1
|
Herrero C, Ediger MD, Berthier L. Front propagation in ultrastable glasses is dynamically heterogeneous. J Chem Phys 2023; 159:114504. [PMID: 37724735 DOI: 10.1063/5.0168506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
Upon heating, ultrastable glassy films transform into liquids via a propagating equilibration front, resembling the heterogeneous melting of crystals. A microscopic understanding of this robust phenomenology is, however, lacking because experimental resolution is limited. We simulate the heterogeneous transformation kinetics of ultrastable configurations prepared using the swap Monte Carlo algorithm, thus allowing a direct comparison with experiments. We resolve the liquid-glass interface both in space and in time as well as the underlying particle motion responsible for its propagation. We perform a detailed statistical analysis of the interface geometry and kinetics over a broad range of temperatures. We show that the dynamic heterogeneity of the bulk liquid is passed on to the front that propagates heterogeneously in space and intermittently in time. This observation allows us to relate the averaged front velocity to the equilibrium diffusion coefficient of the liquid. We suggest that an experimental characterization of the interface geometry during the heterogeneous devitrification of ultrastable glassy films could provide direct experimental access to the long-sought characteristic length scale of dynamic heterogeneity in bulk supercooled liquids.
Collapse
Affiliation(s)
- Cecilia Herrero
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Mark D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
2
|
Herrero C, Scalliet C, Ediger MD, Berthier L. Two-step devitrification of ultrastable glasses. Proc Natl Acad Sci U S A 2023; 120:e2220824120. [PMID: 37040403 PMCID: PMC10120036 DOI: 10.1073/pnas.2220824120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/11/2023] [Indexed: 04/12/2023] Open
Abstract
The discovery of ultrastable glasses raises novel challenges about glassy systems. Recent experiments studied the macroscopic devitrification of ultrastable glasses into liquids upon heating but lacked microscopic resolution. We use molecular dynamics simulations to analyze the kinetics of this transformation. In the most stable systems, devitrification occurs after a very large time, but the liquid emerges in two steps. At short times, we observe the rare nucleation and slow growth of isolated droplets containing a liquid maintained under pressure by the rigidity of the surrounding glass. At large times, pressure is released after the droplets coalesce into large domains, which accelerates devitrification. This two-step process produces pronounced deviations from the classical Avrami kinetics and explains the emergence of a giant lengthscale characterizing the devitrification of bulk ultrastable glasses. Our study elucidates the nonequilibrium kinetics of glasses following a large temperature jump, which differs from both equilibrium relaxation and aging dynamics, and will guide future experimental studies.
Collapse
Affiliation(s)
- Cecilia Herrero
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier34095, France
| | - Camille Scalliet
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI53706
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier34095, France
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| |
Collapse
|
3
|
Ozawa M, Iwashita Y, Kob W, Zamponi F. Creating bulk ultrastable glasses by random particle bonding. Nat Commun 2023; 14:113. [PMID: 36611023 PMCID: PMC9825381 DOI: 10.1038/s41467-023-35812-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
A recent breakthrough in glass science has been the synthesis of ultrastable glasses via physical vapor deposition techniques. These samples display enhanced thermodynamic, kinetic and mechanical stability, with important implications for fundamental science and technological applications. However, the vapor deposition technique is limited to atomic, polymer and organic glass-formers and is only able to produce thin film samples. Here, we propose a novel approach to generate ultrastable glassy configurations in the bulk, via random particle bonding, and using computer simulations we show that this method does indeed allow for the production of ultrastable glasses. Our technique is in principle applicable to any molecular or soft matter system, such as colloidal particles with tunable bonding interactions, thus opening the way to the design of a large class of ultrastable glasses.
