1
|
Tanimura K, Tanaka K, Gon M, Tanaka K. Quadrupolar dinuclear hypervalent tin(iv) compounds with near-infrared emission consisting of Schiff bases based on π-conjugated scaffolds. Chem Sci 2024:d4sc05006a. [PMID: 39397826 PMCID: PMC11465419 DOI: 10.1039/d4sc05006a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024] Open
Abstract
Since π-conjugated molecules are commonly used as a scaffold for constructing optoelectronic and functional materials, much effort has been devoted to exploring novel molecular scaffolds for obtaining superior properties. This study focuses on dinuclear hypervalent tin(iv) compounds prepared by the ladderization of Schiff bases using hypervalent tin units. The optical measurements found that introducing hypervalent tin atoms can reinforce the D-π-A system. We synthesized two types of dinuclear hypervalent compounds by simple condensation reactions and observed near-infrared (NIR) emission. Also, depending on the direction of the imine bonds, these molecules had different quadrupolar orientations with D-π-A-π-D and A-π-D-π-A systems followed by negative solvatochromism, which is the unique behavior of quadrupolar-derived absorption. Furthermore, the π-conjugated polymers involving dinuclear compounds showed NIR emission in the wavelength range over 800 nm owing to the distinct expansion of π-conjugation. Our findings could be useful not only for constructing electronic structures with narrow energy gaps but also for designing molecules with unique electronic states and environmental responsiveness.
Collapse
Affiliation(s)
- Kazuya Tanimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kento Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- Department of Technology and Ecology, Graduate School of Global Environmental Studies, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
- Department of Technology and Ecology, Graduate School of Global Environmental Studies, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
2
|
Mikhailova TV, Ivanov AI. Controlling the symmetry breaking charge transfer extent in excited quadrupolar molecules by tuning the locally excited state. J Chem Phys 2024; 160:054302. [PMID: 38310475 DOI: 10.1063/5.0193532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
The effect of a locally excited state on charge transfer symmetry breaking (SBCT) in excited quadrupolar molecules in solutions has been studied. The interaction of a locally excited state and two zwitterionic states is found to either increase or decrease the degree of SBCT depending on the molecular parameters. A strategy on how to adjust the molecular parameters to control the extent of SBCT is presented. The influence of level degeneracy on SBCT is identified and discussed in detail. The level degeneracy is shown to lead to the existence of a hidden dipole moment in excited quadrupolar molecules. Its manifestations in SBCT are analyzed. The main conclusions are consistent with the available experimental data.
Collapse
Affiliation(s)
| | - Anatoly I Ivanov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| |
Collapse
|
3
|
Giavazzi D, Saseendran S, Di Maiolo F, Painelli A. A Comprehensive Approach to Exciton Delocalization and Energy Transfer. J Chem Theory Comput 2022; 19:436-447. [PMID: 36563008 PMCID: PMC9878730 DOI: 10.1021/acs.jctc.2c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 12/24/2022]
Abstract
Electrostatic intermolecular interactions lie at the heart of both the Förster model for resonance energy transfer (RET) and the exciton model for energy delocalization. In the Förster theory of RET, the excitation energy incoherently flows from the energy donor to a weakly coupled energy acceptor. The exciton model describes instead the energy delocalization in aggregates of identical (or nearly so) molecules. Here, we introduce a model that brings together molecular aggregates and RET. We will consider a couple of molecules, each described in terms of two diabatic electronic states, coupled to an effective molecular vibration. Electrostatic intermolecular interactions drive energy fluxes between the molecules, that, depending on model parameters, can be described as RET or energy delocalization. At variance with the standard Förster model for RET and of the exciton model for aggregates, our approach applies both in the weak and in the strong coupling regimes and fully accounts for the quantum nature of molecular vibrations in a nonadiabatic approach. Coupling the system to a thermal bath, we follow RET and energy delocalization in real time and simulate time-resolved emission spectra.
