1
|
Zhang J, Searles DJ, Duignan T. A Method for Efficiently Predicting the Radial Distribution Function and Osmotic Coefficients of Aqueous Electrolyte Solutions. J Chem Theory Comput 2024. [PMID: 39099091 DOI: 10.1021/acs.jctc.4c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The prediction of the structural and thermodynamic properties of electrolyte solutions is critical for a huge range of practical situations where these solutions play a vital role. Theoretical models, such as the continuum solvent model, attempt to explain the behavior of solutions using a coarse-grained description of the interactions of species in the solution, whereas molecular simulations aim to directly compute the behavior of the solution, including the interactions between all ions and molecules in the system. Both methods have limitations: theoretical models are generally less accurate because they rely on assumptions, while molecular simulations require significant computational resources, particularly if higher accuracy is desired. To address these issues, we propose an affordable and effective method that combines the advantages of the modified Poisson-Boltzmann equation (MPBE) with classical molecular dynamics (MD) simulations to predict the radial distribution functions and thermodynamic properties of electrolyte solutions. We demonstrate a method of using the MPBE to compute the short-range potential of mean force (PMF) from the radial distribution functions (RDFs) and vice versa. Furthermore, we provide insights into the relationship between the RDFs and the short-range PMF based on the MPBE. Our analysis reveals that the effective short-range PMFs can be approximately calculated using low concentration simulations but the short-range PMFs are slightly concentration-dependent in simulations at higher concentrations. Additionally, we demonstrate that for concentrated solutions, osmotic coefficients can be calculated in agreement with experiment using a virial approach. This is based on the effective short-range PMFs and RDFs obtained from the MPBE method. Our proposed MPBE can therefore accelerate the calculation of the structural and thermodynamic properties of electrolyte solutions.
Collapse
Affiliation(s)
- Junji Zhang
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Debra J Searles
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Timothy Duignan
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
2
|
Sedano LF, Blazquez S, Vega C. Accuracy limit of non-polarizable four-point water models: TIP4P/2005 vs OPC. Should water models reproduce the experimental dielectric constant? J Chem Phys 2024; 161:044505. [PMID: 39046346 DOI: 10.1063/5.0211871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/30/2024] [Indexed: 07/25/2024] Open
Abstract
The last generation of four center non-polarizable models of water can be divided into two groups: those reproducing the dielectric constant of water, as OPC, and those significantly underestimating its value, as TIP4P/2005. To evaluate the global performance of OPC and TIP4P/2005, we shall follow the test proposed by Vega and Abascal in 2011 evaluating about 40 properties to fairly address this comparison. The liquid-vapor and liquid-solid equilibria are computed, as well as the heat capacities, isothermal compressibilities, surface tensions, densities of different ice polymorphs, the density maximum, equations of state at high pressures, and transport properties. General aspects of the phase diagram are considered by comparing the ratios of different temperatures (namely, the temperature of maximum density, the melting temperature of hexagonal ice, and the critical temperature). The final scores are 7.2 for TIP4P/2005 and 6.3 for OPC. The results of this work strongly suggest that we have reached the limit of what can be achieved with non-polarizable models of water and that the attempt to reproduce the experimental dielectric constant deteriorates the global performance of the water force field. The reason is that the dielectric constant depends on two surfaces (potential energy and dipole moment surfaces), whereas in the absence of an electric field, all properties can be determined simply from just one surface (the potential energy surface). The consequences of the choice of the water model in the modeling of electrolytes in water are also discussed.
Collapse
Affiliation(s)
- L F Sedano
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - S Blazquez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - C Vega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Habibi P, Polat HM, Blazquez S, Vega C, Dey P, Vlugt TJH, Moultos OA. Accurate Free Energies of Aqueous Electrolyte Solutions from Molecular Simulations with Non-polarizable Force Fields. J Phys Chem Lett 2024; 15:4477-4485. [PMID: 38634502 PMCID: PMC11057036 DOI: 10.1021/acs.jpclett.4c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Non-polarizable force fields fail to accurately predict free energies of aqueous electrolytes without compromising the predictive ability for densities and transport properties. A new approach is presented in which (1) TIP4P/2005 water and scaled charge force fields are used to describe the interactions in the liquid phase and (2) an additional Effective Charge Surface (ECS) is used to compute free energies at zero additional computational expense. The ECS is obtained using a single temperature-independent charge scaling parameter per species. Thereby, the chemical potential of water and the free energies of hydration of various aqueous salts (e.g., NaCl and LiCl) are accurately described (deviations less than 5% from experiments), in sharp contrast to calculations where the ECS is omitted (deviations larger than 20%). This approach enables accurate predictions of free energies of aqueous electrolyte solutions using non-polarizable force fields, without compromising liquid-phase properties.
Collapse
Affiliation(s)
- Parsa Habibi
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical
Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
- Department
of Materials Science and Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
| | - H. Mert Polat
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical
Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
| | - Samuel Blazquez
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Vega
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Poulumi Dey
- Department
of Materials Science and Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical
Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical
Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, Netherlands
| |
Collapse
|
4
|
Mantha S, Glisman A, Yu D, Wasserman EP, Backer S, Wang ZG. Adsorption Isotherm and Mechanism of Ca 2+ Binding to Polyelectrolyte. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6212-6219. [PMID: 38497336 PMCID: PMC10976897 DOI: 10.1021/acs.langmuir.3c03640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Polyelectrolytes, such as poly(acrylic acid) (PAA), can effectively mitigate CaCO3 scale formation. Despite their success as antiscalants, the underlying mechanism of binding of Ca2+ to polyelectrolyte chains remains unresolved. Through all-atom molecular dynamics simulations, we constructed an adsorption isotherm of Ca2+ binding to sodium polyacrylate (NaPAA) and investigated the associated binding mechanism. We find that the number of calcium ions adsorbed [Ca2+]ads to the polymer saturates at moderately high concentrations of free calcium ions [Ca2+]aq in the solution. This saturation value is intricately connected with the binding modes accessible to Ca2+ ions when they bind to the polyelectrolyte chain. We identify two dominant binding modes: the first involves binding to at most two carboxylate oxygens on a polyacrylate chain, and the second, termed the high binding mode, involves binding to four or more carboxylate oxygens. As the concentration of free calcium ions [Ca2+]aq increases from low to moderate levels, the polyelectrolyte chain undergoes a conformational transition from an extended coil to a hairpin-like structure, enhancing the accessibility to the high binding mode. At moderate concentrations of [Ca2+]aq, the high binding mode accounts for at least one-third of all binding events. The chain's conformational change and its consequent access to the high binding mode are found to increase the overall Ca2+ ion binding capacity of the polyelectrolyte chain.
Collapse
Affiliation(s)
- Sriteja Mantha
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Alec Glisman
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Decai Yu
- Core
R&D, The Dow Chemical Company, 633 Washington St., Midland, Michigan 48674, United States
| | - Eric P. Wasserman
- Consumer
Solutions R&D, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Scott Backer
- Consumer
Solutions R&D, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Zhen-Gang Wang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Finney AR, Salvalaglio M. Properties of aqueous electrolyte solutions at carbon electrodes: effects of concentration and surface charge on solution structure, ion clustering and thermodynamics in the electric double layer. Faraday Discuss 2024; 249:334-362. [PMID: 37781909 DOI: 10.1039/d3fd00133d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Surfaces are able to control physical-chemical processes in multi-component solution systems and, as such, find application in a wide range of technological devices. Understanding the structure, dynamics and thermodynamics of non-ideal solutions at surfaces, however, is particularly challenging. Here, we use Constant Chemical Potential Molecular Dynamics (CμMD) simulations to gain insight into aqueous NaCl solutions in contact with graphite surfaces at high concentrations and under the effect of applied surface charges: conditions where mean-field theories describing interfaces cannot (typically) be reliably applied. We discover an asymmetric effect of surface charge on the electric double layer structure and resulting thermodynamic properties, which can be explained by considering the affinity of the surface for cations and anions and the cooperative adsorption of ions that occurs at higher concentrations. We characterise how the sign of the surface charge affects ion densities and water structure in the double layer and how the capacitance of the interface-a function of the electric potential drop across the double layer-is largely insensitive to the bulk solution concentration. Notably, we find that negatively charged graphite surfaces induce an increase in the size and concentration of extended liquid-like ion clusters confined to the double layer. Finally, we discuss how concentration and surface charge affect the activity coefficients of ions and water at the interface, demonstrating how electric fields in this region should be explicitly considered when characterising the thermodynamics of both solute and solvent at the solid/liquid interface.