Collapse
Affiliation(s)
- Misaki Ozawa
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Walter Kob
- Laboratoire Charles Coulomb, University of Montpellier and CNRS, F-34095, Montpellier, France
| | - Francesco Zamponi
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
4
|
Rodriguez-Tinoco C, Gonzalez-Silveira M, Ramos MA, Rodriguez-Viejo J. Ultrastable glasses: new perspectives for an old problem. LA RIVISTA DEL NUOVO CIMENTO 2022; 45:325-406. [DOI: 10.1007/s40766-022-00029-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2025]
Abstract
AbstractUltrastable glasses (mostly prepared from the vapor phase under optimized deposition conditions) represent a unique class of materials with low enthalpies and high kinetic stabilities. These highly stable and dense glasses show unique physicochemical properties, such as high thermal stability, improved mechanical properties or anomalous transitions into the supercooled liquid, offering unprecedented opportunities to understand many aspects of the glassy state. Their improved properties with respect to liquid-cooled glasses also open new prospects to their use in applications where liquid-cooled glasses failed or where not considered as usable materials. In this review article we summarize the state of the art of vapor-deposited (and other) ultrastable glasses with a focus on the mechanism of equilibration, the transformation to the liquid state and the low temperature properties. The review contains information on organic, metallic, polymeric and chalcogenide glasses and an updated list with relevant properties of all materials known today to form a stable glass.
Collapse
|
5
|
Luo Q, Zhang Z, Li D, Luo P, Wang W, Shen B. Nanoscale-to-Mesoscale Heterogeneity and Percolating Favored Clusters Govern Ultrastability of Metallic Glasses. NANO LETTERS 2022; 22:2867-2873. [PMID: 35298183 DOI: 10.1021/acs.nanolett.1c05039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Comprehending and controlling the stability of glasses is one of the most challenging issues in glass science. Here we explore the microscopic origin of the ultrastability of a Cu-Zr-Al metallic glass (MG). It is revealed that the ultrastable window (0.7-0.8 Tg) of MGs correlates with the enhanced degree of nanoscale-to-mesoscale structural/mechanical heterogeneity and the connection of stability-favored clusters. On one side, the increased fraction of stability-favored clusters promotes the formation of a stable percolating network through a critical percolation transition, which is essential to form ultrastable MG. On the other side, the enhanced heterogeneity arising from an increased distribution in local clusters may promote synergistically a more efficient and frustrated packing of amorphous structure, contributing to the ultrastability. The present work sheds new light on the stability of MGs and provides a step toward next-generation MGs with superior stability and performances.
Collapse
Affiliation(s)
- Qiang Luo
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Zhengguo Zhang
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Donghui Li
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Peng Luo
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Weihua Wang
- Institute of Physics, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Baolong Shen
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
Flenner E, Berthier L, Charbonneau P, Fullerton CJ. Front-Mediated Melting of Isotropic Ultrastable Glasses. PHYSICAL REVIEW LETTERS 2019; 123:175501. [PMID: 31702270 DOI: 10.1103/physrevlett.123.175501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 06/10/2023]
Abstract
Ultrastable vapor-deposited glasses display uncommon material properties. Most remarkably, upon heating they are believed to melt via a liquid front that originates at the free surface and propagates over a mesoscopic crossover length, before crossing over to bulk melting. We combine swap Monte Carlo with molecular dynamics simulations to prepare and melt isotropic amorphous films of unprecedendtly high kinetic stability. We are able to directly observe both bulk and front melting, and the crossover between them. We measure the front velocity over a broad range of conditions, and a crossover length scale that grows to nearly 400 particle diameters in the regime accessible to simulations. Our results disentangle the relative roles of kinetic stability and vapor deposition in the physical properties of stable glasses.
Collapse
Affiliation(s)
- Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins Colorado 80523, USA
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Christopher J Fullerton
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Rodríguez-Tinoco C, Gonzalez-Silveira M, Ràfols-Ribé J, Vila-Costa A, Martinez-Garcia JC, Rodríguez-Viejo J. Surface-Bulk Interplay in Vapor-Deposited Glasses: Crossover Length and the Origin of Front Transformation. PHYSICAL REVIEW LETTERS 2019; 123:155501. [PMID: 31702315 DOI: 10.1103/physrevlett.123.155501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Thin film stable glasses transform into a liquid by a moving front that propagates from surfaces or interfaces with higher mobility. We use calorimetric data of vapor-deposited glasses of different thicknesses and stabilities to identify the role of glassy and liquid dynamics on the transformation process. By invoking the existence of an ultrathin intermediate layer whose transformation strongly depends on the properties of both the liquid and the glass, we show that the recovery to equilibrium is driven by the mismatch in the dynamics between glass and liquid. The lifetime of this intermediate layer associated with the moving front is the geometric mean between the bulk transformation time and the alpha relaxation time. Within this view, we explain the observed dependencies of the growth front velocity and the crossover length with both stability and temperature. Extrapolation of these results points towards ordinary thin film glasses transforming via a frontlike transformation mechanism if heated sufficiently fast, establishing a close connection between vapor-deposited and liquid-cooled glasses.
