1
|
Rodriguez A, Han J, Yan J, Heaven MC, Cheng L. Electronic spectroscopy and excited state mixing of OThF. J Chem Phys 2025; 162:024305. [PMID: 39791495 DOI: 10.1063/5.0245862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025] Open
Abstract
Electronic spectra for OThF have been recorded using fluorescence excitation and two-photon resonantly enhanced ionization techniques. Multiple vibronic bands were observed in the 340-460 nm range. Dispersed fluorescence spectra provided ground state vibrational constants and evidence of extensive vibronic state mixing at higher excitation energies. Two-photon ionization measurements established the ionization energy for OThF of 6.283(5) eV. To guide the assignment of the OThF spectra, electronic structure calculations were carried out using relativistic equation-of-motion coupled-cluster singles and doubles methods. These calculations indicated that spin-orbit induced mixing of the 32A″ and 42A' states was mediated by a seam of potential energy surface intersections.
Collapse
Affiliation(s)
- Arianna Rodriguez
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Jiande Han
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Jiarui Yan
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Michael C Heaven
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Lan Cheng
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
2
|
Lu JB, Zhang YY, Liu JB, Li J. Norm-Conserving 5f-in-Core Pseudopotentials and Gaussian Basis Sets Optimized for Tri- and Tetra-Valent Actinides (An = Pa-Lr). J Chem Theory Comput 2025; 21:170-182. [PMID: 39693636 DOI: 10.1021/acs.jctc.4c01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Relativistic pseudopotentials (PPs) and basis sets are the workhorses for modeling heavy elements of lanthanides and actinides. The norm-conserving Goedecker-Teter-Hutter (GTH) PP is advantageous for modeling lanthanide and actinide compounds and condensed systems because of its transferability and accuracy. In this work, we develop a set of well-benchmarked GTH-type 5f-in-core PPs with scalar-relativistic effects together with associated Gaussian basis sets for the most commonly encountered trivalent and tetravalent actinides [An(III), An(IV); An = Pa-Lr]. The 5f-in-core GTH PPs are constructed by placing 5f-subconfiguration 5fn of An(III) and 5fn-1 of An(IV) (n = 2-14) into the atomic core in the core-valence separation. The formalism of 5f-in-core GTH PPs circumvents the computational difficulty arising from the 5f open valence shell. The different performances of 5f-in-core GTH PPs for trivalent and tetravalent actinides are further analyzed from the chemical bonding features of actinides. We anticipate that the optimized 5f-in-core GTH PPs and Gaussian basis sets can be used to accelerate the costly first-principles modeling of structure-complicated actinide compounds and condensed-phase actinide systems.
Collapse
Affiliation(s)
- Jun-Bo Lu
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yang-Yang Zhang
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Jian-Biao Liu
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Jun Li
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Tufekci BA, Chiba T, Xu J, Cheng L, Bowen KH. Activation of H 2O by ThO 2- Experimental and Computational Studies. J Phys Chem A 2025; 129:76-81. [PMID: 39780706 DOI: 10.1021/acs.jpca.4c06238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
A synergetic study that utilized anion photoelectron spectroscopy and high-level ab initio calculations has explored the activation of H2O molecules by ThO2- molecular anions. Both experiment and theory found conclusive evidence for said activation. In the experiments, this appeared as a tell-tale directional shift in the spectral profile of the anionic complex that ruled out physisorption, i.e., ThO2-(H2O), and implied chemisorption. In the computations, good agreement was found between the calculated and measured vertical detachment energies, and the atomic connectivity (the structure) of the resulting anionic complex was found to be [OTh(OH)2]-.
