1
|
Wang L. Microwave Imaging and Sensing Techniques for Breast Cancer Detection. MICROMACHINES 2023; 14:1462. [PMID: 37512773 PMCID: PMC10385169 DOI: 10.3390/mi14071462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Medical imaging techniques, including X-ray mammography, ultrasound, and magnetic resonance imaging, play a crucial role in the timely identification and monitoring of breast cancer. However, these conventional imaging modalities have their limitations, and there is a need for a more accurate and sensitive alternative. Microwave imaging has emerged as a promising technique for breast cancer detection due to its non-ionizing, non-invasive, and cost-effective nature. Recent advancements in microwave imaging and sensing techniques have opened up new possibilities for the early diagnosis and treatment of breast cancer. By combining microwave sensing with machine learning techniques, microwave imaging approaches can rapidly and affordably identify and classify breast tumors. This manuscript provides a comprehensive overview of the latest developments in microwave imaging and sensing techniques for the early detection of breast cancer. It discusses the principles and applications of microwave imaging and highlights its advantages over conventional imaging modalities. The manuscript also delves into integrating machine learning algorithms to enhance the accuracy and efficiency of microwave imaging in breast cancer detection.
Collapse
Affiliation(s)
- Lulu Wang
- Biomedical Device Innovation Center, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
2
|
Reimer T, Pistorius S. Review and Analysis of Tumour Detection and Image Quality Analysis in Experimental Breast Microwave Sensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115123. [PMID: 37299852 DOI: 10.3390/s23115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
This review evaluates the methods used for image quality analysis and tumour detection in experimental breast microwave sensing (BMS), a developing technology being investigated for breast cancer detection. This article examines the methods used for image quality analysis and the estimated diagnostic performance of BMS for image-based and machine-learning tumour detection approaches. The majority of image analysis performed in BMS has been qualitative and existing quantitative image quality metrics aim to describe image contrast-other aspects of image quality have not been addressed. Image-based diagnostic sensitivities between 63 and 100% have been achieved in eleven trials, but only four articles have estimated the specificity of BMS. The estimates range from 20 to 65%, and do not demonstrate the clinical utility of the modality. Despite over two decades of research in BMS, significant challenges remain that limit the development of this modality as a clinical tool. The BMS community should utilize consistent image quality metric definitions and include image resolution, noise, and artifacts in their analyses. Future work should include more robust metrics, estimates of the diagnostic specificity of the modality, and machine-learning applications should be used with more diverse datasets and with robust methodologies to further enhance BMS as a viable clinical technique.
Collapse
Affiliation(s)
- Tyson Reimer
- Department of Physics & Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Stephen Pistorius
- Department of Physics & Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
3
|
Meaney PM, Raynolds T, Geimer SD, Ouma D, Player GM, Yang X, Paulsen KD. Motion-based microwave tomographic measurement device for three-dimensional coverage in a magnetic resonance system. Med Phys 2022; 49:7638-7647. [PMID: 35964298 PMCID: PMC10753095 DOI: 10.1002/mp.15921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 12/27/2022] Open
Abstract
PURPOSE We have developed a fully 3D data acquisition system for microwave breast imaging which can operate simultaneously inside a magnetic resonance imaging (MRI). MRI is used regularly for breast imaging to distinguish tumors from normal tissue. It generally has poor specificity unless used with a gadolinium contrast agent. Microwave imaging could fill this need because of the good endogenous tumor:normal tissue property contrast, especially in light of safety concerns for gadolinium. The antenna array consists of 16 monopole antennas positioned in a horizontal circle surrounding the breast which can then be moved vertically for 3D coverage of the breast. The tank system materials were chosen to minimize artifacts in the MR image within the specific shared imaging zone. The support rods are stainless steel, albeit positioned sufficiently far from the imaging target to have little effect. The mechanical motion parts are all 3D printed plastic. Unlike many conventional antennas, the monopoles consist of just the center conductor and insulator of the coaxial cable, making it one of the least possible metallic structures. METHODS Data were acquired both inside and outside of the MR bore to confirm that the MR bore did not have adverse effects on the microwave imaging process. The imaging tank was filled with a mixture of glycerin and water to both provide a reasonable property match to the phantom and to highly attenuate the fields which also acted to suppress multi-path signals. Microwave images were reconstructed using our Gauss-Newton scheme combined with a log transformation for a more linear convergence. MR images were also acquired to assess the effects of the microwave tank structures on the imaging. RESULTS The microwave measurement data were acquired in log magnitude and phase format at 200 MHz increments from 700-1900 MHz. Each antenna acted sequentially as a transmitter while the complement of 15 acted as a receiver. The single frequency images were reconstructed using a Gauss-Newton iterative technique with a standard log transformation to linearize the process. The data showed that the signal strengths were between 7-10 dB lower for the case when the array was inside the MRI versus when not. Notwithstanding, the image quality was still high because of the significant signal to noise ratio. The reconstructed images in both situations demonstrated good 3D object recovery of the vertically size and shaped varying object. The MR images were not adversely affected by the presence of antennas or feed structures. CONCLUSIONS We have demonstrated that our technique can recover high-quality images of a 3D varying object within an MRI system. Compatibility issues have been addressed for both the microwave and MRI systems. The reduced SNR for the case operating in the MRI did not adversely affect the images. To the best of our knowledge, this is the first example of a microwave imaging system operating in an MRI with full 3D volumetric capability.