Collapse
Affiliation(s)
- Cristian Rodríguez-Tinoco
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marta Gonzalez-Silveira
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Joan Ràfols-Ribé
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ana Vila-Costa
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Julio Cesar Martinez-Garcia
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier Rodríguez-Viejo
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
8
|
Ràfols-Ribé J, Vila-Costa A, Rodríguez-Tinoco C, Lopeandía AF, Rodríguez-Viejo J, Gonzalez-Silveira M. Kinetic arrest of front transformation to gain access to the bulk glass transition in ultrathin films of vapour-deposited glasses. Phys Chem Chem Phys 2018; 20:29989-29995. [PMID: 30480265 DOI: 10.1039/c8cp06264a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Physical vapour deposition has emerged as the technique to obtain glasses of unbeatable stability. However, vapour deposited glasses exhibit a different transformation mechanism to ordinary glasses produced from liquid. Vapour deposited glasses of different thermodynamic stability, from ultrastable to those similar to ordinary glasses, transform into the liquid state via front propagation starting at the most mobile surfaces/interfaces, at least for the first stages of the transformation, eventually dynamiting the high thermal stability achieved for some of these glasses. A previous study showed that it was possible to avoid this transformation front by capping the films with a higher Tg material. We show here fast calorimetry measurements on TPD and IMC vapour deposited glasses capped respectively with TCTA and TPD. This capped configuration is very effective in suppressing the heterogeneous transformation of the stable glasses into the supercooled liquid and shifts the devitrification temperature to much higher values, where the bulk homogeneous mechanism becomes active. This approach may be useful to further study the bulk glass transition in thin films.
Collapse
Affiliation(s)
- Joan Ràfols-Ribé
- Group of Nanomaterials and Microsystems, Physics Department, Universitat Autònoma de Barcelona, Barcelona, 08193 - Bellaterra, Spain.
| | | | | | | | | | | |
Collapse
|
9
|
Emergence of a substrate-temperature-dependent dielectric process in a prototypical vapor deposited hole-transport glass. Sci Rep 2018; 8:1380. [PMID: 29358585 PMCID: PMC5778027 DOI: 10.1038/s41598-018-19604-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/21/2017] [Indexed: 11/09/2022] Open
Abstract
Since the discovery of ultrastability, vapor deposition has emerged as a relevant tool to further understand the nature of glasses. By this route, the density and average orientation of glasses can be tuned by selecting the proper deposition conditions. Dielectric spectroscopy, on the other hand, is a basic technique to study the properties of glasses at a molecular level, probing the dynamics of dipoles or charge carriers. Here, and for the first time, we explore the dielectric behavior of vapor deposited N,N-Diphenyl-N,N’bis(methylphenyl)-1,1′-biphenyl-4,4′-diamines (TPD), a prototypical hole-transport material, prepared at different deposition temperatures. We report the emergence of a new relaxation process which is not present in the ordinary glass. We associate this process to the Maxwell-Wagner polarization observed in heterogeneous systems, and induced by the enhanced mobility of charge carriers in the more ordered vapor deposited glasses. Furthermore, the associated activation energy establishes a clear distinction between two families of glasses, depending on the selected substrate-temperature range. This finding positions dielectric spectroscopy as a unique tool to investigate the structural and electronic properties of charge transport materials and remarks the importance of controlling the deposition conditions, historically forgotten in the preparation of optoelectronic devices.
Collapse
|
10
|
Ràfols-Ribé J, Gonzalez-Silveira M, Rodríguez-Tinoco C, Rodríguez-Viejo J. The role of thermodynamic stability in the characteristics of the devitrification front of vapour-deposited glasses of toluene. Phys Chem Chem Phys 2017; 19:11089-11097. [DOI: 10.1039/c7cp00741h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glass stability and molecular shape affect the transformation mechanism of vapour deposited glasses.