Collapse
Affiliation(s)
- Burak A Tufekci
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tatsuya Chiba
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jinheng Xu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lan Cheng
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
4
|
Müller M, Froitzheim T, Hansen A, Grimme S. Advanced Charge Extended Hückel (CEH) Model and a Consistent Adaptive Minimal Basis Set for the Elements Z = 1-103. J Phys Chem A 2024; 128:10723-10736. [PMID: 39621818 DOI: 10.1021/acs.jpca.4c06989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The Charge Extended Hückel (CEH) model, initially introduced for adaptive atomic orbital (AO) basis set construction (J. Chem. Phys. 2023, 159, 164108), has been significantly revised to enhance accuracy and robustness, particularly in challenging electronic situations. This revision includes an extension toward f-elements, covering actinoids with their f-electrons in the valence space. We present a novel noniterative approximation for the electrostatic contribution to the effective Fock matrix, which substantially improves performance in polar or charged systems. Additionally, the training data set for elements Z = 1-103 has been expanded to encompass even more chemically diverse reference molecules as well as dipole moments and shell populations in addition to atomic charges. It includes a greater variety of "mindless" molecules (MLMs) as well as more complex electronic structures through open-shell and highly charged species. The revised method achieves mean absolute errors for atomic charges q of approximately 0.02 e- for randomly selected (mostly organic) molecules and 0.09 e- for MLMs, outperforming both classical charge models and established tight-binding methods. Furthermore, the revised CEH model has been validated through density functional theory calculations with the updated adaptive q-vSZP AO basis set on common thermochemical databases. Consistent with the extension of the CEH model, q-vSZP has also been variationally optimized and tested for elements Z = 58-71 and 87-103. The original versions of both CEH and q-vSZP are now considered deprecated.
Collapse
Affiliation(s)
- Marcel Müller
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4, Bonn 53115, Germany
| | - Thomas Froitzheim
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4, Bonn 53115, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4, Bonn 53115, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4, Bonn 53115, Germany
| |
Collapse
|
5
|
Tufekci BA, Foreman K, Romeu JGF, Dixon DA, Peterson KA, Cheng L, Bowen KH. Anion Photoelectron Spectroscopy and Ab Initio Studies of the UF - Anion. J Phys Chem Lett 2024; 15:11932-11938. [PMID: 39574013 DOI: 10.1021/acs.jpclett.4c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
A synergistic anion photoelectron spectroscopic and ab initio computational study of photodetachment of UF- is reported. The measurement determined a vertical detachment energy of 0.63(03) eV, which is consistent with a spinor-based relativistic coupled-cluster CCSD(T) value of 0.61 eV. The complex spectral features due to excited electronic states and vibrational progressions of UF are analyzed and assigned with the help of spin-orbit-coupled multireference perturbation theory and spinor-based relativistic coupled-cluster calculations. UF and UF- are confirmed to be dominated by ionic bonding. The usefulness of the spinor CCSD(T) approach is demonstrated.
Collapse
Affiliation(s)
- Burak A Tufekci
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kathryn Foreman
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - João G F Romeu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, United States
| | - L Cheng
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Peluzo BMTC, Moura RT, Kraka E. Conformation and Bonding of Lanthanide(III) Trihalides LnX 3 (Ln = La-Lu; X = F, Cl, Br): A Relativistic Local Vibrational Mode Study. Inorg Chem 2024; 63:22445-22463. [PMID: 39531452 DOI: 10.1021/acs.inorgchem.4c03348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study employed relativistic methods to investigate the connection between the conformation and bonding properties of 45 lanthanide trihalides LnX3 (Ln: La-Lu; X:F, Cl, Br). Our findings reveal several insights. The proper symmetry exhibited by open-shell LnX3 requires the inclusion of spin-orbit coupling, achieved with 2-component relativistic Hamiltonians. Fluorines (LnF3) primarily exhibit pyramidal structures, while chlorides and bromides tend to yield planar conformations. For a given halide, the strength of Ln-X bonds increases across the lanthanide series, another outcome of the lanthanide contraction. Both strength and covalency of Ln-X bonds decrease upon the halide, i.e., LnF3 > LnCl3 > LnBr3. We introduced a novel parameter, the local force constant associated with the dihedral β(X-Ln-X-X), ka(β), which quantifies the resistance of these molecules to conformational changes. We observed a correlation between ka(β) and the covalency of the Ln-X bond, with higher ka(β) values indicating a stronger covalent character. Finally, the degree of pyramidalization in the LnX3 structures is connected to (i) the extent of charge donation within the molecule and (ii) the greater covalency of the Ln-X bond. These findings provide valuable insights into the interplay between the electronic structure and molecular geometry in LnX3.
