, it is possible to change binding affinities, control allostery or manipulate complex biological processes, for example. Additionally, owing to their intrinsically fast photoisomerization, azobenzene photoswitches can serve as triggers that initiate out-of-equilibrium processes. Such switching of the activity initiates a cascade of conformational events that can be accessed with time-resolved methods. In this Review, we show how the potency of azobenzene photoswitching can be combined with transient spectroscopic techniques to disclose the order of events and experimentally observe biomolecular interactions in real time. This strategy will further our understanding of how a protein can accommodate, adapt and readjust its structure to answer an incoming signal, revealing more of the dynamical character of proteins.
Collapse
|
3
|
Abstract
The disaccharide trehalose is accumulated in the cytoplasm of some organisms in response to harsh environmental conditions. Trehalose biosynthesis and accumulation are important for the survival of such organisms by protecting the structure and function of proteins and membranes. Trehalose affects the dynamics of proteins and water molecules in the bulk and the protein hydration shell. Enzyme catalysis and other processes dependent on protein dynamics are affected by the viscosity generated by trehalose, as described by the Kramers’ theory of rate reactions. Enzyme/protein stabilization by trehalose against thermal inactivation/unfolding is also explained by the viscosity mediated hindering of the thermally generated structural dynamics, as described by Kramers’ theory. The analysis of the relationship of viscosity–protein dynamics, and its effects on enzyme/protein function and other processes (thermal inactivation and unfolding/folding), is the focus of the present work regarding the disaccharide trehalose as the viscosity generating solute. Finally, trehalose is widely used (alone or in combination with other compounds) in the stabilization of enzymes in the laboratory and in biotechnological applications; hence, considering the effect of viscosity on catalysis and stability of enzymes may help to improve the results of trehalose in its diverse uses/applications.
Collapse
|
4
|
Zanobini C, Bozovic O, Jankovic B, Koziol KL, Johnson PJM, Hamm P, Gulzar A, Wolf S, Stock G. Azidohomoalanine: A Minimally Invasive, Versatile, and Sensitive Infrared Label in Proteins To Study Ligand Binding. J Phys Chem B 2018; 122:10118-10125. [DOI: 10.1021/acs.jpcb.8b08368] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Claudio Zanobini
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Olga Bozovic
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Brankica Jankovic
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Klemens L. Koziol
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | | | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Adnan Gulzar
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, Freiburg 79104, Germany
| | - Steffen Wolf
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, Freiburg 79104, Germany
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, Freiburg 79104, Germany
| |
Collapse
|
5
|
Stucki-Buchli B, Johnson PJM, Bozovic O, Zanobini C, Koziol KL, Hamm P, Gulzar A, Wolf S, Buchenberg S, Stock G. 2D-IR Spectroscopy of an AHA Labeled Photoswitchable PDZ2 Domain. J Phys Chem A 2017; 121:9435-9445. [DOI: 10.1021/acs.jpca.7b09675] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brigitte Stucki-Buchli
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Philip J. M. Johnson
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Olga Bozovic
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Claudio Zanobini
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Klemens L. Koziol
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Peter Hamm
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Adnan Gulzar
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Steffen Wolf
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Sebastian Buchenberg
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - Gerhard Stock
- Department of Chemistry, University of Zurich, 8075 Zurich, Switzerland
- Biomolecular Dynamics, Institute of
Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| |
Collapse
|
6
|
El Hage K, Brickel S, Hermelin S, Gaulier G, Schmidt C, Bonacina L, van Keulen SC, Bhattacharyya S, Chergui M, Hamm P, Rothlisberger U, Wolf JP, Meuwly M. Implications of short time scale dynamics on long time processes. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061507. [PMID: 29308419 PMCID: PMC5741438 DOI: 10.1063/1.4996448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/15/2017] [Indexed: 05/02/2023]
Abstract
This review provides a comprehensive overview of the structural dynamics in topical gas- and condensed-phase systems on multiple length and time scales. Starting from vibrationally induced dissociation of small molecules in the gas phase, the question of vibrational and internal energy redistribution through conformational dynamics is further developed by considering coupled electron/proton transfer in a model peptide over many orders of magnitude. The influence of the surrounding solvent is probed for electron transfer to the solvent in hydrated I-. Next, the dynamics of a modified PDZ domain over many time scales is analyzed following activation of a photoswitch. The hydration dynamics around halogenated amino acid side chains and their structural dynamics in proteins are relevant for iodinated TyrB26 insulin. Binding of nitric oxide to myoglobin is a process for which experimental and computational analyses have converged to a common view which connects rebinding time scales and the underlying dynamics. Finally, rhodopsin is a paradigmatic system for multiple length- and time-scale processes for which experimental and computational methods provide valuable insights into the functional dynamics. The systems discussed here highlight that for a comprehensive understanding of how structure, flexibility, energetics, and dynamics contribute to functional dynamics, experimental studies in multiple wavelength regions and computational studies including quantum, classical, and more coarse grained levels are required.
