1
|
Bringas M, Lombardi LE, Luque FJ, Estrin DA, Capece L. Ligand Binding Rate Constants in Heme Proteins Using Markov State Models and Molecular Dynamics Simulations. Chemphyschem 2019; 20:2451-2460. [PMID: 31365183 DOI: 10.1002/cphc.201900589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/30/2019] [Indexed: 11/07/2022]
Abstract
Computer simulation studies of the molecular basis for ligand migration in proteins allow the description of key events such as the transition between docking sites, displacement of existing ligands and solvent molecules, and open/closure of specific "gates", among others. In heme proteins, ligand migration from the solvent to the active site preludes the binding to the heme iron and triggers different functions. In this work, molecular dynamics simulations, a Markov State Model of migration and empirical kinetic equations are combined to study the migration of O2 and NO in two truncated hemoglobins of Mycobacterium tuberculosis (Mt-TrHbN and Mt-TrHbO). For Mt-TrHbN, we show that the difference in the association constant in the oxy and deoxy states relies mainly in the displacement of water molecules anchored in the distal cavity in the deoxy form. The results here provide a valuable approach to study ligand migration in globins.
Collapse
Affiliation(s)
- Mauro Bringas
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.,Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), C1428EGA, Buenos Aires, Argentina
| | - Leandro E Lombardi
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - CONICET, C1428EGA, Buenos Aires, Argentina
| | - F Javier Luque
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Campus Torribera, 08921, Santa Coloma de Gramenet, Spain.,Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028, Barcelona, Spain
| | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.,Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), C1428EGA, Buenos Aires, Argentina
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA, Buenos Aires, Argentina.,Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
2
|
El Hage K, Mondal P, Meuwly M. Free energy simulations for protein ligand binding and stability. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2017.1416115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Krystel El Hage
- Department of Chemistry, University of Basel , Basel, Switzerland
| | - Padmabati Mondal
- Department of Chemistry, University of Basel , Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel , Basel, Switzerland
| |
Collapse
|
3
|
Ito R, Yoshidome T. An accurate computational method for an order parameter with a Markov state model constructed using a manifold-learning technique. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2017.10.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
El Hage K, Brickel S, Hermelin S, Gaulier G, Schmidt C, Bonacina L, van Keulen SC, Bhattacharyya S, Chergui M, Hamm P, Rothlisberger U, Wolf JP, Meuwly M. Implications of short time scale dynamics on long time processes. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061507. [PMID: 29308419 PMCID: PMC5741438 DOI: 10.1063/1.4996448] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/15/2017] [Indexed: 05/02/2023]
Abstract
This review provides a comprehensive overview of the structural dynamics in topical gas- and condensed-phase systems on multiple length and time scales. Starting from vibrationally induced dissociation of small molecules in the gas phase, the question of vibrational and internal energy redistribution through conformational dynamics is further developed by considering coupled electron/proton transfer in a model peptide over many orders of magnitude. The influence of the surrounding solvent is probed for electron transfer to the solvent in hydrated I-. Next, the dynamics of a modified PDZ domain over many time scales is analyzed following activation of a photoswitch. The hydration dynamics around halogenated amino acid side chains and their structural dynamics in proteins are relevant for iodinated TyrB26 insulin. Binding of nitric oxide to myoglobin is a process for which experimental and computational analyses have converged to a common view which connects rebinding time scales and the underlying dynamics. Finally, rhodopsin is a paradigmatic system for multiple length- and time-scale processes for which experimental and computational methods provide valuable insights into the functional dynamics. The systems discussed here highlight that for a comprehensive understanding of how structure, flexibility, energetics, and dynamics contribute to functional dynamics, experimental studies in multiple wavelength regions and computational studies including quantum, classical, and more coarse grained levels are required.