Collapse
Affiliation(s)
- Barbara M T C Peluzo
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Renaldo T Moura
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
- Department of Chemistry and Physics, Center of Agrarian Sciences, Federal University of Paraiba, 58397-000 Areia, Paraiba, Brazil
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
7
|
Dutra FR, Romeu JGF, Dixon DA. Prediction of Redox Potentials for Ac, Th, and Pa in Aqueous Solution. J Phys Chem A 2024; 128:9730-9746. [PMID: 39480082 DOI: 10.1021/acs.jpca.4c05693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Density functional theory in conjunction with small core pseudopotentials and the associated basis sets was used to calculate potentials for multiple redox couples, covering a range of oxidation states for Ac (0 to III), Th (0 to IV), and Pa (0 to V) in aqueous solution. Solvation effects were incorporated using a supermolecule-continuum approach, with 30 water molecules representing two solvation shells, and the COSMO and SMD implicit solvation models. The calculated geometries for Ac(III), Th(IV), and Pa(V) were in reasonable agreement with the available experimental data. Using the COSMO model with the B3LYP functional, the calculated redox potentials were within ±0.2 V from experiment for most redox couples. Several pathways were explored for the Pa(V/IV) redox couple for different forms of Pa(V) and Pa(IV). Most Pa(V/IV) redox couples have very similar potentials, ranging from 0 to -0.4 V up to a pH of 1.4. At pH = 1.4, the potentials shift to values that are more negative than -0.7 V, reflecting the growing unfavorable nature of the redox process at higher pH levels. The calculated values for An(III/II) potentials were consistent with prior estimates and the available experimental data. The predicted redox potentials for An(II/I) were highly negative, as expected. For An(I/0) potentials, Th and Pa exhibited positive values, contrasting with the negative values calculated for Ac. The An+m/An(0) potentials agreed better with the experimental data when using the COSMO solvation model as compared to the SMD model.
Collapse
Affiliation(s)
- Felipe R Dutra
- Instituto de Química, Universidade Estadual de Campinas, Barão Geraldo, Campinas, São Paulo 13083-970, P.O. Box 6154, Brazil
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - João G F Romeu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
8
|
Marshall M, Zhu Z, Nguyen TS, Tufekci BA, Foreman K, Peterson KA, Bowen KH. Anion photoelectron spectroscopy and chemical bonding of ThS2- and ThSO. J Chem Phys 2024; 161:144309. [PMID: 39387412 DOI: 10.1063/5.0229157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Anion photoelectron spectra of ThSO- and ThS2- were recorded using the third (355 nm) harmonic of an Nd-YAG laser; these provided the measured vertical detachment energies of each anion. The experiments are supported by extensive coupled cluster calculations on ThSO, ThSO-, ThS2, and ThS2-, as well as the oxygen congeners ThO2 and ThO2-. The ab initio calculations, which included complete basis set extrapolations, spin-orbit effects using four-component coupled cluster, and higher-order correlation contributions through CCSDT(Q), yielded an adiabatic electron affinity for ThO2 that was within 0.02 eV of the previously determined experimental value. The singly occupied molecular orbital (SOMO) in all three anions corresponds primarily to the 7s orbital on Th. Successive substitution of S for each O in ThO2 leads to larger electron affinities and smaller bond angles in the neutral molecules, but larger angles in the anions. As demonstrated by Franck-Condon simulations of the spectra using the CCSD(T) spectroscopic constants, substitution of O by S significantly complicates the resulting detachment spectra due to the lower vibrational frequencies in the sulfur species. Overall the calculated vertical detachment energies are in very good agreement with the experiment. In addition to the adiabatic electron affinities of each species, atomization energies and heats of formation have also been determined via the FPD approach with expected uncertainties of 1-2 kcal/mol.