Collapse
Affiliation(s)
- Joan Ràfols-Ribé
- Grup de Nanomaterials i Microsistemes
- Physics Department
- Universtitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| | - Marta Gonzalez-Silveira
- Grup de Nanomaterials i Microsistemes
- Physics Department
- Universtitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| | - Cristian Rodríguez-Tinoco
- Grup de Nanomaterials i Microsistemes
- Physics Department
- Universtitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| | - Javier Rodríguez-Viejo
- Grup de Nanomaterials i Microsistemes
- Physics Department
- Universtitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| |
Collapse
|
11
|
Staley H, Flenner E, Szamel G. Kinetic stability and energetics of simulated glasses createdby constant pressure cooling. J Chem Phys 2016; 145:184505. [PMID: 27846707 DOI: 10.1063/1.4967337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We use computer simulations to study the cooling rate dependence of the stability and energetics of model glasses created at constant pressure conditions and compare the results with glasses formed at constant volume conditions. To examine the stability, we determine the time it takes for a glass cooled and reheated at constant pressure to transform back into a liquid, ttrans, and calculate the stability ratio S=ttrans/τα, where τα is the equilibrium relaxation time of the liquid. We find that, for slow enough cooling rates, cooling and reheating at constant pressure results in a larger stability ratio S than for cooling and reheating at constant volume. We also compare the energetics of glasses obtained by cooling while maintaining constant pressure with those of glasses created by cooling from the same state point while maintaining constant volume. We find that cooling at constant pressure results in glasses with lower average potential energy and average inherent structure energy. We note that in model simulations of the vapor deposition process, glasses are created under constant pressure conditions, and thus they should be compared to glasses obtained by constant pressure cooling.
Collapse
Affiliation(s)
- Hannah Staley
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
12
|
Tylinski M, Chua YZ, Beasley MS, Schick C, Ediger MD. Vapor-deposited alcohol glasses reveal a wide range of kinetic stability. J Chem Phys 2016; 145:174506. [DOI: 10.1063/1.4966582] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- M. Tylinski
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Y. Z. Chua
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany and Competence Centre CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany
| | - M. S. Beasley
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - C. Schick
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany and Competence Centre CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany
| | - M. D. Ediger
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
13
|
Reid DR, Lyubimov I, Ediger MD, de Pablo JJ. Age and structure of a model vapour-deposited glass. Nat Commun 2016; 7:13062. [PMID: 27762262 PMCID: PMC5080435 DOI: 10.1038/ncomms13062] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/31/2016] [Indexed: 01/31/2023] Open
Abstract
Glass films prepared by a process of physical vapour deposition have been shown to have thermodynamic and kinetic stability comparable to those of ordinary glasses aged for thousands of years. A central question in the study of vapour-deposited glasses, particularly in light of new knowledge regarding anisotropy in these materials, is whether the ultra-stable glassy films formed by vapour deposition are ever equivalent to those obtained by liquid cooling. Here we present a computational study of vapour deposition for a two-dimensional glass forming liquid using a methodology, which closely mimics experiment. We find that for the model considered here, structures that arise in vapour-deposited materials are statistically identical to those observed in ordinary glasses, provided the two are compared at the same inherent structure energy. We also find that newly deposited hot molecules produce cascades of hot particles that propagate far into the film, possibly influencing the relaxation of the material. Vapour-deposited glasses show high stability compared to that of aged glasses, but a structural understanding remains elusive. Here, Reid et al. find that vapour deposited and liquid-cooled glasses show identical structures, suggesting these two classes of films lie on the same path to equilibrium.