Collapse
Affiliation(s)
- Krystel El Hage
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sebastian Brickel
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sylvain Hermelin
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Geoffrey Gaulier
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Cédric Schmidt
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Luigi Bonacina
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Siri C van Keulen
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | | | - Majed Chergui
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Jean-Pierre Wolf
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
5
|
Diamantis P, Unke OT, Meuwly M. Migration of small ligands in globins: Xe diffusion in truncated hemoglobin N. PLoS Comput Biol 2017; 13:e1005450. [PMID: 28358830 PMCID: PMC5391117 DOI: 10.1371/journal.pcbi.1005450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/13/2017] [Accepted: 03/13/2017] [Indexed: 11/18/2022] Open
Abstract
In heme proteins, the efficient transport of ligands such as NO or O2 to the binding site is achieved via ligand migration networks. A quantitative assessment of ligand diffusion in these networks is thus essential for a better understanding of the function of these proteins. For this, Xe migration in truncated hemoglobin N (trHbN) of Mycobacterium Tuberculosis was studied using molecular dynamics simulations. Transitions between pockets of the migration network and intra-pocket relaxation occur on similar time scales (10 ps and 20 ps), consistent with low free energy barriers (1-2 kcal/mol). Depending on the pocket from where Xe enters a particular transition, the conformation of the side chains lining the transition region differs which highlights the coupling between ligand and protein degrees of freedom. Furthermore, comparison of transition probabilities shows that Xe migration in trHbN is a non-Markovian process. Memory effects arise due to protein rearrangements and coupled dynamics as Xe moves through it. Binding and transport of ligands in proteins is essential, in particular in globular proteins which often exhibit internal cavities. In truncated Hemoglobin N (trHbN) these cavities are arranged as a network with particular connectivities. The present work supports the notion that ligand diffusion in trHbN is an active process and coupled to the protein dynamics. Furthermore, transition probabilities between neighboring pockets depend on the location from where the ligand entered the transition, which is typical for non-Markovian processes. Hence, ligand migration in trHbN exhibits memory effects due to dynamical coupling between the protein and ligand motion.
Collapse
Affiliation(s)
| | - Oliver T. Unke
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
6
|
Structural Plasticity in Globins: Role of Protein Dynamics in Defining Ligand Migration Pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:59-80. [PMID: 27567484 DOI: 10.1016/bs.apcsb.2016.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Globins are a family of proteins characterized by the presence of the heme prosthetic group and involved in variety of biological functions in the cell. Due to their biological relevance and widespread distribution in all kingdoms of life, intense research efforts have been devoted to disclosing the relationships between structural features, protein dynamics, and function. Particular attention has been paid to the impact of differences in amino acid sequence on the topological features of docking sites and cavities and to the influence of conformational flexibility in facilitating the migration of small ligands through these cavities. Often, tunnels are carved in the interior of globins, and ligand exchange is regulated by gating residues. Understanding the subtle intricacies that relate the differences in sequence with the structural and dynamical features of globins with the ultimate aim of rationalizing the thermodynamics and kinetics of ligand binding continues to be a major challenge in the field. Due to the evolution of computational techniques, significant advances into our understanding of these questions have been made. In this review we focus our attention on the analysis of the ligand migration pathways as well as the function of the structural cavities and tunnels in a series of representative globins, emphasizing the synergy between experimental and theoretical approaches to gain a comprehensive knowledge into the molecular mechanisms of this diverse family of proteins.
Collapse
|
7
|
Gupta PK, Meuwly M. Ligand and interfacial dynamics in a homodimeric hemoglobin. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:012003. [PMID: 26958581 PMCID: PMC4760971 DOI: 10.1063/1.4940228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/08/2016] [Indexed: 05/18/2023]
Abstract
The structural dynamics of dimeric hemoglobin (HbI) from Scapharca inaequivalvis in different ligand-binding states is studied from atomistic simulations on the μs time scale. The intermediates are between the fully ligand-bound (R) and ligand-free (T) states. Tertiary structural changes, such as rotation of the side chain of Phe97, breaking of the Lys96-heme salt bridge, and the Fe-Fe separation, are characterized and the water dynamics along the R-T transition is analyzed. All these properties for the intermediates are bracketed by those determined experimentally for the fully ligand-bound and ligand-free proteins, respectively. The dynamics of the two monomers is asymmetric on the 100 ns timescale. Several spontaneous rotations of the Phe97 side chain are observed which suggest a typical time scale of 50-100 ns for this process. Ligand migration pathways include regions between the B/G and C/G helices and, if observed, take place in the 100 ns time scale.
Collapse
Affiliation(s)
- Prashant Kumar Gupta
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|