Collapse
Affiliation(s)
- Mary Marshall
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Truong-Son Nguyen
- Department of Chemistry, Washington State University, Pullman, Washington 99162, USA
| | - Burak A Tufekci
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Kathryn Foreman
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99162, USA
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
9
|
Zhang C, Peterson KA, Dyall KG, Cheng L. A new computational framework for spinor-based relativistic exact two-component calculations using contracted basis functions. J Chem Phys 2024; 161:054105. [PMID: 39087536 DOI: 10.1063/5.0217762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
A new computational framework for spinor-based relativistic exact two-component (X2C) calculations is developed using contracted basis sets with a spin-orbit contraction scheme. Generally contracted, j-adapted basis sets of p-block elements using primitive functions in the correlation-consistent basis sets are constructed for the X2C Hamiltonian with atomic mean-field spin-orbit integrals (the X2CAMF scheme). The contraction coefficients are taken from atomic X2CAMF Hartree-Fock spinors, thereby following the simple concept of a linear combination of atomic orbitals. Benchmark calculations of spin-orbit splittings, equilibrium bond lengths, and harmonic vibrational frequencies demonstrate the accuracy and efficacy of the j-adapted spin-orbit contraction scheme.
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | | | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
10
|
Mohanta M, Jena P. Magnetism of Otherwise Nonmagnetic Elements: From Clusters to Monolayers. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:12286-12295. [PMID: 39081559 PMCID: PMC11284855 DOI: 10.1021/acs.jpcc.4c03592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Atomic clusters are known to exhibit properties different from their bulk phase. However, when assembled or supported on substrates, clusters often lose their uniqueness. For example, uranium and coinage metals (Cu, Ag, Au) are nonmagnetic in their bulk. Herein, we show that UX6 (X= Cu, Ag, Au) clusters, unlike their nonmagnetic bulk, are not only magnetic but also retain their magnetic character and structure when assembled into a two-dimensional (2D) material. The magnetic moment remains localized at the U site and is found to be 3μB in clusters and about 2μB in the 2D structure. In 2D UX4 (X = Cu, Ag, Au) monolayers, U atoms are found to be coupled antiferromagnetically through an indirect exchange coupling mediated by the coinage metal atoms. Furthermore, hydrogenation of these monolayers can induce a transition from the antiferromagnetic to the ferromagnetic phase. These results, based on density functional theory, have predictive capability and can motivate experiments.
Collapse
Affiliation(s)
- Manish
Kumar Mohanta
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
11
|
Romeu JGF, Hunt ARE, de Melo GF, Peterson KA, Dixon DA. Energetic and Electronic Properties of UO 0/± and UF 0/±. J Phys Chem A 2024; 128:5586-5604. [PMID: 38954748 DOI: 10.1021/acs.jpca.4c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
High-level electronic structure calculations were conducted to examine the bonding and spectroscopic properties of the UO0/± and UF0/± diatomic molecules. The low-lying Ω states were described by using multireference SO-CASPT2 calculations. The adiabatic electronic affinity (AEA), adiabatic ionization energy (IE), and bond dissociation energy (BDE) were calculated at the Feller-Peterson-Dixon (FPD) level. The ground state of UO is predicted to be 5I4, and that of UF is 4I9/2. The calculated AEAs of UO and UF are 1.123 and 0.453 eV, respectively, and the corresponding IEs are 5.976 and 6.278 eV. The BDE of UO (749.5 kJ/mol) is predicted to be considerably higher than that of UF (627.2 kJ/mol), and both are higher than those predicted for UB, UC, and UN. NBO calculations show strong ionic character for the ground states of UO and UF and bond orders that range from 2 to 3 and from 1 to 2, respectively. Comparisons of the calculated properties to those of the series comprising UB, UC, and UN diatomic molecules are given.
Collapse
Affiliation(s)
- João G F Romeu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Ashley R E Hunt
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, United States
| | - Gabriel F de Melo
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
12
|
Dutra FR, Vasiliu M, Gomez AN, Xia D, Dixon DA. Prediction of Redox Potentials for U, Np, Pu, and Am in Aqueous Solution. J Phys Chem A 2024; 128:5612-5626. [PMID: 38959054 DOI: 10.1021/acs.jpca.4c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The redox properties of the actinides in aqueous solution are important for fuel production/reprocessing and understanding the environmental impact of nuclear waste. The redox potentials for U, Np, Pu, and Am in oxidation states from 0 up to VII (as appropriate) in aqueous solutions have been predicted at the density functional theory level with the B3LYP functional, Stuttgart small core pseudopotential basis sets for the actinides, and explicit (30H2O molecules)/implicit treatment of the aqueous solvent using the self-consistent reaction field COSMO and SMD approaches for the implicit solvation. The predictions of the structural parameters of clusters incorporating first and second solvation shells are consistent with the available experimental data. Our results are typically within 0.2 V of the available experimental data using two explicit solvation shells with an implicit solvent model. The use of the PW91 functional substantially improved the prediction of the Pu(VI/V) redox couple. The redox couples for An(VI/IV) and An(V/IV) which involve the addition of protons and removal of the actinyl oxygens led to slightly larger differences from an experiment. The An(IV/0) and An(III/0) couples were reliably predicted with our approach. Predictions of the unknown An(II/I) redox potentials were negative, consistent with expectations, and predictions for unknown An(VII/VI), An(III/II), and An(II/0) redox couples improve prior estimates.