Collapse
Affiliation(s)
- Aaron R Finney
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK.
| |
Collapse
|
6
|
Reinhardt A, Chew PY, Cheng B. A streamlined molecular-dynamics workflow for computing solubilities of molecular and ionic crystals. J Chem Phys 2023; 159:184110. [PMID: 37962445 DOI: 10.1063/5.0173341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Computing the solubility of crystals in a solvent using atomistic simulations is notoriously challenging due to the complexities and convergence issues associated with free-energy methods, as well as the slow equilibration in direct-coexistence simulations. This paper introduces a molecular-dynamics workflow that simplifies and robustly computes the solubility of molecular or ionic crystals. This method is considerably more straightforward than the state-of-the-art, as we have streamlined and optimised each step of the process. Specifically, we calculate the chemical potential of the crystal using the gas-phase molecule as a reference state, and employ the S0 method to determine the concentration dependence of the chemical potential of the solute. We use this workflow to predict the solubilities of sodium chloride in water, urea polymorphs in water, and paracetamol polymorphs in both water and ethanol. Our findings indicate that the predicted solubility is sensitive to the chosen potential energy surface. Furthermore, we note that the harmonic approximation often fails for both molecular crystals and gas molecules at or above room temperature, and that the assumption of an ideal solution becomes less valid for highly soluble substances.
Collapse
Affiliation(s)
- Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Pin Yu Chew
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Bingqing Cheng
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
7
|
Sun Y, Zhang D, Bashir A, Li C, Fan Z. Scaling Solute-Solvent Distances to Improve Solubility and Ion Paring Predictions in Rigid Ion Models. J Phys Chem B 2023; 127:9575-9586. [PMID: 37906589 DOI: 10.1021/acs.jpcb.3c05993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Force fields based on the rigid ion model (RIM) have been developed to accurately predict the various physical and chemical properties of salts and water. However, the combined use of these models often fails to accurately predict the solubility of salts in water. To address this issue, several approaches, such as charge scaling or reparameterization, have been proposed. Nevertheless, these methods require laborious reparameterization of nonbonded force field parameters. In this article, we propose a scaling solute-solvent distance (SSSD) method to improve force fields in predicting salt solubility without changing the solute-solute and solvent-solvent interactions in the original force fields. This method can also tune the ion pairing of salt in water. One main advantage of the SSSD method is that reparameterization of the crystal and water models is not needed. We use two RIMs for the NaCl-water system (JC-SPC/E and SD-SPC/E) and the CHARMM force field for the KCl-water system to demonstrate the improved accuracy in predicting solubility by the SSSD method. Furthermore, we use the RDG-SPC/Fw force field to show that the SSSD method can also be used to tune the ion pairing of CaCO3 in water. Limitations of this method are also discussed.
Collapse
Affiliation(s)
- Ying Sun
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Dan Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- Department of Chemistry, Shanghai University, Shanghai 200444, P. R. China
| | - Ayesha Bashir
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chuncheng Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Zhaochuan Fan
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
8
|
Kim J, Belloni L, Rotenberg B. Grand-canonical molecular dynamics simulations powered by a hybrid 4D nonequilibrium MD/MC method: Implementation in LAMMPS and applications to electrolyte solutions. J Chem Phys 2023; 159:144802. [PMID: 37819001 DOI: 10.1063/5.0168878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Molecular simulations in an open environment, involving ion exchange, are necessary to study various systems, from biosystems to confined electrolytes. However, grand-canonical simulations are often computationally demanding in condensed phases. A promising method [L. Belloni, J. Chem. Phys. 151, 021101 (2019)], one of the hybrid nonequilibrium molecular dynamics/Monte Carlo algorithms, was recently developed, which enables efficient computation of fluctuating number or charge density in dense fluids or ionic solutions. This method facilitates the exchange through an auxiliary dimension, orthogonal to all physical dimensions, by reducing initial steric and electrostatic clashes in three-dimensional systems. Here, we report the implementation of the method in LAMMPS with a Python interface, allowing facile access to grand-canonical molecular dynamics simulations with massively parallelized computation. We validate our implementation with two electrolytes, including a model Lennard-Jones electrolyte similar to a restricted primitive model and aqueous solutions. We find that electrostatic interactions play a crucial role in the overall efficiency due to their long-range nature, particularly for water or ion-pair exchange in aqueous solutions. With properly screened electrostatic interactions and bias-based methods, our approach enhances the efficiency of salt-pair exchange in Lennard-Jones electrolytes by approximately four orders of magnitude, compared to conventional grand-canonical Monte Carlo. Furthermore, the acceptance rate of NaCl-pair exchange in aqueous solutions at moderate concentrations reaches about 3% at the maximum efficiency.
Collapse
Affiliation(s)
- Jeongmin Kim
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Luc Belloni
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau sur le Stockage Électrochimique de Énergie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
9
|
Hoang Ngoc Minh T, Kim J, Pireddu G, Chubak I, Nair S, Rotenberg B. Electrical noise in electrolytes: a theoretical perspective. Faraday Discuss 2023; 246:198-224. [PMID: 37409620 DOI: 10.1039/d3fd00026e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Seemingly unrelated experiments such as electrolyte transport through nanotubes, nano-scale electrochemistry, NMR relaxometry and surface force balance measurements, all probe electrical fluctuations: of the electric current, the charge and polarization, the field gradient (for quadrupolar nuclei) and the coupled mass/charge densities. The fluctuations of such various observables arise from the same underlying microscopic dynamics of the ions and solvent molecules. In principle, the relevant length and time scales of these dynamics are encoded in the dynamic structure factors. However, modelling the latter for frequencies and wavevectors spanning many orders of magnitude remains a great challenge to interpret the experiments in terms of physical processes such as solvation dynamics, diffusion, electrostatic and hydrodynamic interactions between ions, interactions with solid surfaces, etc. Here, we highlight the central role of the charge-charge dynamic structure factor in the fluctuations of electrical observables in electrolytes and offer a unifying perspective over a variety of complementary experiments. We further analyze this quantity in the special case of an aqueous NaCl electrolyte, using simulations with explicit ions and an explicit or implicit solvent. We discuss the ability of the standard Poisson-Nernst-Planck theory to capture the simulation results, and how the predictions can be improved. We finally discuss the contributions of ions and water to the total charge fluctuations. This work illustrates an ongoing effort towards a comprehensive understanding of electrical fluctuations in bulk and confined electrolytes, in order to enable experimentalists to decipher the microscopic properties encoded in the measured electrical noise.
Collapse
Affiliation(s)
- Thê Hoang Ngoc Minh
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Jeongmin Kim
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Giovanni Pireddu
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Iurii Chubak
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Swetha Nair
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
10
|
Li M, Lv L, Fang T, Hao L, Li S, Dong S, Wu Y, Dong X, Liu H. Self-Consistent Implementation of a Solvation Free Energy Framework to Predict the Salt Solubilities of Six Alkali Halides. J Chem Theory Comput 2023; 19:5586-5601. [PMID: 37471389 DOI: 10.1021/acs.jctc.3c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
To assess the salt solubilities of six alkali halides in aqueous systems, we proposed a thermodynamic cycle and an efficient molecular modeling methodology. The Gibbs free energy changes for vaporization, dissociation, and dissolution were calculated using the experimental data of ionic thermodynamic properties obtained from the NBS tables. Additionally, the Marcus' and Tissandier's solvation free energy data for Li+, Na+, K+, Cl-, and Br- ions were compared with the conventional solvation free energies by substituting into our self-consistent thermodynamic cycle. Furthermore, Tissandier's absolute solvation free energy data were used as the training set to refit the Lennard-Jones parameters of OPLS-AA force field for ions. To predict salt solubilities, an assumption of a pseudo-solvent was proposed to characterize the coupling work of a solute with its environment from infinitely diluted to saturated solutions, indicating that the Gibbs energy change of solvation process is a function of ionic strength. Following the self-consistency of the cycle, the newly derived formulas were used to determine the salt solubilities by interpolating the intersection of Gibbs free energy of dissolution and the zero free energy line. The refined ion parameters can also predict the structure and thermodynamic properties of aqueous electrolyte solutions, such as densities, pair correlation functions, hydration numbers, mean activity coefficients, vapor pressures, and the radial dependences of the net charge at 298.15 K and 1 bar. Our method can be used to characterize the solid-liquid equilibria of ions or charged particles in aqueous systems. Furthermore, for highly concentrated strong electrolyte systems, it is essential to introduce accurate water models and polarizable force fields.