Collapse
Affiliation(s)
- D. Giavazzi
- Department of Chemistry,
Life Science and Environmental Sustainability, Università di Parma, 43124 Parma, Italy
| | - S. Saseendran
- Department of Chemistry,
Life Science and Environmental Sustainability, Università di Parma, 43124 Parma, Italy
| | - F. Di Maiolo
- Department of Chemistry,
Life Science and Environmental Sustainability, Università di Parma, 43124 Parma, Italy
| | - A. Painelli
- Department of Chemistry,
Life Science and Environmental Sustainability, Università di Parma, 43124 Parma, Italy
| |
Collapse
|
4
|
Ivanov AI. Modeling the Effect of H-Bonding of Excited Quadrupolar Molecules with a Solvent on Charge Transfer Symmetry Breaking. J Phys Chem B 2022; 126:9038-9046. [DOI: 10.1021/acs.jpcb.2c05984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anatoly I. Ivanov
- Volgograd State University, University Avenue 100, Volgograd400062, Russia
| |
Collapse
|
5
|
Timmer D, Zheng F, Gittinger M, Quenzel T, Lünemann DC, Winte K, Zhang Y, Madjet ME, Zablocki J, Lützen A, Zhong JH, De Sio A, Frauenheim T, Tretiak S, Lienau C. Charge Delocalization and Vibronic Couplings in Quadrupolar Squaraine Dyes. J Am Chem Soc 2022; 144:19150-19162. [PMID: 36206456 DOI: 10.1021/jacs.2c08682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Squaraines are prototypical quadrupolar charge-transfer chromophores that have recently attracted much attention as building blocks for solution-processed photovoltaics, fluorescent probes with large two-photon absorption cross sections, and aggregates with large circular dichroism. Their optical properties are often rationalized in terms of phenomenological essential state models, considering the coupling of two zwitterionic excited states to a neutral ground state. As a result, optical transitions to the lowest S1 excited state are one-photon allowed, whereas the next higher S2 state can only be accessed by two-photon transitions. A further implication of these models is a substantial reduction of vibronic coupling to the ubiquitous high-frequency vinyl-stretching modes of organic materials. Here, we combine time-resolved vibrational spectroscopy, two-dimensional electronic spectroscopy, and quantum-chemical simulations to test and rationalize these predictions for nonaggregated molecules. We find small Huang-Rhys factors below 0.01 for the high-frequency, 1500 cm-1 modes in particular, as well as a noticeable reduction for those of lower frequency modes in general for the electronic S0 → S1 transition. The two-photon allowed state S2 is well separated energetically from S1 and has weak vibronic signatures as well. Thus, the resulting pronounced concentration of the oscillator strength in a narrow region relevant to the lowest electronic transition makes squaraines and their aggregates exceptionally interesting for strong and ultrastrong coupling of excitons to localized light modes in external resonators with chiral properties that can largely be controlled by the molecular architecture.
Collapse
Affiliation(s)
- Daniel Timmer
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany
| | - Fulu Zheng
- Bremen Center for Computational Materials Science, University of Bremen, Bremen28359, Germany
| | - Moritz Gittinger
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany
| | - Thomas Quenzel
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany
| | - Daniel C Lünemann
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany
| | - Katrin Winte
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany
| | - Yu Zhang
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Mohamed E Madjet
- Bremen Center for Computational Materials Science, University of Bremen, Bremen28359, Germany
| | - Jennifer Zablocki
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn53121, Germany
| | - Arne Lützen
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn53121, Germany
| | - Jin-Hui Zhong
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany.,Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Antonietta De Sio
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany.,Center for Nanoscale Dynamics (CeNaD), Carl von Ossietzky Universität, Oldenburg26129, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, Bremen28359, Germany.,Beijing Computational Science Research Center (CSRC), Beijing100193, China.,Shenzhen Computational Science and Applied Research (CSAR) Institute, Shenzhen518110, China
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Christoph Lienau
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany.,Center for Nanoscale Dynamics (CeNaD), Carl von Ossietzky Universität, Oldenburg26129, Germany.,Forschungszentrum Neurosensorik, Carl von Ossietzky Universität, Oldenburg26129, Germany
| |
Collapse
|
6
|
Quenzel T, Timmer D, Gittinger M, Zablocki J, Zheng F, Schiek M, Lützen A, Frauenheim T, Tretiak S, Silies M, Zhong JH, De Sio A, Lienau C. Plasmon-Enhanced Exciton Delocalization in Squaraine-Type Molecular Aggregates. ACS NANO 2022; 16:4693-4704. [PMID: 35188735 DOI: 10.1021/acsnano.1c11398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enlarging exciton coherence lengths in molecular aggregates is critical for enhancing the collective optical and transport properties of molecular thin film nanostructures or devices. We demonstrate that the exciton coherence length of squaraine aggregates can be increased from 10 to 24 molecular units at room temperature when preparing the aggregated thin film on a metallic rather than a dielectric substrate. Two-dimensional electronic spectroscopy measurements reveal a much lower degree of inhomogeneous line broadening for aggregates on a gold film, pointing to a reduced disorder. The result is corroborated by simulations based on a Frenkel exciton model including exciton-plasmon coupling effects. The simulation shows that localized, energetically nearly resonant excitons on spatially well separated segments can be radiatively coupled via delocalized surface plasmon polariton modes at a planar molecule-gold interface. Such plasmon-enhanced delocalization of the exciton wave function is of high importance for improving the coherent transport properties of molecular aggregates on the nanoscale. Additionally, it may help tailor the collective optical response of organic materials for quantum optical applications.