Collapse
Affiliation(s)
- Felipe R Dutra
- Instituto de Química, Universidade Estadual de Campinas, Barão Geraldo, P.O. Box 6154, Campinas 13083-970, São Paulo, Brazil
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Amber N Gomez
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Donna Xia
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
13
|
Bubas AR, Kafle A, Stevenson BC, Armentrout PB. The bond energy of UN+: Guided ion beam studies of the reactions of U+ with N2 and NO. J Chem Phys 2024; 160:164305. [PMID: 38647300 DOI: 10.1063/5.0204090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
A guided ion beam tandem mass spectrometer was used to study the reactions of U+ with N2 and NO. Reaction cross sections were measured over a wide range of energy for both systems. In each reaction, UN+ is formed by an endothermic process, thereby enabling the direct measurement of the threshold energy and determination of the UN+ bond dissociation energy. For the reaction of U+ + N2, a threshold energy (E0) of 4.02 ± 0.11 eV was measured, leading to D0 (UN+) = 5.73 ± 0.11 eV. The reaction of U+ + NO yields UO+ through an exothermic, barrierless process that proceeds with 94 ± 23% efficiency at the lowest energy. Analysis of the endothermic UN+ cross section in this reaction provides E0 = 0.72 ± 0.11 eV and, therefore, D0 (UN+) = 5.78 ± 0.11 eV. Averaging the values obtained from both reactions, we report D0 (UN+) = 5.76 ± 0.13 eV as our best value (uncertainty of two standard deviations). Combined with precise literature values for the ionization energies of U and UN, we also derive D0 (UN) = 5.86 ± 0.13 eV. Both bond dissociation energies agree well with high-level theoretical treatments in the literature. The formation of UN+ in reaction of U+ with NO also exhibits a considerable increase in reaction probability above ∼3 eV. Theory suggests that this may be consistent with the formation of UN+ in excited quintet spin states, which we hypothesize are dynamically favored because the number of 5f electrons in reactants and products is conserved.
Collapse
Affiliation(s)
- Amanda R Bubas
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112-0850, USA
| | - Arjun Kafle
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112-0850, USA
| | - Brandon C Stevenson
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112-0850, USA
| | - P B Armentrout
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112-0850, USA
| |
Collapse
|
14
|
Bubas AR, Tatosian IJ, Iacovino A, Corcovilos TA, van Stipdonk MJ. Reactions of gas-phase uranyl formate/acetate anions: reduction of carboxylate ligands to aldehydes by intra-complex hydride attack. Phys Chem Chem Phys 2024; 26:12753-12763. [PMID: 38619367 DOI: 10.1039/d4cp00823e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In a previous study, electrospray ionization, collision-induced dissociation (CID), and gas-phase ion-molecule reactions were used to create and characterize ions derived from homogeneous precursors composed of a uranyl cation (UVIO22+) coordinated by either formate or acetate ligands [E. Perez, C. Hanley, S. Koehler, J. Pestok, N. Polonsky and M. Van Stipdonk, Gas phase reactions of ions derived from anionic uranyl formate and uranyl acetate complexes, J. Am. Soc. Mass Spectrom., 2016, 27, 1989-1998]. Here, we describe a follow-up study of anionic complexes that contain a mix of formate and acetate ligands, namely [UO2(O2C-CH3)2(O2C-H)]- and [UO2(O2C-CH3)(O2C-H)2]-. Initial CID of either anion causes decarboxylation of a formate ligand to create carboxylate-coordinated U-hydride product ions. Subsequent CID of the hydride species causes elimination of acetaldehyde or formaldehyde, consistent with reactions that include intra-complex hydride attack upon bound acetate or formate ligands, respectively. Density functional theory (DFT) calculations reproduce the experimental observations, including the favored elimination of formaldehyde over acetaldehyde by hydride attack during CID of [UO2(H)(O2C-CH3)(O2C-H)]-. We also discovered that MSn CID of the acetate-formate complexes leads to generation of the oxyl-methide species, [UO2(O)(CH3)]-, which reacts with H2O to generate [UO2(O)(OH)]-. DFT calculations support the observation that formation of [UO2(O)(OH)]- by elimination of CH4 is favored over H2O addition and rearrangement to create [UO2(OH)2(CH3)]-.