Collapse
Affiliation(s)
- Miyi Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Liqiang Lv
- College of Chemical Engineering, Shijiazhuang University, Hebei, Shijiazhuang 050035, China
| | - Tao Fang
- Beijing Institute of Aerospace Testing Technology, Beijing 100074, China
| | - Long Hao
- Beijing Institute of Aerospace Testing Technology, Beijing 100074, China
| | - Shenhui Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Shoulong Dong
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Yufeng Wu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Xiao Dong
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Helei Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, China
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences (Shanghai Advanced Research Institute, Chinese Academy of Sciences), Shanghai 201210, China
| |
Collapse
|
11
|
Karmakar T, Finney AR, Salvalaglio M, Yazaydin AO, Perego C. Non-Equilibrium Modeling of Concentration-Driven processes with Constant Chemical Potential Molecular Dynamics Simulations. Acc Chem Res 2023; 56:1156-1167. [PMID: 37120847 PMCID: PMC10193523 DOI: 10.1021/acs.accounts.2c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 05/02/2023]
Abstract
ConspectusConcentration-driven processes in solution, i.e., phenomena that are sustained by persistent concentration gradients, such as crystallization and surface adsorption, are fundamental chemical processes. Understanding such phenomena is crucial for countless applications, from pharmaceuticals to biotechnology. Molecular dynamics (MD), both in- and out-of-equilibrium, plays an essential role in the current understanding of concentration-driven processes. Computational costs, however, impose drastic limitations on the accessible scale of simulated systems, hampering the effective study of such phenomena. In particular, due to these size limitations, closed system MD of concentration-driven processes is affected by solution depletion/enrichment that unavoidably impacts the dynamics of the chemical phenomena under study. As a notable example, in simulations of crystallization from solution, the transfer of monomers between the liquid and crystal phases results in a gradual depletion/enrichment of solution concentration, altering the driving force for phase transition. In contrast, this effect is negligible in experiments, given the macroscopic size of the solution volume. Because of these limitations, accurate MD characterization of concentration-driven phenomena has proven to be a long-standing simulation challenge. While disparate equilibrium and nonequilibrium simulation strategies have been proposed to address the study of such processes, the methodologies are in continuous development.In this context, a novel simulation technique named constant chemical potential molecular dynamics (CμMD) was recently proposed. CμMD employs properly designed, concentration-dependent external forces that regulate the flux of solute species between selected subregions of the simulation volume. This enables simulations of systems under a constant chemical drive in an efficient and straightforward way. The CμMD scheme was originally applied to the case of crystal growth from solution and then extended to the simulation of various physicochemical processes, resulting in new variants of the method. This Account illustrates the CμMD method and the key advances enabled by it in the framework of in silico chemistry. We review results obtained in crystallization studies, where CμMD allows growth rate calculations and equilibrium shape predictions, and in adsorption studies, where adsorption thermodynamics on porous or solid surfaces was correctly characterized via CμMD. Furthermore, we will discuss the application of CμMD variants to simulate permeation through porous materials, solution separation, and nucleation upon fixed concentration gradients. While presenting the numerous applications of the method, we provide an original and comprehensive assessment of concentration-driven simulations using CμMD. To this end, we also shed light on the theoretical and technical foundations of CμMD, underlining the novelty and specificity of the method with respect to existing techniques while stressing its current limitations. Overall, the application of CμMD to a diverse range of fields provides new insight into many physicochemical processes, the in silico study of which has been hitherto limited by finite-size effects. In this context, CμMD stands out as a general-purpose method that promises to be an invaluable simulation tool for studying molecular-scale concentration-driven phenomena.
Collapse
Affiliation(s)
- Tarak Karmakar
- Department
of Chemistry, Indian Institute of Technology,
Delhi, Hauz Khas, New Delhi 110016, India
| | - Aaron R. Finney
- Thomas
Young Centre and Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, United
Kingdom
| | - Matteo Salvalaglio
- Thomas
Young Centre and Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, United
Kingdom
| | - A. Ozgur Yazaydin
- Thomas
Young Centre and Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, United
Kingdom
| | - Claudio Perego
- Department
of Innovative Technologies, University of
Applied Sciences and Arts of Southern Switzerland, Polo Universitario
Lugano, via la Santa 1, 6962 Lugano-Viganello, Switzerland
| |
Collapse
|
12
|
Schaefer D, Kohns M, Hasse H. Molecular modeling and simulation of aqueous solutions of alkali nitrates. J Chem Phys 2023; 158:134508. [PMID: 37031112 DOI: 10.1063/5.0141331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
A set of molecular models for the alkali nitrates (LiNO3, NaNO3, KNO3, RbNO3, and CsNO3) in aqueous solutions is presented and used for predicting the thermophysical properties of these solutions with molecular dynamics simulations. The set of models is obtained from a combination of a model for the nitrate anion from the literature with a set of models for the alkali cations developed in previous works of our group. The water model is SPC/E and the Lorentz–Berthelot combining rules are used for describing the unlike interactions. This combination is shown to yield fair predictions of thermophysical and structural properties of the studied aqueous solutions, namely the density, the water activity and the mean ionic activity coefficient, the self-diffusion coefficients of the ions, and radial distribution functions, which were studied at 298 K and 1 bar; except for the density of the solutions of all five nitrates and the activity properties of solutions of NaNO3, which were also studied at 333 K. For calculating the water the activity and the mean ionic activity coefficient, the OPAS ( osmotic pressure for the activity of selvents) method was applied. The new models extend an ion model family for the alkali halides developed in previous works of our group in a consistent way.
Collapse
Affiliation(s)
- Dominik Schaefer
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Maximilian Kohns
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Hans Hasse
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
13
|
Zhang A, Yang X, Yang F, Zhang C, Zhang Q, Duan G, Jiang S. Research Progress of the Ion Activity Coefficient of Polyelectrolytes: A Review. Molecules 2023; 28:2042. [PMID: 36903289 PMCID: PMC10003794 DOI: 10.3390/molecules28052042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Polyelectrolyte has wide applications in biomedicine, agriculture and soft robotics. However, it is among one of the least understood physical systems because of the complex interplay of electrostatics and polymer nature. In this review, a comprehensive description is presented on experimental and theoretical studies of the activity coefficient, one of the most important thermodynamic properties of polyelectrolyte. Experimental methods to measure the activity coefficient were introduced, including direct potentiometric measurement and indirect methods such as isopiestic measurement and solubility measurement. Next, progress on the various theoretical approaches was presented, ranging from analytical, empirical and simulation methods. Finally, challenges for future development are proposed on this field.