Collapse
Affiliation(s)
- Paul M. Meaney
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Timothy Raynolds
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | - David Ouma
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Grace M. Player
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
4
|
Shao W, Zhou B. Effect of Coupling Medium on Penetration Depth in Microwave Medical Imaging. Diagnostics (Basel) 2022; 12:2906. [PMID: 36552911 PMCID: PMC9776435 DOI: 10.3390/diagnostics12122906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
In microwave medical imaging, the human skin reflects most of microwave energy due to the impedance mismatch between the air and the body. As a result, only a small portion of the microwave energy can enter the body and work for medical purpose. One solution to tackle this issue is to use a coupling (or matching) medium, which can reduce unwanted reflections on the skin and meanwhile improve spatial imaging resolution. A few types of fluids were measured in this paper for their dielectric properties between 500 MHz and 13.5 GHz. Measurements were performed by a Keysight programmable network analyzer (PNA) with a dielectric probe kit, and dielectric constant and conductivity of the fluids were presented in this paper. Then, quantitative computations were exercised to present the attenuations due to the reflection on the skin and to the loss in each coupling medium, based on the measured liquid dielectric values. Finally, electromagnetic simulations verified that the coupling liquid can allow more microwave energy to enter the body to allow for a more efficient medical examination.
Collapse
Affiliation(s)
- Wenyi Shao
- The Russell H. Morgan Department of Radiology and Radiational Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- EMAI Inc., Laurel, MD 20723, USA
| | | |
Collapse
|
5
|
Hosseinzadegan S, Fhager A, Persson M, Geimer S, Meaney PM. Discrete Dipole Approximation-Based Microwave Tomography for Fast Breast Cancer Imaging. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 2021; 69:2741-2752. [PMID: 34176958 PMCID: PMC8224266 DOI: 10.1109/tmtt.2021.3060597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This paper describes a fast microwave tomography reconstruction algorithm based on the two-dimensional discrete dipole approximation. Synthetic data from a finite-element based solver and experimental data from a microwave imaging system are used to reconstruct images and to validate the algorithm. The microwave measurement system consists of 16 monopole antennas immersed in a tank filled with lossy coupling liquid and a vector network analyzer. The low-profile antennas and lossy nature of system make the discrete dipole approximation an ideal forward solver in the image reconstructions. The results show that the algorithm can readily reconstruct a 2D plane of a cylindrical phantom. The proposed forward solver combined with the nodal adjoint method for computing the Jacobian matrix enables the algorithm to reconstruct an image within 6 seconds. This implementation provides a significant time savings and reduced memory requirements and is a dramatic improvement over previous implementations.