Collapse
Affiliation(s)
- Amanda R Bubas
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282, USA.
| | - Irena J Tatosian
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282, USA.
| | - Anna Iacovino
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282, USA.
| | - Theodore A Corcovilos
- Department of Physics, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | - Michael J van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282, USA.
| |
Collapse
|
15
|
Zhang C, Lipparini F, Stopkowicz S, Gauss J, Cheng L. Cholesky Decomposition-Based Implementation of Relativistic Two-Component Coupled-Cluster Methods for Medium-Sized Molecules. J Chem Theory Comput 2024; 20:787-798. [PMID: 38198515 DOI: 10.1021/acs.jctc.3c01236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A Cholesky decomposition (CD)-based implementation of relativistic two-component coupled-cluster (CC) and equation-of-motion CC (EOM-CC) methods using an exact two-component Hamiltonian augmented with atomic-mean-field spin-orbit integrals (the X2CAMF scheme) is reported. The present CD-based implementation of X2CAMF-CC and EOM-CC methods employs atomic-orbital-based algorithms to avoid the construction of two-electron integrals and intermediates involving three and four virtual indices. Our CD-based implementation extends the applicability of X2CAMF-CC and EOM-CC methods to medium-sized molecules with the possibility to correlate around 1000 spinors. Benchmark calculations for uranium-containing small molecules were performed to assess the dependence of the CC results on the Cholesky threshold. A Cholesky threshold of 10-4 is shown to be sufficient to maintain chemical accuracy. Example calculations to illustrate the capability of the CD-based relativistic CC methods are reported for the bond-dissociation energy of the uranium hexafluoride molecule, UF6, with up to quadruple-ζ basis sets, and the lowest excitation energy in the solvated uranyl ion [UO22+(H2O)12].
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Chemistry, the Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa I-56124, Italy
| | - Stella Stopkowicz
- Fachrichtung Chemie, Universität des Saarlandes, Saarbrücken D-66123, Germany
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0315, Norway
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| | - Lan Cheng
- Department of Chemistry, the Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
16
|
Fei Z, Wang JQ, Tang R, Lu Y, Han C, Wang Y, Hong J, Dong C, Hu HS, Xiong XG, Ning C, Liu H, Li J. The unusual quadruple bonding of nitrogen in ThN. Nat Commun 2023; 14:7677. [PMID: 37996410 PMCID: PMC10667236 DOI: 10.1038/s41467-023-43208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Nitrogen has five valence electrons and can form a maximum of three shared electron-pair bonds to complete its octet, which suggests that its maximum bond order is three. With a joint anion photoelectron spectroscopy and quantum chemistry investigation, we report herein that nitrogen presents a quadruple bonding interaction with thorium in ThN. The quadruple Th≣N bond consists of two electron-sharing Th-N π bonds formed between the Th-6dxz/6dyz and N 2px/2py orbitals, one dative Th←N σ bond and one weak Th←N σ bonding interaction formed between Th-6dz2 and N 2s/2pz orbitals. The ThC molecule has also been investigated and proven to have a similar bonding pattern as ThN. Nonetheless, due to one singly occupied σ-bond, ThC is assigned a bond order of 3.5. Moreover, ThC has a longer bond length as well as a lower vibrational frequency in comparison with ThN.
