1
|
Zhao B. The symmetric C-D stretching spectator mode in the H + CHD 3 → H 2 + CD 3 reaction and its effect on dynamical modeling. Phys Chem Chem Phys 2021; 23:12105-12114. [PMID: 34027536 DOI: 10.1039/d1cp01614h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The symmetric C-D stretching mode is a spectator mode in the H + CHD3 → H2 + CD3 reaction. Effects of multiple vibrational excitations of the CHD3 reactant are studied with the quantum transition-state (QTS) framework and an eight-dimensional (8D) model Hamiltonian developed by Palma and Clary. By including many thermal flux eigenstates, results have been obtained up to high energies, allowing the study of the symmetric C-D stretching spectator mode. A new concept of a state-specific thermal flux operator is proposed to analyze the C-D stretching spectator mode in detail, providing a new and insightful venue for studying transition-state control of chemical reactions. Furthermore, as a spectator mode, whether the C-D stretching motion can be excluded in a seven-dimensional (7D) model has not been fully interrogated, although the 7D model is a reasonable approximation and has provided accurate theoretical predictions. By comparing with available results of full-dimensional calculations, both the 7D and 8D models predict reasonably accurate results. However, the 7D model underestimates the mixing of two vibrational states that are in Fermi resonance. Despite its spectator nature, the C-D stretch is important in the dynamical modeling of chemical reaction systems affected by state mixing.
Collapse
Affiliation(s)
- Bin Zhao
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany.
| |
Collapse
|
2
|
Zhang X, Zhang Z, Gatti F, Zhang DH. Full-dimensional quantum dynamics study of isotope effects for the H 2 + NH 2/ND 2/NHD and H 2/D 2/HD + NH 2 reactions. J Chem Phys 2021; 154:074301. [PMID: 33607900 DOI: 10.1063/5.0040002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A full-dimensional quantum dynamical study for the bimolecular reactions of hydrogen molecules with amino radicals for different isotopologues is reported. The nonreactive amino radical is described by two Radau vectors that are very close to the valence bond coordinates. Potential-optimized discrete variable representation basis is used for the vibrational coordinates of the amino radical. Starting from the reaction H2 + NH2, we study the isotope effects for the two reagents separately, i.e., H2 + NH2/ND2/NHD and H2/D2/HD + NH2. The effects of different vibrational mode excitations of the reagents on the reactivities are studied. Physical explanations about the isotope effects are also provided thoroughly including the influence of vibrational energy differences between the different isotopologues and the impact of the tunneling effect.
Collapse
Affiliation(s)
- Xiaoren Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Fabien Gatti
- ISMO, Institut des Sciences Moléculaires d'Orsay, UMR 8214 CNRS/Université Paris-Saclay, F-91405 Orsay, France
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
3
|
Liu R, Song H, Qi J, Yang M. A ten-dimensional quantum dynamics model for the X + YCAB 2 reaction: Application to H + CH 4 reaction. J Chem Phys 2020; 153:224119. [DOI: 10.1063/5.0033851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rui Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- China Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongwei Song
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ji Qi
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
4
|
Zhao B, Manthe U. Eight-Dimensional Wave Packet Dynamics Within the Quantum Transition-State Framework: State-to-State Reactive Scattering for H2 + CH3 ⇆ H + CH4. J Phys Chem A 2020; 124:9400-9412. [DOI: 10.1021/acs.jpca.0c08461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Bin Zhao
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
5
|
Zhang Z, Gatti F, Zhang DH. Full-dimensional quantum mechanical calculations of the reaction probability of the H + CH 4 reaction based on a mixed Jacobi and Radau description. J Chem Phys 2020; 152:201101. [PMID: 32486690 DOI: 10.1063/5.0009721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A full-dimensional time-dependent wave packet study using mixed polyspherical Jacobi and Radau coordinates for the title reaction has been reported. The non-reactive moiety CH3 has been described using three Radau vectors, whereas two Jacobi vectors have been used for the bond breaking/formation process. A potential-optimized discrete variable representation basis has been employed to describe the vibrational coordinates of the reagent CH4. About one hundred billion basis functions have been necessary to achieve converged results. The reaction probabilities for some initial vibrational states are given. A comparison between the present approach and other methods, including reduced and full-dimensional ones, is also presented.