Collapse
Affiliation(s)
- Samar Hosseinzadegan
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Andreas Fhager
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mikael Persson
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Shireen Geimer
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755 USA
| | - Paul M Meaney
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755 USA
| |
Collapse
|
6
|
Shao W, McCollough T. Advances in Microwave Near-Field Imaging: Prototypes, Systems, and Applications. IEEE MICROWAVE MAGAZINE 2020; 21:94-119. [PMID: 34168520 PMCID: PMC8221233 DOI: 10.1109/mmm.2020.2971375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microwave imaging employs detection techniques to evaluate hidden or embedded objects in a structure or media using electro-magnetic (EM) waves in the microwave range, 300 MHz-300 GHz. Microwave imaging is often associated with radar detection such as target location and tracking, weather-pattern recognition, and underground surveillance, which are far-field applications. In recent years, due to microwaves' ability to penetrate optically opaque media, short-range applications, including medical imaging, nondestructive testing (NDT) and quality evaluation, through-the-wall imaging, and security screening, have been developed. Microwave near-field imaging most often occurs when detecting the profile of an object within the short range (when the distance from the sensor to the object is less than one wavelength to several wave-lengths) and depends on the electrical size of the antenna(s) and target.
Collapse
Affiliation(s)
- Wenyi Shao
- Johns Hopkins University, Baltimore, Maryland, United States
| | | |
Collapse
|
7
|
Aldhaeebi MA, Alzoubi K, Almoneef TS, Bamatraf SM, Attia H, Ramahi OM. Review of Microwaves Techniques for Breast Cancer Detection. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2390. [PMID: 32331443 PMCID: PMC7219673 DOI: 10.3390/s20082390] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/21/2020] [Accepted: 04/15/2020] [Indexed: 01/13/2023]
Abstract
Conventional breast cancer detection techniques including X-ray mammography, magnetic resonance imaging, and ultrasound scanning suffer from shortcomings such as excessive cost, harmful radiation, and inconveniences to the patients. These challenges motivated researchers to investigate alternative methods including the use of microwaves. This article focuses on reviewing the background of microwave techniques for breast tumour detection. In particular, this study reviews the recent advancements in active microwave imaging, namely microwave tomography and radar-based techniques. The main objective of this paper is to provide researchers and physicians with an overview of the principles, techniques, and fundamental challenges associated with microwave imaging for breast cancer detection. Furthermore, this study aims to shed light on the fact that until today, there are very few commercially available and cost-effective microwave-based systems for breast cancer imaging or detection. This conclusion is not intended to imply the inefficacy of microwaves for breast cancer detection, but rather to encourage a healthy debate on why a commercially available system has yet to be made available despite almost 30 years of intensive research.
Collapse
Affiliation(s)
- Maged A. Aldhaeebi
- Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L3G1, Canada; (M.A.A.); (S.M.B.); (O.M.R.)
| | | | - Thamer S. Almoneef
- Electrical Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Saeed M. Bamatraf
- Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L3G1, Canada; (M.A.A.); (S.M.B.); (O.M.R.)
| | - Hussein Attia
- Electrical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Omar M. Ramahi
- Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L3G1, Canada; (M.A.A.); (S.M.B.); (O.M.R.)
| |
Collapse
|
8
|
Islam MT, Samsuzzaman M, Kibria S, Misran N, Islam MT. Metasurface Loaded High Gain Antenna based Microwave Imaging using Iteratively Corrected Delay Multiply and Sum Algorithm. Sci Rep 2019; 9:17317. [PMID: 31754189 PMCID: PMC6872555 DOI: 10.1038/s41598-019-53857-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/05/2019] [Indexed: 01/21/2023] Open
Abstract
In this paper, the design consideration is investigated for a cylindrical system with low-cost and low-loss dielectric materials for the detection of breast tumor using iteratively corrected delay multiply and sum (IC- DMAS) algorithm. Anomaly in breast tissue is one of the most crucial health issues for women all over the world today. Emergency medical imaging diagnosis can be harmlessly managed by microwave-based analysis technology. Microwave Imaging (MI) has been proved to be a reliable health monitoring approach that can play a fundamental role in diagnosing anomaly in breast tissue. An array of 16 high gain microstrip antennas loaded by Index Near-Zero (INZ) metasurfaces (MS), having the impedance bandwidth of 8.5 GHz (2.70-11.20 GHz) are used as transceivers for the system. The MS is used to increase the electrical length of the signal that results in the gain enhancements. The antennas are mounted in a cylindrical arrangement on a mechanical rotating table along with a phantom mounting podium. A non-reflective positive control switching matrix is used for transmitting and receiving microwave signals. A set of lab-made realistic heterogeneous breast phantoms containing skin, fat, glandular, and tumor tissue dielectric properties in individual layers are used to verify the performance of the proposed technique. The control of the mechanical unit, data collection, and post-processing is conducted via MATLAB. The system can detect multiple tumor objects. The imaging results and numerical Signal to Mean Ratio (SMR) values of the experiment validate the system efficiency and performance that can be a viable solution for tumor detections.