Collapse
Affiliation(s)
- Zejie Fei
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jia-Qi Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- College of Science, Beijing Forestry University, Beijing, 100083, China
| | - Rulin Tang
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Collaborative Innovation Center of Quantum Matter, Tsinghua University, Beijing, 100084, China
| | - Yuzhu Lu
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Collaborative Innovation Center of Quantum Matter, Tsinghua University, Beijing, 100084, China
| | - Changcai Han
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yongtian Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jing Hong
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changwu Dong
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Han-Shi Hu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiao-Gen Xiong
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
| | - Chuangang Ning
- Department of Physics, State Key Laboratory of Low Dimensional Quantum Physics, Collaborative Innovation Center of Quantum Matter, Tsinghua University, Beijing, 100084, China.
| | - Hongtao Liu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| | - Jun Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
17
|
Lutz JJ, Jensen DS, Hubbard JA. Deposition products predicted from conceptual DFT: The hydrolysis reactions of MoF6, WF6, and UF6. J Chem Phys 2023; 159:184305. [PMID: 37962449 DOI: 10.1063/5.0176552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Metal hexafluorides hydrolyze at ambient temperature to deposit compounds having fluorine-to-oxygen ratios that depend upon the identity of the metal. Uranium-hexafluoride hydrolysis, for example, deposits uranyl fluoride (UO2F2), whereas molybdenum hexafluoride (MoF6) and tungsten hexafluoride deposit trioxides. Here, we pursue general strategies enabling the prediction of depositing compounds resulting from multi-step gas-phase reactions. To compare among the three metal-hexafluoride hydrolyses, we first investigate the mechanism of MoF6 hydrolysis using hybrid density functional theory (DFT). Intermediates are then validated by performing anharmonic vibrational simulations and comparing with infrared spectra [McNamara et al., Phys. Chem. Chem. Phys. 25, 2990 (2023)]. Conceptual DFT, which is leveraged here to quantitatively evaluate site-specific electrophilicity and nucleophilicity metrics, is found to reliably predict qualitative deposition propensities for each intermediate. In addition to the nucleophilic potential of the oxygen ligands, several other contributing characteristics are discussed, including amphoterism, polyvalency, fluxionality, steric hindrance, dipolar strength, and solubility. To investigate the structure and composition of pre-nucleation clusters, an automated workflow is presented for the simulation of particle growth. The workflow entails a conformer search at the density functional tight-binding level, structural refinement at the hybrid DFT level, and computation of a composite free-energy profile. Such profiles can be used to estimate particle nucleation kinetics. Droplet formation is also considered, which helps to rationalize the different UO2F2 particle morphologies observed under varying levels of humidity. Development of predictive methods for simulating physical and chemical deposition processes is important for the advancement of material manufacturing involving coatings and thin films.
Collapse
Affiliation(s)
- Jesse J Lutz
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, USA
| | - Daniel S Jensen
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, USA
| | - Joshua A Hubbard
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, USA
| |
Collapse
|
18
|
Islam MA, Berthon C, Jung J, Bolvin H. Bonding and Magnetic Trends in the [An III(DPA) 3] 3- Series Compared to the Ln(III) and An(IV) Analogues. Inorg Chem 2023; 62:17254-17264. [PMID: 37818639 DOI: 10.1021/acs.inorgchem.3c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The crystal field parameters are determined from first-principles calculations in the [AnIII(DPA)3]3- series, completing previous work on the [LnIII(DPA)3]3- and [AnIV(DPA)3]2- series. The crystal field strength parameter follows the Ln(III) < An(III) < An(IV) trend. The parameters deduced at the orbital level decrease along the series, while J-mixing strongly impacts the many-electron parameters, especially for the Pu(III) complex. We further compile the available data for the three series. In some aspects, An(III) complexes are closer to Ln(III) than to An(IV) complexes with regard to the geometrical structure and bonding descriptors. At the beginning of the series, up to Pu(III), there is a quantitative departure from the free ion, especially for the Pa(III) complex. The magnetic properties of the actinides keep the trends of the lanthanides; in particular, the axial magnetic susceptibility follows Bleaney's theory qualitatively.