Collapse
Affiliation(s)
- Aokai Zhang
- Changzhou Vocational Institute of Industry Technology, Changzhou 213164, China
| | - Xiuling Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Feng Yang
- Changzhou Vocational Institute of Industry Technology, Changzhou 213164, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qixiong Zhang
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China
| | - Gaigai Duan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Blazquez S, Conde MM, Vega C. Scaled charges for ions: An improvement but not the final word for modeling electrolytes in water. J Chem Phys 2023; 158:054505. [PMID: 36754806 DOI: 10.1063/5.0136498] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
In this work, we discuss the use of scaled charges when developing force fields for NaCl in water. We shall develop force fields for Na+ and Cl- using the following values for the scaled charge (in electron units): ±0.75, ±0.80, ±0.85, and ±0.92 along with the TIP4P/2005 model of water (for which previous force fields were proposed for q = ±0.85 and q = ±1). The properties considered in this work are densities, structural properties, transport properties, surface tension, freezing point depression, and maximum in density. All the developed models were able to describe quite well the experimental values of the densities. Structural properties were well described by models with charges equal to or larger than ±0.85, surface tension by the charge ±0.92, maximum in density by the charge ±0.85, and transport properties by the charge ±0.75. The use of a scaled charge of ±0.75 is able to reproduce with high accuracy the viscosities and diffusion coefficients of NaCl solutions for the first time. We have also considered the case of KCl in water, and the results obtained were fully consistent with those of NaCl. There is no value of the scaled charge able to reproduce all the properties considered in this work. Although certainly scaled charges are not the final word in the development of force fields for electrolytes in water, its use may have some practical advantages. Certain values of the scaled charge could be the best option when the interest is to describe certain experimental properties.
Collapse
Affiliation(s)
- S Blazquez
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - M M Conde
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain
| | - C Vega
- Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
15
|
Young JM, Bell IH, Harvey AH. Entropy scaling of viscosity for molecular models of molten salts. J Chem Phys 2023; 158:024502. [PMID: 36641388 DOI: 10.1063/5.0127250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Entropy scaling relates dynamic and thermodynamic properties by reducing the viscosity to a function of only the residual entropy. Molecular simulations are used to investigate the entropy scaling of the viscosity of three models of sodium chloride and five monovalent salts. Even though the correlation between the potential energy and the virial is weak, entropy scaling applies at liquid densities for all models and salts investigated. At lower densities, entropy scaling breaks down due to the formation of ion pairs and chains. Entropy scaling can be used to develop more extendable correlations for the dynamic properties of molten salts.
Collapse
Affiliation(s)
- Jeffrey M Young
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Ian H Bell
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Allan H Harvey
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| |
Collapse
|
16
|
Khanna V, Doherty MF, Peters B. Predicting solubility and driving forces for crystallization using the absolute chemical potential route. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2155595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Vikram Khanna
- Deptartment of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Michael F. Doherty
- Deptartment of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Baron Peters
- Deptartment of Chemical & Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Deptartment of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
17
|
Cheng B. Computing chemical potentials of solutions from structure factors. J Chem Phys 2022; 157:121101. [DOI: 10.1063/5.0107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The chemical potential of a component in a solution is defined as the free energy change as the amount of the component changes. Computing this fundamental thermodynamic property from atomistic simulations is notoriously difficult, because of the convergence issues in free energy methods and finite size effects. This paper presents the so-called S0 method, which can be used to obtain chemical potentials from static structure factors computed from equilibrium molecular dynamics simulations under the isothermal-isobaric ensemble. This new method is demonstrated on the systems of binary Lennard-Jones particles, urea--water mixtures, a NaCl aqueous solution, and a high-pressure carbon-hydrogen mixture.
Collapse
|
18
|
Saravi SH, Panagiotopoulos AZ. Activity Coefficients and Solubilities of NaCl in Water-Methanol Solutions from Molecular Dynamics Simulations. J Phys Chem B 2022; 126:2891-2898. [PMID: 35411772 DOI: 10.1021/acs.jpcb.2c00813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We obtain activity coefficients and solubilities of NaCl in water-methanol solutions at 298.15 K and 1 bar from molecular dynamics (MD) simulations with the Joung-Cheatham, SPC/E, and OPLS-AA force fields for NaCl, water, and methanol, respectively. The Lorentz-Berthelot combining rules were adopted for the unlike-pair interactions of Na+, Cl-, and the oxygen site in SPC/E water, and geometric combining rules were utilized for the remainder of the cross interactions. We found that the selection of appropriate combining rules is important in obtaining physically realistic solubilities. The solvent compositions studied range from pure water to pure methanol. Several salt concentrations were investigated at each solvent composition, from the lowest concentrations permitted by the system size used up to the experimental solubilities. We first calculated individual ion activity coefficients (IIACs) for Na+ and Cl- from the free energy change due to the gradual insertion of a single cation or anion into the solution, accompanied by a neutralizing background. We obtained the salt solubilities by comparing the chemical potentials in solution with solid NaCl chemical potentials calculated previously using the Einstein crystal method. Mean ionic activity coefficients obtained from the IIACs are in reasonable agreement with experimental data, with deviations increasing for solutions of higher methanol content. Predictions for the salt solubility are in surprisingly good agreement with experimental data, despite well-known challenges in the simultaneous calculation of activity coefficients and solubilities with classical MD simulations. The present study demonstrates that good predictions for these two important phase equilibrium properties can be obtained for mixed-solvent electrolyte solutions using existing nonpolarizable models and further suggests that the previously proposed single ion insertion technique can be extended to complex mixed-solvent solutions as well.
Collapse
Affiliation(s)
- Sina Hassanjani Saravi
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | | |
Collapse
|
19
|
Lamas CP, Vega C, Noya EG. Freezing point depression of salt aqueous solutions using the Madrid-2019 model. J Chem Phys 2022; 156:134503. [PMID: 35395902 DOI: 10.1063/5.0085051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Salt aqueous solutions are relevant in many fields, ranging from biological systems to seawater. Thus, the availability of a force-field that is able to reproduce the thermodynamic and dynamic behavior of salt aqueous solutions would be of great interest. Unfortunately, this has been proven challenging, and most of the existing force-fields fail to reproduce much of their behavior. In particular, the diffusion of water or the salt solubility are often not well reproduced by most of the existing force-fields. Recently, the Madrid-2019 model was proposed, and it was shown that this force-field, which uses the TIP4P/2005 model for water and non-integer charges for the ions, provides a good description of a large number of properties, including the solution densities, viscosities, and the diffusion of water. In this work, we assess the performance of this force-field on the evaluation of the freezing point depression. Although the freezing point depression is a colligative property that at low salt concentrations depends solely on properties of pure water, a good model for the electrolytes is needed to accurately predict the freezing point depression at moderate and high salt concentrations. The coexistence line between ice and several salt aqueous solutions (NaCl, KCl, LiCl, MgCl2, and Li2SO4) up to the eutectic point is estimated from direct coexistence molecular dynamics simulations. Our results show that this force-field reproduces fairly well the experimentally measured freezing point depression with respect to pure water freezing for all the salts and at all the compositions considered.
Collapse
Affiliation(s)
- Cintia P Lamas
- Departamento de Química-Física I (Unidad de I+D+i Asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Vega
- Departamento de Química-Física I (Unidad de I+D+i Asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Eva G Noya
- Instituto de Química Física Rocasolano, CSIC, C/ Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
20
|
Bianco V, Conde MM, Lamas CP, Noya EG, Sanz E. Phase diagram of the NaCl–water system from computer simulations. J Chem Phys 2022; 156:064505. [DOI: 10.1063/5.0083371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- V. Bianco
- Departamento de Química Física (Unidad de I+D+i asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - M. M. Conde
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain
| | - C. P. Lamas
- Departamento de Química Física (Unidad de I+D+i asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, CSIC, Calle Serrano 119, 28006 Madrid, Spain
| | - E. G. Noya
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, CSIC, Calle Serrano 119, 28006 Madrid, Spain
| | - E. Sanz
- Departamento de Química Física (Unidad de I+D+i asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
21
|
Blazquez S, Conde MM, Abascal JLF, Vega C. The Madrid-2019 force field for electrolytes in water using TIP4P/2005 and scaled charges: Extension to the ions F−, Br−, I−, Rb+, and Cs+. J Chem Phys 2022; 156:044505. [DOI: 10.1063/5.0077716] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- S. Blazquez
- Departamento Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - M. M. Conde
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain
| | - J. L. F. Abascal
- Departamento Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - C. Vega
- Departamento Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
22
|
P Lamas C, R Espinosa J, M Conde M, Ramírez J, Montero de Hijes P, G Noya E, Vega C, Sanz E. Homogeneous nucleation of NaCl in supersaturated solutions. Phys Chem Chem Phys 2021; 23:26843-26852. [PMID: 34817484 DOI: 10.1039/d1cp02093e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The seeding method is an approximate approach to investigate nucleation that combines molecular dynamics simulations with classical nucleation theory. Recently, this technique has been successfully implemented in a broad range of nucleation studies. However, its accuracy is subject to the arbitrary choice of the order parameter threshold used to distinguish liquid-like from solid-like molecules. We revisit here the crystallization of NaCl from a supersaturated brine solution and show that consistency between seeding and rigorous methods, like Forward Flux Sampling (from previous work) or spontaneous crystallization (from this work), is achieved by following a mislabelling criterion to select such threshold (i.e. equaling the fraction of the mislabelled particles in the bulk parent and nucleating phases). This work supports the use of seeding to obtain fast and reasonably accurate nucleation rate estimates and the mislabelling criterion as one giving the relevant cluster size for classical nucleation theory in crystallization studies.