Collapse
Affiliation(s)
- Krystel El Hage
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sebastian Brickel
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sylvain Hermelin
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Geoffrey Gaulier
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Cédric Schmidt
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Luigi Bonacina
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Siri C van Keulen
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | | | - Majed Chergui
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Jean-Pierre Wolf
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
7
|
Abstract
Allostery represents a fundamental mechanism of biological regulation that is mediated via long-range communication between distant protein sites. Although little is known about the underlying dynamical process, recent time-resolved infrared spectroscopy experiments on a photoswitchable PDZ domain (PDZ2S) have indicated that the allosteric transition occurs on multiple timescales. Here, using extensive nonequilibrium molecular dynamics simulations, a time-dependent picture of the allosteric communication in PDZ2S is developed. The simulations reveal that allostery amounts to the propagation of structural and dynamical changes that are genuinely nonlinear and can occur in a nonlocal fashion. A dynamic network model is constructed that illustrates the hierarchy and exceeding structural heterogeneity of the process. In compelling agreement with experiment, three physically distinct phases of the time evolution are identified, describing elastic response ([Formula: see text] ns), inelastic reorganization ([Formula: see text] ns), and structural relaxation ([Formula: see text]s). Issues such as the similarity to downhill folding as well as the interpretation of allosteric pathways are discussed.
Collapse
|
8
|
Xu M, Caflisch A, Hamm P. Protein Structural Memory Influences Ligand Binding Mode(s) and Unbinding Rates. J Chem Theory Comput 2016; 12:1393-9. [PMID: 26799675 DOI: 10.1021/acs.jctc.5b01052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The binding of small molecules (e.g., natural ligands, metabolites, and drugs) to proteins governs most biochemical pathways and physiological processes. Here, we use molecular dynamics to investigate the unbinding of dimethyl sulfoxide (DMSO) from two distinct states of a small rotamase enzyme, the FK506-binding protein (FKBP). These states correspond to the FKBP protein relaxed with and without DMSO in the active site. Since the time scale of ligand unbinding (2-20 ns) is faster than protein relaxation (100 ns), a novel methodology is introduced to relax the protein without having to introduce an artificial constraint. The simulation results show that the unbinding time is an order of magnitude longer for dissociation from the DMSO-bound state (holo-relaxed). That is, the actual rate of unbinding depends on the state of the protein, with the protein having a long-lived memory. The rate thus depends on the concentration of the ligand as the apo and holo states reflect low and high concentrations of DMSO, respectively. Moreover, there are multiple binding modes in the apo-relaxed state, while a single binding mode dominates the holo-relaxed state in which DMSO acts as hydrogen bond acceptor from the backbone NH of Ile56, as in the crystal structure of the DMSO/FKBP complex. The solvent relaxes very fast (∼1 ns) close to the NH of Ile56 and with the same time scale of the protein far away from the active site. These results have implications for high-throughput docking, which makes use of a rigid structure of the protein target.