Collapse
Affiliation(s)
- M Tarikul Islam
- Department of Electrical Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia.
| | - Md Samsuzzaman
- Department of Electrical Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia.
| | - Salehin Kibria
- Department of Electrical Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Norbahiah Misran
- Department of Electrical Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Mohammad Tariqul Islam
- Department of Electrical Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
9
|
Fajardo JE, Vericat F, Irastorza G, Carlevaro CM, Irastorza RM. Sensitivity analysis on imaging the calcaneus using microwaves. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab3330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
|
11
|
Meaney P, Hartov A, Bulumulla S, Raynolds T, Davis C, Schoenberger F, Richter S, Paulsen K. A 4-channel, vector network analyzer microwave imaging prototype based on software defined radio technology. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:044708. [PMID: 31042994 PMCID: PMC6483785 DOI: 10.1063/1.5083842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/30/2019] [Indexed: 06/01/2023]
Abstract
We have implemented a prototype 4-channel transmission-based, microwave measurement system built on innovative software defined radio (SDR) technology. The system utilizes the B210 USRP SDR developed by Ettus Research that operates over a 70 MHz-6 GHz bandwidth. While B210 units are capable of being synchronized with each other via coherent reference signals, they are somewhat unreliable in this configuration and the manufacturer recommends using N200 or N210 models instead. For our system, N-series SDRs were less suitable because they are not amenable to RF shielding required for the cross-channel isolation necessary for an integrated microwave imaging system. Consequently, we have configured an external reference that overcame these limitations in a compact and robust package. Our design exploits the rapidly evolving technology being developed for the telecommunications environment for test and measurement tasks with the higher performance specifications required in medical microwave imaging applications. In a larger channel configuration, the approach is expected to provide performance comparable to commercial vector network analyzers at a fraction of the cost and in a more compact footprint.
Collapse
Affiliation(s)
- Paul Meaney
- Author to whom correspondence should be addressed:
| | - Alexander Hartov
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | - Timothy Raynolds
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Cynthia Davis
- GE Global Research Center, Niskayuna, New York 12309, USA
| | - Florian Schoenberger
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Sebastian Richter
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Keith Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
12
|
Wang L. Multi-Frequency Holographic Microwave Imaging for Breast Lesion Detection. IEEE ACCESS 2019; 7:83984-83993. [DOI: 10.1109/access.2019.2924334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
|
13
|
Maloney BW, McClatchy DM, Pogue BW, Paulsen KD, Wells WA, Barth RJ. Review of methods for intraoperative margin detection for breast conserving surgery. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-19. [PMID: 30369108 PMCID: PMC6210801 DOI: 10.1117/1.jbo.23.10.100901] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/03/2018] [Indexed: 05/18/2023]
Abstract
Breast conserving surgery (BCS) is an effective treatment for early-stage cancers as long as the margins of the resected tissue are free of disease according to consensus guidelines for patient management. However, 15% to 35% of patients undergo a second surgery since malignant cells are found close to or at the margins of the original resection specimen. This review highlights imaging approaches being investigated to reduce the rate of positive margins, and they are reviewed with the assumption that a new system would need high sensitivity near 95% and specificity near 85%. The problem appears to be twofold. The first is for complete, fast surface scanning for cellular, structural, and/or molecular features of cancer, in a lumpectomy volume, which is variable in size, but can be large, irregular, and amorphous. A second is for full, volumetric imaging of the specimen at high spatial resolution, to better guide internal radiologic decision-making about the spiculations and duct tracks, which may inform that surfaces are involved. These two demands are not easily solved by a single tool. Optical methods that scan large surfaces quickly are needed with cellular/molecular sensitivity to solve the first problem, but volumetric imaging with high spatial resolution for soft tissues is largely outside of the optical realm and requires x-ray, micro-CT, or magnetic resonance imaging if they can be achieved efficiently. In summary, it appears that a combination of systems into hybrid platforms may be the optimal solution for these two very different problems. This concept must be cost-effective, image specimens within minutes and be coupled to decision-making tools that help a surgeon without adding to the procedure. The potential for optical systems to be involved in this problem is emerging and clinical trials are underway in several of these technologies to see if they could reduce positive margin rates in BCS.