Collapse
Affiliation(s)
- Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Fabien Gatti
- ISMO, Institut des Sciences Moléculaires d'Orsay - UMR 8214 CNRS/Université Paris-Saclay, F-91405 Orsay, France
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
6
|
Sanches-Neto FO, Coutinho ND, Palazzetti F, Carvalho-Silva VH. Temperature dependence of rate constants for the H(D) + CH4 reaction in gas and aqueous phase: deformed Transition-State Theory study including quantum tunneling and diffusion effects. Struct Chem 2019. [DOI: 10.1007/s11224-019-01437-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Lu X, Wang X, Fu B, Zhang D. Theoretical Investigations of Rate Coefficients of H + H2O2 → OH + H2O on a Full-Dimensional Potential Energy Surface. J Phys Chem A 2019; 123:3969-3976. [DOI: 10.1021/acs.jpca.9b02526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoxiao Lu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, China
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Donghui Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
8
|
Jasper AW, Sivaramakrishnan R, Klippenstein SJ. Nonthermal rate constants for CH 4 * + X → CH 3 + HX, X = H, O, OH, and O 2. J Chem Phys 2019; 150:114112. [PMID: 30902010 DOI: 10.1063/1.5090394] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Quasiclassical trajectories are used to compute nonthermal rate constants, k*, for abstraction reactions involving highly-excited methane CH4 * and the radicals H, O, OH, and O2. Several temperatures and internal energies of methane, Evib, are considered, and significant nonthermal rate enhancements for large Evib are found. Specifically, when CH4 * is internally excited close to its dissociation threshold (Evib ≈ D0 = 104 kcal/mol), its reactivity with H, O, and OH is shown to be collision-rate-limited and to approach that of comparably-sized radicals, such as CH3, with k* > 10-10 cm3 molecule-1 s-1. Rate constants this large are more typically associated with barrierless reactions, and at 1000 K, this represents a nonthermal rate enhancement, k*/k, of more than two orders of magnitude relative to thermal rate constants k. We show that large nonthermal rate constants persist even after significant internal cooling, with k*/k > 10 down to Evib ≈ D0/4. The competition between collisional cooling and nonthermal reactivity is studied using a simple model, and nonthermal reactions are shown to account for up to 35%-50% of the fate of the products of H + CH3 = CH4 * under conditions of practical relevance to combustion. Finally, the accuracy of an effective temperature model for estimating k* from k is quantified.
Collapse
Affiliation(s)
- Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Raghu Sivaramakrishnan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
9
|
Lu X, Meng Q, Wang X, Fu B, Zhang DH. Rate coefficients of the H + H2O2→ H2+ HO2reaction on an accurate fundamental invariant-neural network potential energy surface. J Chem Phys 2018; 149:174303. [PMID: 30409010 DOI: 10.1063/1.5063613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiaoxiao Lu
- Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, China
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Qingyong Meng
- Department of Applied Chemistry, Northwestern Polytechnical University, Youyi West Road 127, Xi’an 710072, China
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
10
|
Sun P, Zhang Z, Chen J, Liu S, Zhang DH. Well converged quantum rate constants for the H2+ OH → H2O + H reaction via transition state wave packet. J Chem Phys 2018; 149:064303. [DOI: 10.1063/1.5046890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Peng Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jun Chen
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
11
|
Meng Q. Ring-polymer molecular dynamics study on rate coefficients of hydrogen abstraction of methane: A reduced-dimensional model. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.06.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Fu B, Shan X, Zhang DH, Clary DC. Recent advances in quantum scattering calculations on polyatomic bimolecular reactions. Chem Soc Rev 2017; 46:7625-7649. [DOI: 10.1039/c7cs00526a] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review surveys quantum scattering calculations on chemical reactions of polyatomic molecules in the gas phase published in the last ten years.
Collapse
Affiliation(s)
- Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xiao Shan
- Physical and Theoretical Chemistry Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - David C. Clary
- Physical and Theoretical Chemistry Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| |
Collapse
|
13
|
Collins MA. Can Systematic Molecular Fragmentation Be Applied to Direct Ab Initio Molecular Dynamics? J Phys Chem A 2016; 120:9281-9291. [DOI: 10.1021/acs.jpca.6b08739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael A. Collins
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
14
|
Meng Q, Chen J, Zhang DH. Ring polymer molecular dynamics fast computation of rate coefficients on accurate potential energy surfaces in local configuration space: Application to the abstraction of hydrogen from methane. J Chem Phys 2016; 144:154312. [DOI: 10.1063/1.4947097] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Qingyong Meng
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian, China
| | - Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian, China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian, China
| |
Collapse
|
15
|
Zhang Z, Chen J, Yang M, Zhang DH. Time-Dependent Wave Packet Study of the H2 + CH3 → H + CH4 Reaction. J Phys Chem A 2015; 119:12480-4. [DOI: 10.1021/acs.jpca.5b07937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhaojun Zhang
- State Key Laboratory of Molecular Reaction
Dynamics and Center for Theoretical Computational Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Jun Chen
- State Key Laboratory of Molecular Reaction
Dynamics and Center for Theoretical Computational Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Minghui Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular
Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute
of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction
Dynamics and Center for Theoretical Computational Chemistry, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
16
|
Meng Q, Chen J, Zhang DH. Communication: Rate coefficients of the H + CH4 → H2 + CH3 reaction from ring polymer molecular dynamics on a highly accurate potential energy surface. J Chem Phys 2015; 143:101102. [DOI: 10.1063/1.4930860] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Qingyong Meng
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian, China
| | - Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian, China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian, China
| |
Collapse
|
17
|
Li J, Chen J, Zhao Z, Xie D, Zhang DH, Guo H. A permutationally invariant full-dimensional ab initio potential energy surface for the abstraction and exchange channels of the H + CH4 system. J Chem Phys 2015; 142:204302. [DOI: 10.1063/1.4921412] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhiqiang Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
18
|
Welsch R, Manthe U. Full-dimensional and reduced-dimensional calculations of initial state-selected reaction probabilities studying the H + CH4 → H2 + CH3 reaction on a neural network PES. J Chem Phys 2015; 142:064309. [DOI: 10.1063/1.4906825] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ralph Welsch
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|