Collapse
Affiliation(s)
- C P Lamas
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain. .,Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, CSIC, Calle Serrano 119, 28006 Madrid, Spain
| | - J R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0H3, UK
| | - M M Conde
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006, Madrid, Spain
| | - J Ramírez
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006, Madrid, Spain
| | - P Montero de Hijes
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - E G Noya
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, CSIC, Calle Serrano 119, 28006 Madrid, Spain
| | - C Vega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - E Sanz
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
23
|
Choudhary N, Narayanan Nair AK, Sun S. Interfacial behavior of the decane + brine + surfactant system in the presence of carbon dioxide, methane, and their mixture. SOFT MATTER 2021; 17:10545-10554. [PMID: 34761789 DOI: 10.1039/d1sm01267c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular dynamics simulations are carried out to get insights into the interfacial behavior of the decane + brine + surfactant + CH4 + CO2 system at reservoir conditions. Our results show that the addition of CH4, CO2, and sodium dodecyl sulfate (SDS) surfactant at the interface reduces the IFTs of the decane + water and decane + brine (NaCl) systems. Here the influence of methane was found to be less pronounced than that of carbon dioxide. As expected, the addition of salt increases the IFTs of the decane + water + surfactant and decane + water + surfactant + CH4/CO2 systems. The IFTs of these surfactant-containing systems decrease with temperature and the influence of pressure is found to be less pronounced. The atomic density profiles show that the sulfate head groups of the SDS molecules penetrate the water-rich phase and their alkyl tails are stretched into the decane-rich phase. The sodium counterions of the surfactant molecules are located very close to their head groups. Furthermore, the density profiles of water and salt ions are hardly affected by the presence of the SDS molecules. However, the interfacial thickness between water and decane/CH4/CO2 molecules increases with increasing surfactant concentration. An important result is that the enrichment of CH4 and/or CO2 in the interfacial region decreases with increasing surfactant concentration. These results may be useful in the context of the water-alternating-gas approach that has been utilized during CO2-enhanced oil recovery operations.
Collapse
Affiliation(s)
- Nilesh Choudhary
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Arun Kumar Narayanan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Shuyu Sun
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
24
|
Rimsza JM, Kuhlman KL. Temperature and Pressure Dependence of Salt-Brine Dihedral Angles in the Subsurface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13291-13299. [PMID: 34731565 DOI: 10.1021/acs.langmuir.1c01836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Elevated temperature and pressure in the earth's subsurface alters the permeability of salt formations, due to changing properties of the salt-brine interface. Molecular dynamics (MD) simulations are used to investigate the mechanisms of temperature and pressure dependence of liquid-solid interfacial tensions of NaCl, KCl, and NaCl-KCl brines in contact with (100) salt surfaces. Salt-brine dihedral angles vary between 55 and 76° across the temperature (300-450 K) and pressure range (0-150 MPa) evaluated. Temperature-dependent brine composition results in elevated dihedral angles of 65-80°, which falls above the reported salt percolation threshold of 60°. Mixed NaCl-KCl brine compositions increased this effect. Elevated temperatures excluded dissolved Na+ ions from the interface, causing the strong temperature dependence of the liquid-solid interfacial tension and the resulting dihedral angle. Therefore, at higher temperature, pressure, and brine concentrations Na-Cl systems may underpredict the dihedral angle. Higher dihedral angles in more realistic mixed brine systems maintain low permeability of salt formations due to changes in the structure and energetics of the salt-brine interface.
Collapse
Affiliation(s)
- Jessica M Rimsza
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Kristopher L Kuhlman
- Applied Systems Analysis & Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| |
Collapse
|
25
|
Saravi SH, Panagiotopoulos AZ. Activity coefficients of aqueous electrolytes from implicit-water molecular dynamics simulations. J Chem Phys 2021; 155:184501. [PMID: 34773944 DOI: 10.1063/5.0064963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We obtain activity coefficients in NaCl and KCl solutions from implicit-water molecular dynamics simulations, at 298.15 K and 1 bar, using two distinct approaches. In the first approach, we consider ions in a continuum with constant relative permittivity (ɛr) equal to that of pure water; in the other approach, we take into account the concentration-dependence of ɛr, as obtained from explicit-water simulations. Individual ion activity coefficients (IIACs) are calculated using gradual insertion of single ions with uniform neutralizing backgrounds to ensure electroneutrality. Mean ionic activity coefficients (MIACs) obtained from the corresponding IIACs in simulations with constant ɛr show reasonable agreement with experimental data for both salts. Surprisingly, large systematic negative deviations are observed for both IIACs and MIACs in simulations with concentration-dependent ɛr. Our results suggest that the absence of hydration structure in implicit-water simulations cannot be compensated by correcting for the concentration-dependence of the relative permittivity ɛr. Moreover, even in simulations with constant ɛr for which the calculated MIACs are reasonable, the relative positioning of IIACs of anions and cations is incorrect for NaCl. We conclude that there are severe inherent limitations associated with implicit-water simulations in providing accurate activities of aqueous electrolytes, a finding with direct relevance to the development of electrolyte theories and to the use and interpretation of implicit-solvent simulations.
Collapse
Affiliation(s)
- Sina Hassanjani Saravi
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
26
|
DeFever RS, Maginn EJ. Computing the Liquidus of Binary Monatomic Salt Mixtures with Direct Simulation and Alchemical Free Energy Methods. J Phys Chem A 2021; 125:8498-8513. [PMID: 34543018 DOI: 10.1021/acs.jpca.1c06107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe and validate a free-energy-based method for computing the liquidus for binary solid-liquid phase diagrams in molecular simulations of monatomic salts. The method is demonstrated by calculating the liquidus for LiCl-KCl and MgCl2-KCl salt mixtures with the polarizable ion model (PIM). The free-energy-based method is cross-validated with direct coexistence simulations. Both techniques show excellent agreement with one another. Though the predictions of the PIM disagree with experiments, we use our free-energy-based approach to decouple the contributions of liquid mixture nonidealities and pure component solid-liquid equilibrium to the phase diagram. In both mixtures, the PIM accurately reproduces the liquid phase nonidealities but fails to predict the liquidus because it does not accurately predict the pure component melting temperature of LiCl or MgCl2.