Collapse
Affiliation(s)
- Benjamin W. Maloney
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - David M. McClatchy
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Geisel School of Medicine, Department of Surgery, Hanover, New Hampshire, United States
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States
| | - Keith D. Paulsen
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Geisel School of Medicine, Department of Surgery, Hanover, New Hampshire, United States
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States
| | - Wendy A. Wells
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States
- Geisel School of Medicine, Department of Pathology and Laboratory Medicine, Hanover, New Hampshire, United States
| | - Richard J. Barth
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Geisel School of Medicine, Department of Surgery, Hanover, New Hampshire, United States
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States
- Geisel School of Medicine, Department of Pathology and Laboratory Medicine, Hanover, New Hampshire, United States
| |
Collapse
|
14
|
Effects of the Plastic of the Realistic GeePS-L2S-Breast Phantom. Diagnostics (Basel) 2018; 8:diagnostics8030061. [PMID: 30200391 PMCID: PMC6165131 DOI: 10.3390/diagnostics8030061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022] Open
Abstract
A breast phantom developed at the Supelec Institute was interrogated to study its suitability for microwave tomography measurements. A microwave measurement system based on 16 monopole antennas and a vector network analyzer was used to study how the S-parameters are influenced by insertion of the phantom. The phantom is a 3D-printed structure consisting of plastic shells that can be filled with tissue mimicking liquids. The phantom was filled with different liquids and tested with the measurement system to determine whether the plastic has any effects on the recovered images or not. Measurements of the phantom when it is filled with the same liquid as the surrounding coupling medium are of particular interest. In this case, the phantom plastic has a substantial effects on the measurements which ultimately detracts from the desired images.
Collapse
|
15
|
Wang L. Microwave Sensors for Breast Cancer Detection. SENSORS (BASEL, SWITZERLAND) 2018; 18:E655. [PMID: 29473867 PMCID: PMC5854976 DOI: 10.3390/s18020655] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 12/31/2022]
Abstract
Breast cancer is the leading cause of death among females, early diagnostic methods with suitable treatments improve the 5-year survival rates significantly. Microwave breast imaging has been reported as the most potential to become the alternative or additional tool to the current gold standard X-ray mammography for detecting breast cancer. The microwave breast image quality is affected by the microwave sensor, sensor array, the number of sensors in the array and the size of the sensor. In fact, microwave sensor array and sensor play an important role in the microwave breast imaging system. Numerous microwave biosensors have been developed for biomedical applications, with particular focus on breast tumor detection. Compared to the conventional medical imaging and biosensor techniques, these microwave sensors not only enable better cancer detection and improve the image resolution, but also provide attractive features such as label-free detection. This paper aims to provide an overview of recent important achievements in microwave sensors for biomedical imaging applications, with particular focus on breast cancer detection. The electric properties of biological tissues at microwave spectrum, microwave imaging approaches, microwave biosensors, current challenges and future works are also discussed in the manuscript.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Biomedical Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China.
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland 1142, New Zealand.
| |
Collapse
|
16
|
Meaney PM, Paulsen KD. Addressing Multipath Signal Corruption in Microwave Tomography and the Influence on System Design and Algorithm Development. OPEN ACCESS JOURNAL OF BIOMEDICAL ENGINEERING AND BIOSCIENCES 2018; 1:102. [PMID: 30828701 PMCID: PMC6395052 DOI: 10.32474/oajbeb.2018.01.000102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In developing a microwave tomography system, we started by examining the fundamental signal measurement challenges-i.e., how to interrogate the target while suppressing unwanted multi-path signals. Beginning with a lossy coupling bath to suppress unwanted surface waves, we have developed a robust and reliable system that is both simple and low profile. However, beyond the basic measurement configuration, the lossy coupling medium concept has also informed our choice of array antenna and imaging algorithms. The synergism of these concepts has produced a novel concept which is embodied in a system that has been successfully translated to the clinic.