Collapse
Affiliation(s)
- Thomas Quenzel
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Daniel Timmer
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Moritz Gittinger
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Jennifer Zablocki
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn 53121, Germany
| | - Fulu Zheng
- Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany
| | - Manuela Schiek
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
- Forschungszentrum Neurosensorik, Carl von Ossietzky University, Oldenburg 26111, Germany
| | - Arne Lützen
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn 53121, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany
- Beijing Computational Science Research Center (CSRC), Beijing 100193, China
- Shenzhen Computational Science and Applied Research (CSAR) Institute, Shenzhen 518110, China
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Martin Silies
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
- Institute for Lasers and Optics, University of Applied Sciences, Emden 26723, Germany
| | - Jin-Hui Zhong
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Antonietta De Sio
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Christoph Lienau
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
- Forschungszentrum Neurosensorik, Carl von Ossietzky University, Oldenburg 26111, Germany
| |
Collapse
|
7
|
Giavazzi D, Di Maiolo F, Painelli A. The fate of molecular excited states: modeling donor-acceptor dyes. Phys Chem Chem Phys 2022; 24:5555-5563. [DOI: 10.1039/d1cp05971h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the relaxation of a coherently excited molecule in the Redfield approximation. The molecular model, parametrized to describe donor-acceptor dyes that represent a large family of molecules of interest...
Collapse
|
8
|
Antipov IF, Ivanov AI. Effect of Symmetry Breaking in Excited Quadrupole Molecules on Transition Dipole Moment. J Phys Chem B 2021; 125:13778-13788. [PMID: 34894694 DOI: 10.1021/acs.jpcb.1c08666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Manifestations of charge transfer symmetry breaking in excited quadrupolar molecules in optical spectra are theoretically studied. The molecules are supposed to have π-conjugated structures of A-π-D-π-A or D-π-A-π-D character, where electron acceptors (A) or electron donors (D) are identical. A theory describing the effect of symmetry breaking and solvent fluctuations on the dipole moments of optical transitions associated with absorption by a quadrupolar dye in the ground and excited states, as well as fluorescence, is developed. Simple equations describing the influence of the symmetry breaking extent on the transition dipole moments are found. The orientational solvent fluctuations are predicted to decrease the transition dipole moment of the ground state absorption. The decrease does not exceed 10%. A considerably larger effect of symmetry breaking and the solvent fluctuations on the emission dipole moment is found. Equations describing dependencies of the transition dipole moment associated with excited state absorption on the solvent polarity and the parameters of the dye are derived. The scale of the changes in the transition dipole moments due to symmetry breaking in the excited state are determined. The influence of the polar solvent fluctuations is also taken into account. The theoretical findings are shown to be consistent with the available experimental data.
Collapse
Affiliation(s)
- Ivan F Antipov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| | - Anatoly I Ivanov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| |
Collapse
|
9
|
Santoro F, Green JA, Martinez-Fernandez L, Cerezo J, Improta R. Quantum and semiclassical dynamical studies of nonadiabatic processes in solution: achievements and perspectives. Phys Chem Chem Phys 2021; 23:8181-8199. [PMID: 33875988 DOI: 10.1039/d0cp05907b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We concisely review the main methodological approaches to model nonadiabatic dynamics in isotropic solutions and their applications. Three general classes of models are identified as the most used to include solvent effects in the simulations. The first model describes the solvent as a set of harmonic collective modes coupled to the solute degrees of freedom, and the second as a continuum, while the third explicitly includes solvent molecules in the calculations. The issues related to the use of these models in semiclassical and quantum dynamical simulations are discussed, as well as the main limitations and perspectives of each approach.