Collapse
Affiliation(s)
- Ryan S DeFever
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
27
|
Finney AR, McPherson IJ, Unwin PR, Salvalaglio M. Electrochemistry, ion adsorption and dynamics in the double layer: a study of NaCl(aq) on graphite. Chem Sci 2021; 12:11166-11180. [PMID: 34522314 PMCID: PMC8386640 DOI: 10.1039/d1sc02289j] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Graphite and related sp2 carbons are ubiquitous electrode materials with particular promise for use in e.g., energy storage and desalination devices, but very little is known about the properties of the carbon–electrolyte double layer at technologically relevant concentrations. Here, the (electrified) graphite–NaCl(aq) interface was examined using constant chemical potential molecular dynamics (CμMD) simulations; this approach avoids ion depletion (due to surface adsorption) and maintains a constant concentration, electroneutral bulk solution beyond the surface. Specific Na+ adsorption at the graphite basal surface causes charging of the interface in the absence of an applied potential. At moderate bulk concentrations, this leads to accumulation of counter-ions in a diffuse layer to balance the effective surface charge, consistent with established models of the electrical double layer. Beyond ∼0.6 M, however, a combination of over-screening and ion crowding in the double layer results in alternating compact layers of charge density perpendicular to the interface. The transition to this regime is marked by an increasing double layer size and anomalous negative shifts to the potential of zero charge with incremental changes to the bulk concentration. Our observations are supported by changes to the position of the differential capacitance minimum measured by electrochemical impedance spectroscopy, and are explained in terms of the screening behaviour and asymmetric ion adsorption. Furthermore, a striking level of agreement between the differential capacitance from solution evaluated in simulations and measured in experiments allows us to critically assess electrochemical capacitance measurements which have previously been considered to report simply on the density of states of the graphite material at the potential of zero charge. Our work shows that the solution side of the double layer provides the more dominant contribution to the overall measured capacitance. Finally, ion crowding at the highest concentrations (beyond ∼5 M) leads to the formation of liquid-like NaCl clusters confined to highly non-ideal regions of the double layer, where ion diffusion is up to five times slower than in the bulk. The implications of changes to the speciation of ions on reactive events in the double layer are discussed. CμMD reveals multi-layer electrolyte screening in the double layer beyond 0.6 M, which affects ion activities, speciation and mobility; asymmetric charge screening explains concentration dependent changes to electrochemical properties.![]()
Collapse
Affiliation(s)
- Aaron R Finney
- Thomas Young Centre and Department of Chemical Engineering, University College London London WC1E 7JE UK
| | - Ian J McPherson
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London London WC1E 7JE UK
| |
Collapse
|
28
|
Polat HM, Salehi HS, Hens R, Wasik DO, Rahbari A, de Meyer F, Houriez C, Coquelet C, Calero S, Dubbeldam D, Moultos OA, Vlugt TJH. New Features of the Open Source Monte Carlo Software Brick-CFCMC: Thermodynamic Integration and Hybrid Trial Moves. J Chem Inf Model 2021; 61:3752-3757. [PMID: 34383501 PMCID: PMC8385706 DOI: 10.1021/acs.jcim.1c00652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We present several
new major features added to the Monte Carlo
(MC) simulation code Brick-CFCMC for phase- and reaction equilibria
calculations (https://gitlab.com/ETh_TU_Delft/Brick-CFCMC). The first one
is thermodynamic integration for the computation of excess chemical
potentials (μex). For this purpose, we implemented
the computation of the ensemble average of the derivative of the potential
energy with respect to the scaling factor for intermolecular interactions
(). Efficient bookkeeping is implemented
so that the quantity is updated after every MC trial
move with
negligible computational cost. We demonstrate the accuracy and reliability
of the calculation of μex for sodium chloride in
water. Second, we implemented hybrid MC/MD translation and rotation
trial moves to increase the efficiency of sampling of the configuration
space. In these trial moves, short Molecular Dynamics (MD) trajectories
are performed to collectively displace or rotate all molecules in
the system. These trajectories are accepted or rejected based on the
total energy drift. The efficiency of these trial moves can be tuned
by changing the time step and the trajectory length. The new trial
moves are demonstrated using MC simulations of a viscous fluid (deep
eutectic solvent).
Collapse
Affiliation(s)
- H Mert Polat
- CCUS and Acid Gas Entity, Liquefied Natural Gas Department, Exploration Production, TotalEnergies S.E., 92078 Paris, France.,Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands.,CTP - Centre of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue Saint Honoré, 77305 Fontainebleau, France
| | - Hirad S Salehi
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - Remco Hens
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - Dominika O Wasik
- Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Ahmadreza Rahbari
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - Frédérick de Meyer
- CCUS and Acid Gas Entity, Liquefied Natural Gas Department, Exploration Production, TotalEnergies S.E., 92078 Paris, France.,CTP - Centre of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue Saint Honoré, 77305 Fontainebleau, France
| | - Céline Houriez
- CTP - Centre of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue Saint Honoré, 77305 Fontainebleau, France
| | - Christophe Coquelet
- CTP - Centre of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue Saint Honoré, 77305 Fontainebleau, France
| | - Sofia Calero
- Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands.,Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera Km. 1, Seville ES-41013, Spain
| | - David Dubbeldam
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Othonas A Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands
| |
Collapse
|
29
|
Saravi SH, Panagiotopoulos AZ. Individual Ion Activity Coefficients in Aqueous Electrolytes from Explicit-Water Molecular Dynamics Simulations. J Phys Chem B 2021; 125:8511-8521. [PMID: 34319101 DOI: 10.1021/acs.jpcb.1c04019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We compute individual ion activity coefficients (IIACs) in aqueous NaCl, KCl, NaF, and KF solutions from explicit-water molecular dynamics simulations. Free energy changes are obtained from insertion of single ions-accompanied by uniform neutralizing backgrounds-into solution by gradually turning on first Lennard-Jones interactions, followed by Coulombic interactions using Ewald electrostatics. Simulations are performed at multiple system sizes, and all results are extrapolated to the thermodynamic limit, thus eliminating any possible artifacts from the neutralizing backgrounds. Because of controversies associated with measurements of IIACs from electrochemical cells with ion-selective electrodes, the reported experimental data are not widely accepted; thus there remains a knowledge gap with respect to the contributions of individual ions to solution nonidealities. Our results are in good qualitative agreement with these reported measurements, though significantly larger in magnitude. In particular, the relative positioning for the activity coefficients of anions and cations matches the experimental ordering for all four systems. This work establishes a robust thermodynamic framework, without a need to invoke extra hypotheses, that sheds light on the behavior of individual ions and their contributions to nonidealities of aqueous electrolyte solutions.
Collapse
Affiliation(s)
- Sina Hassanjani Saravi
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | | |
Collapse
|
30
|
Baptista LA, Dutta RC, Sevilla M, Heidari M, Potestio R, Kremer K, Cortes-Huerto R. Density-functional-theory approach to the Hamiltonian adaptive resolution simulation method. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:184003. [PMID: 33690194 DOI: 10.1088/1361-648x/abed1d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
In the Hamiltonian adaptive resolution simulation method (H-AdResS) it is possible to simulate coexisting atomistic (AT) and ideal gas representations of a physical system that belong to different subdomains within the simulation box. The Hamiltonian includes a field that bridges both models by smoothly switching on (off) the intermolecular potential as particles enter (leave) the AT region. In practice, external one-body forces are calculated and applied to enforce a reference density throughout the simulation box, and the resulting external potential adds up to the Hamiltonian. This procedure suggests an apparent dependence of the final Hamiltonian on the system's thermodynamic state that challenges the method's statistical mechanics consistency. In this paper, we explicitly include an external potential that depends on the switching function. Hence, we build a grand canonical potential for this inhomogeneous system to find the equivalence between H-AdResS and density functional theory (DFT). We thus verify that the external potential inducing a constant density profile is equal to the system's excess chemical potential. Given DFT's one-to-one correspondence between external potential and equilibrium density, we find that a Hamiltonian description of the system is compatible with the numerical implementation based on enforcing the reference density across the simulation box. In the second part of the manuscript, we focus on assessing our approach's convergence and computing efficiency concerning various model parameters, including sample size and solute concentrations. To this aim, we compute the excess chemical potential of water, aqueous urea solutions and Lennard-Jones (LJ) mixtures. The results' convergence and accuracy are convincing in all cases, thus emphasising the method's robustness and capabilities.
Collapse
Affiliation(s)
- L A Baptista
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - R C Dutta
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - M Sevilla
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - M Heidari
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - R Potestio
- Physics Department, University of Trento, via Sommarive, 14 I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123 Trento, Italy
| | - K Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - R Cortes-Huerto
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
31
|
Fang C, Loo WS, Wang R. Salt Activity Coefficient and Chain Statistics in Poly(ethylene oxide)-Based Electrolytes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c01850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chao Fang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94702, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Whitney S. Loo
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94702, United States
| | - Rui Wang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94702, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
32
|
Finney A, Salvalaglio M. Multiple Pathways in NaCl Homogeneous Crystal Nucleation. Faraday Discuss 2021; 235:56-80. [DOI: 10.1039/d1fd00089f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NaCl crystal nucleation from metastable solutions has long been considered to occur according to a single-step mechanism where the growth in the size and crystalline order of the emerging nuclei...