Collapse
Affiliation(s)
- Paul M Meaney
- Thayer School of Engineering, Dartmouth College, USA
- Electrical Engineering Department, Chalmers University of Technology, Sweden
| | | |
Collapse
|
17
|
Detectability of Breast Tumor by a Hand-held Impulse-Radar Detector: Performance Evaluation and Pilot Clinical Study. Sci Rep 2017; 7:16353. [PMID: 29180760 PMCID: PMC5703952 DOI: 10.1038/s41598-017-16617-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/15/2017] [Indexed: 11/09/2022] Open
Abstract
In this report, a hand-held impulse-radar breast cancer detector is presented and the detectability of malignant breast tumors is demonstrated in the clinical test at Hiroshima University Hospital, Hiroshima, Japan. The core functional parts of the detector consist of 65-nm technology complementary metal-oxide-semiconductor (CMOS) integrated circuits covering the ultrawideband width from 3.1 to 10.6 GHz, which enable the generation and transmission of Gaussian monocycle pulse (GMP) with the pulse width of 160 ps and single port eight throw (SP8T) switching matrices for controlling the combination of 4 × 4 cross-shaped dome antenna array. The detector is designed to be placed on the breast with the patient in the supine position. The detectability of malignant tumors is confirmed in excised breast tissues after total mastectomy surgery. The three-dimensional positions of the tumors in the imaging results are consistent with the results of histopathology analysis. The clinical tests are conducted by a clinical doctor for five patients at the hospital. The malignant tumors include invasive ductal carcinoma (IDC) and ductal carcinoma in situ (DCIS). The final confocal imaging results are consistent with those of Magnetic Resonance Imaging (MRI), demonstrating the feasibility of the hand-held impulse-radar detector for malignant breast tumors.
Collapse
|
18
|
Modiri A, Goudreau S, Rahimi A, Kiasaleh K. Review of breast screening: Toward clinical realization of microwave imaging. Med Phys 2017; 44:e446-e458. [PMID: 28976568 DOI: 10.1002/mp.12611] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 08/18/2017] [Accepted: 09/12/2017] [Indexed: 11/12/2022] Open
Abstract
Microwave imaging (MI) technology has come a long way to introduce a noninvasive, inexpensive, fast, convenient, and safe screening tool for clinical breast monitoring. However, there is a niche between the existing understanding of MI by engineers versus clinicians. Our manuscript targets that niche and highlights the state of the art in MI technology compared to the existing breast cancer detection modalities (mammography, ultrasound, molecular imaging, and magnetic resonance). The significance of our review article is in consolidation of up-to-date breast clinician views with the practical needs and engineering challenges of a novel breast screening modality. We summarize breast tissue abnormalities and highlight the benefits as well as potential drawbacks of the MI as a cancer detection methodology. Our goal is to present an article that MI researchers as well as practitioners in the field can use to assess the viability of the MI technology as a competing or complementary modality to the existing means of breast cancer screening.
Collapse
Affiliation(s)
- Arezoo Modiri
- School of Medicine, Department of Radiation Oncology, University of Maryland, Baltimore, MD, USA
| | - Sally Goudreau
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Asal Rahimi
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kamran Kiasaleh
- Department of Electrical Engineering, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
19
|
Meaney PM, Fox CJ, Geimer SD, Paulsen KD. Electrical Characterization of Glycerin: Water Mixtures: Implications for Use as a Coupling Medium in Microwave Tomography. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 2017; 65:1471-1478. [PMID: 28507391 PMCID: PMC5428894 DOI: 10.1109/tmtt.2016.2638423] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We examine the broadband behavior of complex electrical properties of glycerin and water mixtures over the frequency range of 0.1 - 25.0 GHz, especially as they relate to using these liquids as coupling media for microwave tomographic imaging. Their combination is unique in that they are mutually miscible over the full range of concentrations which allows them to be tailored to dielectric property matching for biological tissues. While the resultant mixture properties are partially driven by differences in the inherent low frequency permittivity of each constituent, relaxation frequency shifts play a disproportionately larger role in increasing the permittivity dispersion while also dramatically increasing the effective conductivity over the frequency range of 1 to 3 GHz. For the full range of mixture ratios, the relaxation frequency shifts from 17.5 GHz for 0% glycerin to less than 0.1 GHz for 100% glycerin. Of particular interest is the fact that the conductivity stays above 1.0 S/m over the 1-3 GHz range for glycerin mixture ratios (70-90% glycerin) we use for microwave breast tomography. The high level of attenuation is critical for suppressing unwanted multipath signals. This paper presents a full characterization of these liquids along with a discussion of their benefits and limitations in the context of microwave tomography.