Collapse
Affiliation(s)
- Daniel R Reid
- Institute for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA
| | - Ivan Lyubimov
- Institute for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Juan J de Pablo
- Institute for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA.,Institute for Molecular Engineering, Argonne National Laboratory, 9700 Cass Ave, Lemont, Illinois 60439, USA
| |
Collapse
|
14
|
Berthier L, Charbonneau P, Jin Y, Parisi G, Seoane B, Zamponi F. Growing timescales and lengthscales characterizing vibrations of amorphous solids. Proc Natl Acad Sci U S A 2016; 113:8397-401. [PMID: 27402768 PMCID: PMC4968735 DOI: 10.1073/pnas.1607730113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Low-temperature properties of crystalline solids can be understood using harmonic perturbations around a perfect lattice, as in Debye's theory. Low-temperature properties of amorphous solids, however, strongly depart from such descriptions, displaying enhanced transport, activated slow dynamics across energy barriers, excess vibrational modes with respect to Debye's theory (i.e., a boson peak), and complex irreversible responses to small mechanical deformations. These experimental observations indirectly suggest that the dynamics of amorphous solids becomes anomalous at low temperatures. Here, we present direct numerical evidence that vibrations change nature at a well-defined location deep inside the glass phase of a simple glass former. We provide a real-space description of this transition and of the rapidly growing time- and lengthscales that accompany it. Our results provide the seed for a universal understanding of low-temperature glass anomalies within the theoretical framework of the recently discovered Gardner phase transition.
Collapse
Affiliation(s)
- Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221, Université de Montpellier and CNRS, 34095 Montpellier, France
| | - Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, NC 27708; Department of Physics, Duke University, Durham, NC 27708
| | - Yuliang Jin
- Department of Chemistry, Duke University, Durham, NC 27708; Dipartimento di Fisica, Sapienza Universitá di Roma, Istituto Nazionale di Fisica Nucleare, Sezione di Roma I, Istituto per i Processi Chimico-Fisici-Consiglio Nazionale delle Ricerche, I-00185 Rome, Italy; Laboratoire de Physique Théorique, École Normale Supérieure & Université de Recherche Paris Sciences et Lettres, Pierre et Marie Curie & Sorbonne Universités, UMR 8549 CNRS, 75005 Paris, France,
| | - Giorgio Parisi
- Dipartimento di Fisica, Sapienza Universitá di Roma, Istituto Nazionale di Fisica Nucleare, Sezione di Roma I, Istituto per i Processi Chimico-Fisici-Consiglio Nazionale delle Ricerche, I-00185 Rome, Italy;
| | - Beatriz Seoane
- Laboratoire de Physique Théorique, École Normale Supérieure & Université de Recherche Paris Sciences et Lettres, Pierre et Marie Curie & Sorbonne Universités, UMR 8549 CNRS, 75005 Paris, France, Instituto de Biocomputación y Física de Sistemas Complejos, 50009 Zaragoza, Spain
| | - Francesco Zamponi
- Laboratoire de Physique Théorique, École Normale Supérieure & Université de Recherche Paris Sciences et Lettres, Pierre et Marie Curie & Sorbonne Universités, UMR 8549 CNRS, 75005 Paris, France
| |
Collapse
|
15
|
Jack RL, Berthier L. The melting of stable glasses is governed by nucleation-and-growth dynamics. J Chem Phys 2016; 144:244506. [PMID: 27369526 DOI: 10.1063/1.4954327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We discuss the microscopic mechanisms by which low-temperature amorphous states, such as ultrastable glasses, transform into equilibrium fluids, after a sudden temperature increase. Experiments suggest that this process is similar to the melting of crystals, thus differing from the behaviour found in ordinary glasses. We rationalize these observations using the physical idea that the transformation process takes place close to a "hidden" equilibrium first-order phase transition, which is observed in systems of coupled replicas. We illustrate our views using simulation results for a simple two-dimensional plaquette spin model, which is known to exhibit a range of glassy behaviour. Our results suggest that nucleation-and-growth dynamics, as found near ordinary first-order transitions, is also the correct theoretical framework to analyse the melting of ultrastable glasses. Our approach provides a unified understanding of multiple experimental observations, such as propagating melting fronts, large kinetic stability ratios, and "giant" dynamic length scales. We also provide a comprehensive discussion of available theoretical pictures proposed in the context of ultrastable glass melting.
Collapse
Affiliation(s)
- Robert L Jack
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221 CNRS-Université de Montpellier, 34095 Montpellier, France
| |
Collapse
|
16
|
Zhou Y, Milner ST. Static lengths in glass-forming monodisperse hard-sphere fluids from periodic array pinning. SOFT MATTER 2016; 12:402-407. [PMID: 26473276 DOI: 10.1039/c5sm02011e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We explore the static length in glass-forming hard-sphere liquids revealed by the response of dynamical properties (diffusion coefficient D and α relaxation time τα) to a regular array of pinned particles. By assuming a universal scaling form, we find data can be excellently collapsed onto a master curve, from which relative length scales can be extracted. By exploiting a crystal-avoiding simulation method that suppresses crystallization while preserving dynamics, we can study monodisperse as well as polydisperse systems. The static length obtained from dynamical property Q (τα and D) scales as log Q ∼ ξ, with ψ ≈ 1.