Collapse
Affiliation(s)
- Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - James A Green
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Javier Cerezo
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Roberto Improta
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| |
Collapse
|
10
|
Nazarov AE, Ivanov AI. Nonstationary Theory of Excited State Charge Transfer Symmetry Breaking Driven by Polar Solvent. J Phys Chem B 2020; 124:10787-10801. [DOI: 10.1021/acs.jpcb.0c07612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Alexey E. Nazarov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| | - Anatoly I. Ivanov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| |
Collapse
|
11
|
Nazarov AE, Ivanov AI. Modeling the IR Spectra of Excited Quadrupole Molecules with Broken Symmetry in Polar Solvents. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s003602442008021x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Phan Huu DKA, Sissa C, Terenziani F, Painelli A. Optical spectra of organic dyes in condensed phases: the role of the medium polarizability. Phys Chem Chem Phys 2020; 22:25483-25491. [DOI: 10.1039/d0cp04496b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An effective model is presented to account for the effects of the medium electronic polarizability on spectral properties and on symmetry-breaking phenomena in charge-transfer dyes.
Collapse
Affiliation(s)
- D. K. Andrea Phan Huu
- Department of Chemistry
- Life Science and Environmental Sustainability
- Parma University
- 43124 Parma
- Italy
| | - Cristina Sissa
- Department of Chemistry
- Life Science and Environmental Sustainability
- Parma University
- 43124 Parma
- Italy
| | - Francesca Terenziani
- Department of Chemistry
- Life Science and Environmental Sustainability
- Parma University
- 43124 Parma
- Italy
| | - Anna Painelli
- Department of Chemistry
- Life Science and Environmental Sustainability
- Parma University
- 43124 Parma
- Italy
| |
Collapse
|
13
|
Ivanov AI, Tkachev VG. Exact solution of three-level model of excited state electron transfer symmetry breaking in quadrupolar molecules. J Chem Phys 2019; 151:124309. [DOI: 10.1063/1.5116015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Anatoly I. Ivanov
- Volgograd State University, University Avenue 100, Volgograd 400062, Russia
| | | |
Collapse
|
14
|
Abstract
Resonance energy transfer (RET) is a complex phenomenon where energy is transferred between two nonequivalent molecules. In the Förster picture, that applies to the weak coupling regime, RET occurs from the energy donor molecule in the relaxed excited state toward the acceptor, in an energy-conserving process. However, energy dissipation is crucial for a more general picture of RET that also applies to the strong coupling regime. Here we present a dynamical, nonadiabatic model for RET also accounting for energy relaxation. We exploit the essential state formalism to set up a model for the RET pair that yields an accurate picture of the relevant physics, accounting for just a few electronic states and a single coupled vibrational coordinate per molecule. Molecular vibrations are treated in a nonadiabatic approach, and energy dissipation is dealt within the Redfield formalism. The approach is first validated on an isolated dye, demonstrating that a very simple relaxation model, defined in terms of a single relaxation parameter, properly describes the different regimes of energy dissipation expected for a molecule, with a fast (fs time window) internal conversion to the lowest excited state and a slow relaxation toward the ground state (ns time window). The same approach is then applied to follow the real time dynamics of a RET pair. In line with the Förster model, in the weak coupling regime the internal conversion of the donor molecule is completed before energy transfer takes place. Our approach also applies to the strong coupling regime, where we observe ultrafast energy transfer occurring well before the internal relaxation of the energy donor is completed.
Collapse
Affiliation(s)
- Francesco Di Maiolo
- Department of Chemistry, Life Science and Environmental Sustainability , Università di Parma , 43124 Parma , Italy
| | - Anna Painelli
- Department of Chemistry, Life Science and Environmental Sustainability , Università di Parma , 43124 Parma , Italy
| |
Collapse
|