Collapse
Affiliation(s)
- Paul M Meaney
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755 USA and the Chalmers University of Technology, Gothenburg 41296 SE
| | - Colleen J Fox
- Deparetment of Radiology at the Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766 USA
| | - Shireen D Geimer
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755 USA
| | - Keith D Paulsen
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755 USA
| |
Collapse
|
20
|
Microwave breast cancer detection via cost-sensitive ensemble classifiers: Phantom and patient investigation. Biomed Signal Process Control 2017. [DOI: 10.1016/j.bspc.2016.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Kwon S, Lee S. Recent Advances in Microwave Imaging for Breast Cancer Detection. Int J Biomed Imaging 2016; 2016:5054912. [PMID: 28096808 PMCID: PMC5210177 DOI: 10.1155/2016/5054912] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/02/2016] [Accepted: 10/27/2016] [Indexed: 11/22/2022] Open
Abstract
Breast cancer is a disease that occurs most often in female cancer patients. Early detection can significantly reduce the mortality rate. Microwave breast imaging, which is noninvasive and harmless to human, offers a promising alternative method to mammography. This paper presents a review of recent advances in microwave imaging for breast cancer detection. We conclude by introducing new research on a microwave imaging system with time-domain measurement that achieves short measurement time and low system cost. In the time-domain measurement system, scan time would take less than 1 sec, and it does not require very expensive equipment such as VNA.
Collapse
Affiliation(s)
- Sollip Kwon
- Department of Electronics Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Seungjun Lee
- Department of Electronics Engineering, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Golnabi AH, Meaney PM, Paulsen KD. 3D microwave tomography of the breast using prior anatomical information. Med Phys 2016; 43:1933. [PMID: 27036589 DOI: 10.1118/1.4944592] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The authors have developed a new 3D breast image reconstruction technique that utilizes the soft tissue spatial resolution of magnetic resonance imaging (MRI) and integrates the dielectric property differentiation from microwave imaging to produce a dual modality approach with the goal of augmenting the specificity of MR imaging, possibly without the need for nonspecific contrast agents. The integration is performed through the application of a soft prior regularization which imports segmented geometric meshes generated from MR exams and uses it to constrain the microwave tomography algorithm to recover nearly uniform property distributions within segmented regions with sharp delineation between these internal subzones. METHODS Previous investigations have demonstrated that this approach is effective in 2D simulation and phantom experiments and also in clinical exams. The current study extends the algorithm to 3D and provides a thorough analysis of the sensitivity and robustness to misalignment errors in size and location between the spatial prior information and the actual data. RESULTS Image results in 3D were not strongly dependent on reconstruction mesh density, and the changes of less than 30% in recovered property values arose from variations of more than 125% in target region size-an outcome which was more robust than in 2D. Similarly, changes of less than 13% occurred in the 3D image results from variations in target location of nearly 90% of the inclusion size. Permittivity and conductivity errors were about 5 times and 2 times smaller, respectively, with the 3D spatial prior algorithm in actual phantom experiments than those which occurred without priors. CONCLUSIONS The presented study confirms that the incorporation of structural information in the form of a soft constraint can considerably improve the accuracy of the property estimates in predefined regions of interest. These findings are encouraging and establish a strong foundation for using the soft prior technique in clinical studies, where their microwave imaging system and MRI can simultaneously collect breast exam data in patients.
Collapse
Affiliation(s)
- Amir H Golnabi
- Department of Mathematical Sciences, Montclair State University, Montclair, New Jersey 07043
| | - Paul M Meaney
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755; Department of Radiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755; Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire 03756; and Advanced Surgical Center, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire 03756
| |
Collapse
|