Collapse
|
33
|
Cortes-Huerto R, Praprotnik M, Kremer K, Delle Site L. From adaptive resolution to molecular dynamics of open systems. THE EUROPEAN PHYSICAL JOURNAL. B 2021; 94:189. [PMID: 34720711 PMCID: PMC8547219 DOI: 10.1140/epjb/s10051-021-00193-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/31/2021] [Indexed: 05/14/2023]
Abstract
ABSTRACT We provide an overview of the Adaptive Resolution Simulation method (AdResS) based on discussing its basic principles and presenting its current numerical and theoretical developments. Examples of applications to systems of interest to soft matter, chemical physics, and condensed matter illustrate the method's advantages and limitations in its practical use and thus settle the challenge for further future numerical and theoretical developments.
Collapse
Affiliation(s)
| | - Matej Praprotnik
- Laboratory for Molecular Modeling, National Institute of Chemistry, Ljubljana, Slovenia and Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Luigi Delle Site
- Department of Mathematics and Computer Science, Institute for Mathematics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
34
|
Shen K, Sherck N, Nguyen M, Yoo B, Köhler S, Speros J, Delaney KT, Fredrickson GH, Shell MS. Learning composition-transferable coarse-grained models: Designing external potential ensembles to maximize thermodynamic information. J Chem Phys 2020; 153:154116. [DOI: 10.1063/5.0022808] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Brian Yoo
- BASF Corporation, Tarrytown, New York 10591, USA
| | | | - Joshua Speros
- California Research Alliance (CARA) by BASF, Berkeley, California 94720, USA
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Glenn H. Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
- Department of Materials Engineering, University of California, Santa Barbara, California 93106, USA
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
35
|
Kelly BD, Smith WR. A Simple Method for Including Polarization Effects in Solvation Free Energy Calculations When Using Fixed-Charge Force Fields: Alchemically Polarized Charges. ACS OMEGA 2020; 5:17170-17181. [PMID: 32715202 PMCID: PMC7376688 DOI: 10.1021/acsomega.0c01148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The incorporation of polarizability in classical force-field molecular simulations is an ongoing area of research. We focus here on its application to hydration free energy simulations of organic molecules. In contrast to computationally complex approaches involving the development of explicitly polarizable force fields, we present herein a simple methodology for incorporating polarization into such simulations using standard fixed-charge force fields, which we call the alchemically polarized charges (APolQ) method. APolQ employs a standard classical alchemical free energy change simulation to calculate the free energy difference between a fully polarized solute particle in a condensed phase and its unpolarized state in a vacuum. APolQ can in principle be applied to any microscopically homogeneous system (e.g., pure or mixed solvents). We applied APolQ to hydration free energy data for a test set of 45 neutral solute molecules in the FreeSolv database and compared results obtained using three different water models (SPC/E, TIP3P, and OPC3) and using minimal basis iterative Stockholder (MBIS) and restrained electrostatic potential (RESP) partial charge methodologies. In comparison with AM1-BCC, we found that APolQ outperforms it for the test set. Despite our method using default GAFF parameters, the MBIS partial charges yield absolute average deviations 1.5-1.9 kJ mol-1 lower than using AM1 bond charge correction (AM1-BCC). We conjecture that this method can be further improved by fitting the Lennard-Jones and torsional parameters to partial charges derived using MBIS or RESP methodologies.
Collapse
Affiliation(s)
- Braden D. Kelly
- Department
of Mathematics and Statistics, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - William R. Smith
- Department
of Mathematics and Statistics, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Faculty
of Science, Ontario Tech University, Oshawa, Ontario L1H 7K4, Canada
| |
Collapse
|
36
|
Kussainova D, Mondal A, Young JM, Yue S, Panagiotopoulos AZ. Molecular simulation of liquid-vapor coexistence for NaCl: Full-charge vs scaled-charge interaction models. J Chem Phys 2020; 153:024501. [PMID: 32668951 DOI: 10.1063/5.0012065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Scaled-charge models have been recently introduced for molecular simulations of electrolyte solutions and molten salts to attempt to implicitly represent polarizability. Although these models have been found to accurately predict electrolyte solution dynamic properties, they have not been tested for coexistence properties, such as the vapor pressure of the melt. In this work, we evaluate the vapor pressure of a scaled-charge sodium chloride (NaCl) force field and compare the results against experiments and a non-polarizable full-charge force field. The scaled-charge force field predicts a higher vapor pressure than found in experiments, due to its overprediction of the liquid-phase chemical potential. Reanalyzing the trajectories generated from the scaled-charge model with full charges improves the estimation of the liquid-phase chemical potential but not the vapor pressure.
Collapse
Affiliation(s)
- Dina Kussainova
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Anirban Mondal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Jeffrey M Young
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Shuwen Yue
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
37
|
Panagiotopoulos AZ. Simulations of activities, solubilities, transport properties, and nucleation rates for aqueous electrolyte solutions. J Chem Phys 2020; 153:010903. [DOI: 10.1063/5.0012102] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
38
|
Yagasaki T, Matsumoto M, Tanaka H. Lennard-Jones Parameters Determined to Reproduce the Solubility of NaCl and KCl in SPC/E, TIP3P, and TIP4P/2005 Water. J Chem Theory Comput 2020; 16:2460-2473. [PMID: 32207974 DOI: 10.1021/acs.jctc.9b00941] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most classical nonpolarizable ion potential models underestimate the solubility values of NaCl and KCl in water significantly. We determine Lennard-Jones parameters of Na+, K+, and Cl- that reproduce the solubility as well as the hydration free energy in dilute aqueous solutions for three water potential models, SPC/E, TIP3P, and TIP4P/2005. The ion-oxygen distance in the solution and the cation-anion distance in salt are also considered in the parametrization. In addition to the target properties, the hydration enthalpy, hydration entropy, self-diffusion coefficient, coordination number, lattice energy, enthalpy of solution, density, viscosity, and number of contact ion pairs are calculated for comparison with 17 frequently used or recently developed ion potential models. The overall performance of each ion model is represented by a global score using a scheme that was originally developed for comparison of water potential models. The global score is better for our models than for the other 17 models not only because of the quite good prediction for the solubility but also because of the relatively small deviation from the experimental value for many of the other properties.
Collapse
Affiliation(s)
- Takuma Yagasaki
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan.,Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Masakazu Matsumoto
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan.,Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Hideki Tanaka
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan.,Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
39
|
Performing solvation free energy calculations in LAMMPS using the decoupling approach. J Comput Aided Mol Des 2020; 34:641-646. [PMID: 32112288 DOI: 10.1007/s10822-020-00303-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/18/2020] [Indexed: 10/24/2022]
Abstract
The decoupling approach to solvation free energy calculations requires scaling the interactions between the solute and the solution with all intramolecular interactions preserved. This paper reports a new procedure that makes it possible to these calculations in LAMMPS. The procedure is tested against built-in GROMACS capabilities. The model compounds chosen to test our methodology are ethanol and biphenyl. The LAMMPS and GROMACS results obtained are in good agreement with each other. This work should help perform solvation free energy calculations in LAMMPS and/or other molecular dynamics software having no built-in functions to implement the decoupling approach.