Collapse
Affiliation(s)
- Yuxing Zhou
- Department of Chemical Engineering, Pennsylvania State University, University Park, State College, PA 16803, USA.
| | - Scott T Milner
- Department of Chemical Engineering, Pennsylvania State University, University Park, State College, PA 16803, USA.
| |
Collapse
|
17
|
Tylinski M, Sepúlveda A, Walters DM, Chua YZ, Schick C, Ediger MD. Vapor-deposited glasses of methyl-m-toluate: How uniform is stable glass transformation? J Chem Phys 2015; 143:244509. [PMID: 26723694 DOI: 10.1063/1.4938420] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AC chip nanocalorimetry is used to characterize vapor-deposited glasses of methyl-m-toluate (MMT). Physical vapor deposition can prepare MMT glasses that have lower heat capacity and significantly higher kinetic stability compared to liquid-cooled glasses. When heated, highly stable MMT glasses transform into the supercooled liquid via propagating fronts. We present the first quantitative analysis of the temporal and spatial uniformities of these transformation fronts. The front velocity varies by less than 4% over the duration of the transformation. For films 280 nm thick, the transformation rates at different spatial positions in the film differ by about 25%; this quantity may be related to spatially heterogeneous dynamics in the stable glass. Our characterization of the kinetic stability of MMT stable glasses extends previous dielectric experiments and is in excellent agreement with these results.
Collapse
Affiliation(s)
- M Tylinski
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - A Sepúlveda
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Diane M Walters
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Y Z Chua
- Institute of Physics, University of Rostock, Wismarsche Str. 43-45, 18051 Rostock, Germany
| | - C Schick
- Institute of Physics, University of Rostock, Wismarsche Str. 43-45, 18051 Rostock, Germany
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
18
|
Charbonneau P, Jin Y, Parisi G, Rainone C, Seoane B, Zamponi F. Numerical detection of the Gardner transition in a mean-field glass former. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012316. [PMID: 26274170 DOI: 10.1103/physreve.92.012316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 06/04/2023]
Abstract
Recent theoretical advances predict the existence, deep into the glass phase, of a novel phase transition, the so-called Gardner transition. This transition is associated with the emergence of a complex free energy landscape composed of many marginally stable sub-basins within a glass metabasin. In this study, we explore several methods to detect numerically the Gardner transition in a simple structural glass former, the infinite-range Mari-Kurchan model. The transition point is robustly located from three independent approaches: (i) the divergence of the characteristic relaxation time, (ii) the divergence of the caging susceptibility, and (iii) the abnormal tail in the probability distribution function of cage order parameters. We show that the numerical results are fully consistent with the theoretical expectation. The methods we propose may also be generalized to more realistic numerical models as well as to experimental systems.