Collapse
Affiliation(s)
- Min Xu
- Department of Biochemistry and ‡Department of Chemistry, University of Zürich , Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry and ‡Department of Chemistry, University of Zürich , Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| | - Peter Hamm
- Department of Biochemistry and ‡Department of Chemistry, University of Zürich , Winterthurerstrasse 190, Zürich CH-8057, Switzerland
| |
Collapse
|
9
|
Li YC, Kuo YT, Huang PY, Lee CI, Wei TH. Ultrashort-laser-pulse-induced thermal lensing effect in pure H 2O and a NaCl–H 2O solution. RSC Adv 2016. [DOI: 10.1039/c6ra24361d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Using the Z-scan technique with 82 MHz 18 femtosecond (fs) laser pulses at 820 nm, we explore the thermal lensing effect induced in pure H2O and a NaCl–H2O solution. We verify the contributions of thermal and mass diffusions in NaCl–H2O.
Collapse
Affiliation(s)
- Yi-Ci Li
- Department of Physics
- National Chung Cheng University
- Min-Hsiung, Chia-Yi 621
- Taiwan
| | - Yu-Ting Kuo
- Department of Physics
- National Chung Cheng University
- Min-Hsiung, Chia-Yi 621
- Taiwan
| | - Po-Yuan Huang
- Department of Physics
- National Chung Cheng University
- Min-Hsiung, Chia-Yi 621
- Taiwan
| | - Cheng-I. Lee
- Department of Life Science
- National Chung Cheng University
- Min-Hsiung, Chia-Yi 621
- Taiwan
| | - Tai-Huei Wei
- Department of Physics
- National Chung Cheng University
- Min-Hsiung, Chia-Yi 621
- Taiwan
| |
Collapse
|
10
|
Koziol KL, Johnson PJM, Stucki-Buchli B, Waldauer SA, Hamm P. Fast infrared spectroscopy of protein dynamics: advancing sensitivity and selectivity. Curr Opin Struct Biol 2015; 34:1-6. [PMID: 25900180 DOI: 10.1016/j.sbi.2015.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 01/08/2023]
Abstract
2D-IR spectroscopy has matured to a powerful technique to study the structure and dynamics of peptides, but its extension to larger proteins is still in its infancy, the major limitations being sensitivity and selectivity. Site-selective information requires measuring single vibrational probes at sub-millimolar concentrations where most proteins are still stable, which is a severe challenge for conventional (FT)IR spectroscopy. Besides its ultrafast time-resolution, a so far largely underappreciated potential of 2D-IR spectroscopy lies in its sensitivity gain. The present paper sets the goals and outlines strategies how to use that sensitivity gain together with properly designed vibrational labels to make IR spectroscopy a versatile tool to study a wide class of proteins.
Collapse
Affiliation(s)
- Klemens L Koziol
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Philip J M Johnson
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Brigitte Stucki-Buchli
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Steven A Waldauer
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
11
|
Buchenberg S, Knecht V, Walser R, Hamm P, Stock G. Long-range conformational transition of a photoswitchable allosteric protein: molecular dynamics simulation study. J Phys Chem B 2014; 118:13468-76. [PMID: 25365469 DOI: 10.1021/jp506873y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A local perturbation of a protein may lead to functional changes at some distal site. An example is the PDZ2 domain of human tyrosine phosphatase 1E, which shows an allosteric transition upon binding to a peptide ligand. Recently Buchli et al. presented a time-resolved study of this transition by covalently linking an azobenzene photoswitch across the binding groove and using a femtosecond laser pulse that triggers the cis-trans photoisomerization of azobenzene. To aid the interpretation of these experiments, in this work seven microsecond runs of all-atom molecular dynamics simulations each for the wild-type PDZ2 in the ligand-bound and -free state, as well as the photoswitchable protein (PDZ2S) in the cis and trans states of the photoswitch, in explicit water were conducted. First the theoretical model is validated by recalculating the available NMR data from the simulations. By comparing the results for PDZ2 and PDZ2S, it is analyzed to what extent the photoswitch indeed mimics the free-bound transition. A detailed description of the conformational rearrangement following the cis-trans photoisomerization of PDZ2S reveals a series of photoinduced structural changes that propagate from the anchor residues of the photoswitch via intermediate secondary structure segments to the C-terminus of PDZ2S. The changes of the conformational distribution of the C-terminal region is considered as the distal response of the isolated allosteric protein.
Collapse
Affiliation(s)
- Sebastian Buchenberg
- Biomolecular Dynamics, Institute of Physics, University of Freiburg , 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|