Collapse
|
40
|
Döpke MF, Moultos OA, Hartkamp R. On the transferability of ion parameters to the TIP4P/2005 water model using molecular dynamics simulations. J Chem Phys 2020; 152:024501. [PMID: 31941316 DOI: 10.1063/1.5124448] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Countless molecular dynamics studies have relied on available ion and water force field parameters to model aqueous electrolyte solutions. The TIP4P/2005 model has proven itself to be among the best rigid water force fields, whereas many of the most successful ion parameters were optimized in combination with SPC/E, TIP3P, or TIP4P/Ew water. Many researchers have combined these ions with TIP4P/2005, hoping to leverage the strengths of both parameter sets. To assess if this widely used approach is justified and to provide a guide in selecting ion parameters, we investigated the transferability of various commonly used monovalent and multivalent ion parameters to the TIP4P/2005 water model. The transferability is evaluated in terms of ion hydration free energy, hydration radius, coordination number, and self-diffusion coefficient at infinite dilution. For selected ion parameters, we also investigated density, ion pairing, chemical potential, and mean ionic activity coefficients at finite concentrations. We found that not all ions are equally transferable to TIP4P/2005 without compromising their performance. In particular, ions optimized for TIP3P water were found to be poorly transferable to TIP4P/2005, whereas ions optimized for TIP4P/Ew water provided nearly perfect transferability. The latter ions also showed good overall agreement with experimental values. The one exception is that no combination of ion parameters and water model considered here was found to accurately reproduce experimental self-diffusion coefficients. Additionally, we found that cations optimized for SPC/E and TIP3P water displayed consistent underpredictions in the hydration free energy, whereas anions consistently overpredicted the hydration free energy.
Collapse
Affiliation(s)
- Max F Döpke
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Othonas A Moultos
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Remco Hartkamp
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
41
|
Kelly BD, Smith WR. Alchemical Hydration Free-Energy Calculations Using Molecular Dynamics with Explicit Polarization and Induced Polarity Decoupling: An On–the–Fly Polarization Approach. J Chem Theory Comput 2020; 16:1146-1161. [DOI: 10.1021/acs.jctc.9b01139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Braden D. Kelly
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - William R. Smith
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Faculty of Science, Ontario Tech University, Oshawa, ON L1H 7K4, Canada
| |
Collapse
|
42
|
Lbadaoui-Darvas M, Takahama S. Water Activity from Equilibrium Molecular Dynamics Simulations and Kirkwood-Buff Theory. J Phys Chem B 2019; 123:10757-10768. [DOI: 10.1021/acs.jpcb.9b06735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mária Lbadaoui-Darvas
- ENAC/IIE Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Satoshi Takahama
- ENAC/IIE Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Heidari M, Cortes-Huerto R, Potestio R, Kremer K. Steering a solute between coexisting solvation states: Revisiting nonequilibrium work relations and the calculation of free energy differences. J Chem Phys 2019; 151:144105. [PMID: 31615249 DOI: 10.1063/1.5117780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
By analogy with single-molecule pulling experiments, we present a computational framework to obtain free energy differences between complex solvation states. To illustrate our approach, we focus on the calculation of solvation free energies (SFEs). However, the method can be readily extended to cases involving more complex solutes and solvation conditions as well as to the calculation of binding free energies. The main idea is to drag the solute across the simulation box where atomistic and ideal gas representations of the solvent coexist at constant temperature and chemical potential. At finite pulling speeds, the resulting work allows one to extract SFEs via nonequilibrium relations, whereas at infinitely slow pulling speeds, this process becomes equivalent to the thermodynamic integration method. Results for small molecules well agree with literature data and pave the way to systematic studies of arbitrarily large and complex molecules.
Collapse
Affiliation(s)
- Maziar Heidari
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Raffaello Potestio
- Physics Department, University of Trento, Via Sommarive, 14, I-38123 Trento, Italy
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
44
|
|
45
|
Jiang H, Debenedetti PG, Panagiotopoulos AZ. Nucleation in aqueous NaCl solutions shifts from 1-step to 2-step mechanism on crossing the spinodal. J Chem Phys 2019; 150:124502. [DOI: 10.1063/1.5084248] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Hao Jiang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Pablo G. Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
46
|
Bellucci MA, Gobbo G, Wijethunga TK, Ciccotti G, Trout BL. Solubility of paracetamol in ethanol by molecular dynamics using the extended Einstein crystal method and experiments. J Chem Phys 2019; 150:094107. [PMID: 30849885 DOI: 10.1063/1.5086706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Li and co-workers [Li et al., J. Chem. Phys. 146, 214110 (2017)] have recently proposed a methodology to compute the solubility of molecular compounds from first principles, using molecular dynamics simulations. We revise and further explore their methodology that was originally applied to naphthalene in water at low concentration. In particular, we compute the solubility of paracetamol in an ethanol solution at ambient conditions. For the simulations, we used a force field that we previously reparameterized to reproduce certain thermodynamic properties of paracetamol but not explicitly its solubility in ethanol. In addition, we have determined the experimental solubility by performing turbidity measurements using a Crystal16 over a range of temperatures. Our work serves a dual purpose: (i) methodologically, we clarify how to compute, with a relatively straightforward procedure, the solubility of molecular compounds and (ii) applying this procedure, we show that the solubility predicted by our force field (0.085 ± 0.014 in mole ratio) is in good agreement with the experimental value obtained from our experiments and those reported in the literature (average 0.0585 ± 0.004), considering typical deviations for predictions from first principle methods. The good agreement between the experimental and the calculated solubility also suggests that the method used to reparameterize the force field can be used as a general strategy to optimize force fields for simulations in solution.
Collapse
Affiliation(s)
- Michael A Bellucci
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Gianpaolo Gobbo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tharanga K Wijethunga
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Bernhardt L Trout
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
47
|
Nieto-Draghi C, Rousseau B. Thermodynamically Consistent Force Field for Coarse-Grained Modeling of Aqueous Electrolyte Solution. J Phys Chem B 2019; 123:2424-2431. [DOI: 10.1021/acs.jpcb.8b11190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Carlos Nieto-Draghi
- IFP Energies nouvelles, 1-4 Avenue de Bois Préau, 92852 Rueil-Malmaison, France
| | - Bernard Rousseau
- Laboratoire de Chimie Physique, UMR 8000 CNRS, Université Paris-Sud, 91405 Orsay, France
| |
Collapse
|
48
|
Shilov IY, Lyashchenko AK. Anion-Specific Effects on Activity Coefficients in Aqueous Solutions of Sodium Salts: Modeling with the Extended Debye–Hückel Theory. J SOLUTION CHEM 2019. [DOI: 10.1007/s10953-019-00860-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Saravi SH, Ravichandran A, Khare R, Chen CC. Bridging two-liquid theory with molecular simulations for electrolytes: An investigation of aqueous NaCl solution. AIChE J 2019. [DOI: 10.1002/aic.16521] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sina H. Saravi
- Dept. of Chemical Engineering; Texas Tech University; Lubbock TX 79409
| | | | - Rajesh Khare
- Dept. of Chemical Engineering; Texas Tech University; Lubbock TX 79409
| | - Chau-Chyun Chen
- Dept. of Chemical Engineering; Texas Tech University; Lubbock TX 79409
| |
Collapse
|
50
|
Espinosa JR, Wand CR, Vega C, Sanz E, Frenkel D. Calculation of the water-octanol partition coefficient of cholesterol for SPC, TIP3P, and TIP4P water. J Chem Phys 2018; 149:224501. [PMID: 30553262 DOI: 10.1063/1.5054056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a numerical study of the relative solubility of cholesterol in octanol and water. Our calculations allow us to compare the accuracy of the computed values of the excess chemical potential of cholesterol for several widely used water models (SPC, TIP3P, and TIP4P). We compute the excess solvation free energies by means of a cavity-based method [L. Li et al., J. Chem. Phys. 146(21), 214110 (2017)] which allows for the calculation of the excess chemical potential of a large molecule in a dense solvent phase. For the calculation of the relative solubility ("partition coefficient," log10 P o / w ) of cholesterol between octanol and water, we use the OPLS/AA force field in combination with the SPC, TIP3P, and TIP4P water models. For all water models studied, our results reproduce the experimental observation that cholesterol is less soluble in water than in octanol. While the experimental value for the partition coefficient is log10 P o / w = 3.7, SPC, TIP3P, and TIP4P give us a value of log10 P o / w = 4.5, 4.6, and 2.9, respectively. Therefore, although the results for the studied water models in combination with the OPLS/AA force field are acceptable, further work to improve the accuracy of current force fields is needed.
Collapse
Affiliation(s)
- Jorge R Espinosa
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Charlie R Wand
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Carlos Vega
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Eduardo Sanz
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|