Collapse
Affiliation(s)
- Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Yuliang Jin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Dipartimento di Fisica, Sapienza Universitá di Roma, INFN, Sezione di Roma I, IPFC - CNR, Piazzale Aldo Moro 2, I-00185 Roma, Italy
- LPT, École Normale Supérieure, UMR 8549 CNRS, 24 Rue Lhomond, 75005 Paris, France
| | - Giorgio Parisi
- Dipartimento di Fisica, Sapienza Universitá di Roma, INFN, Sezione di Roma I, IPFC - CNR, Piazzale Aldo Moro 2, I-00185 Roma, Italy
| | - Corrado Rainone
- Dipartimento di Fisica, Sapienza Universitá di Roma, INFN, Sezione di Roma I, IPFC - CNR, Piazzale Aldo Moro 2, I-00185 Roma, Italy
- LPT, École Normale Supérieure, UMR 8549 CNRS, 24 Rue Lhomond, 75005 Paris, France
| | - Beatriz Seoane
- Dipartimento di Fisica, Sapienza Universitá di Roma, INFN, Sezione di Roma I, IPFC - CNR, Piazzale Aldo Moro 2, I-00185 Roma, Italy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50009 Zaragoza, Spain
| | - Francesco Zamponi
- LPT, École Normale Supérieure, UMR 8549 CNRS, 24 Rue Lhomond, 75005 Paris, France
| |
Collapse
|
19
|
Staley H, Flenner E, Szamel G. Cooling-rate dependence of kinetic and mechanical stabilities of simulated glasses. J Chem Phys 2015; 142:244508. [PMID: 26133442 DOI: 10.1063/1.4922937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Glasses created through vapor deposition on a substrate maintained at a proper temperature possess higher kinetic and mechanical stabilities than glasses created by cooling at a constant rate. Molecular dynamics simulations are being increasingly used to understand why vapor deposition improves glasses' stability. There are, however, few detailed molecular dynamics studies of the dependence of the properties of glasses cooled at a constant rate on the rate of cooling. Thus, there is no clear benchmark for comparing ultrastable simulated glasses to simulated glasses prepared through cooling at a constant rate. Here, we examine the dependence of the properties of simulated glasses on the cooling rate used in their preparation. We examine the kinetic stability by measuring the time it takes for a glass to transform back to a liquid upon heating and heterogeneous dynamics during heating. We also examine properties of the energy landscape, and we evaluate mechanical stability by calculating the shear modulus of the glass. The methods outlined here can be used to assess kinetic and mechanical stabilities of simulated glasses generated using specialized algorithms and provide a benchmark for those algorithms.
Collapse
Affiliation(s)
- Hannah Staley
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
20
|
Berthier L, Jack RL. Evidence for a Disordered Critical Point in a Glass-Forming Liquid. PHYSICAL REVIEW LETTERS 2015; 114:205701. [PMID: 26047241 DOI: 10.1103/physrevlett.114.205701] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 06/04/2023]
Abstract
Using computer simulations of an atomistic glass-forming liquid, we investigate the fluctuations of the overlap between a fluid configuration and a quenched reference system. We find that large fluctuations of the overlap develop as temperature decreases, consistent with the existence of the random critical point that is predicted by effective field theories. We discuss the scaling of fluctuations near the presumed critical point, comparing the observed behavior with that of the random-field Ising model. We argue that this critical point directly reveals the existence of an interfacial tension between amorphous metastable states, a quantity relevant both for equilibrium relaxation and for nonequilibrium melting of stable glass configurations.
Collapse
Affiliation(s)
- Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221 CNRS-Université de Montpellier, 34095 Montpellier, France
| | - Robert L Jack
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
21
|
Li YW, Zhu YL, Sun ZY. Decoupling of relaxation and diffusion in random pinning glass-forming liquids. J Chem Phys 2015; 142:124507. [DOI: 10.1063/1.4916208] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Yan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
22
|
Dalal SS, Ediger MD. Influence of Substrate Temperature on the Transformation Front Velocities That Determine Thermal Stability of Vapor-Deposited Glasses. J Phys Chem B 2015; 119:3875-82. [DOI: 10.1021/jp512905a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shakeel S. Dalal
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - M. D. Ediger
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
23
|
Rodríguez-Tinoco C, Gonzalez-Silveira M, Ràfols-Ribé J, Lopeandía AF, Rodríguez-Viejo J. Transformation kinetics of vapor-deposited thin film organic glasses: the role of stability and molecular packing anisotropy. Phys Chem Chem Phys 2015; 17:31195-201. [DOI: 10.1039/c5cp04692k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The growth front velocity of indomethacin glasses depends on deposition conditions but is not unambigously determined by its thermodynamic stability when the structure is not completely isotropic.
Collapse
Affiliation(s)
- Cristian Rodríguez-Tinoco
- Grup de Nanomaterials i Microsistemes
- Physics Department
- Universitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| | - Marta Gonzalez-Silveira
- Grup de Nanomaterials i Microsistemes
- Physics Department
- Universitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| | - Joan Ràfols-Ribé
- Grup de Nanomaterials i Microsistemes
- Physics Department
- Universitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| | - Aitor F. Lopeandía
- Grup de Nanomaterials i Microsistemes
- Physics Department
- Universitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| | - Javier Rodríguez-Viejo
- Grup de Nanomaterials i Microsistemes
- Physics Department
- Universitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| |
Collapse
|