Collapse
Affiliation(s)
- Md Ashraful Islam
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université Toulouse III, 118 Route de Narbonne, 31062 Toulouse, France
| | - Claude Berthon
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, 30207 Bagnols-sur-Cèze, France
| | - Julie Jung
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Hélène Bolvin
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université Toulouse III, 118 Route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
19
|
Andriola DM, Peterson KA. Coupled Cluster Study of the Heats of Formation of UF 6 and the Uranium Oxyhalides, UO 2X 2 (X = F, Cl, Br, I, and At). J Phys Chem A 2023; 127:7579-7585. [PMID: 37657073 DOI: 10.1021/acs.jpca.3c04420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
The atomization enthalpies of the U(VI) species UF6 and the uranium oxyhalides UO2X2 (X = F, Cl, Br, I, and At) were calculated using a composite relativistic Feller-Peterson-Dixon (FPD) approach based on scalar relativistic DKH3-CCSD(T) with extrapolations to the CBS limit. The inherent multideterminant nature of the U atom was mitigated by utilizing the singly charged atomic cation in all calculations with correction back to the neutral asymptote via the accurate ionization energy of the U atom. The effects of SO coupling were recovered using full 4-component CCSD(T) with contributions due to the Gaunt Hamiltonian calculated using Dirac-Hartree-Fock. The final atomization enthalpy for UF6 (752.2 kcal/mol) was within 2.5 kcal/mol of the experimental value, but unfortunately the latter carries a ±2.4 kcal/mol uncertainty that is predominantly due to the experimental uncertainty in the formation enthalpy of the U atom. The analogous value for UO2F2 (607.6 kcal/mol) was in nearly exact agreement with the experiment, but the latter has a stated experimental uncertainty of ±4.3 kcal/mol. The FPD atomization enthalpy for UO2Cl2 (540.4 kcal/mol) was within the experimental error limit of ±5.5 kcal/mol. FPD atomization energies for the non-U-containing molecules (used for reaction enthalpies) H2O and HX (X = F, Cl, Br, I, and At) were within at most 0.3 kcal/mol of their experimental values where available. The FPD atomization enthalpies, together with FPD reaction enthalpies for two different reactions, were used to determine heats of formation for all species of this work, with estimated uncertainties of ±4 kcal/mol. The calculated heat of formation for UF6 (-511.0 kcal/mol) is within 2.5 kcal/mol of the accurately known (±0.45 kcal/mol) experimental value.
Collapse
Affiliation(s)
- Devon M Andriola
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, United States
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, United States
| |
Collapse
|
20
|
Harris RM, Zhu Z, Tufekci BA, Deepika, Jena P, Peterson KA, Bowen KH. Electronic Structure and Anion Photoelectron Spectroscopy of Uranium-Gold Clusters UAu n-, n = 3-7. J Phys Chem A 2023; 127:7186-7197. [PMID: 37590893 DOI: 10.1021/acs.jpca.3c03452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
A collaborative effort between experiment and theory toward elucidating the electronic and molecular structures of uranium-gold clusters is presented. Anion photoelectron spectra of UAun-(n = 3-7) were taken at the third (355 nm) and fourth (266 nm) harmonics of a Nd:YAG laser, as well as excimer (ArF 193 nm) photon energies, where the experimental adiabatic electron affinities and vertical detachment energies values were measured. Complementary first-principles calculations were subsequently carried out to corroborate experimentally determined electron detachment energies and to determine the geometry and electronic structure for each cluster. Except for the ring-like neutral isomer of UAu6 where one unpaired electron is spread over the Au atoms, all other neutral and anionic UAun clusters (n = 3-7) were calculated to possess open-shell electrons with the unpaired electrons localized on the central U atom. The smaller clusters closely resemble the analogous UFn species, but significant deviations are seen starting with UAu5 where a competition between U-Au and Au-Au bonding begins to become apparent. The UAu6 system appears to mark a transition where Au-Au interactions begin to dominate, where both a ring-like and two heavily distorted octahedral structures around the central U atom are calculated to be nearly isoenergetic. With UAu7, only ring-like structures are calculated. Overall, the calculated electron detachment energies are in good agreement with the experimental values.
Collapse
Affiliation(s)
- Rachel M Harris
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Burak A Tufekci
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Deepika
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Purusottam Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
21
|
Lontchi EM, Vasiliu M, Dixon DA. Hydrolysis Reactions of the High Oxidation State Dimers Th 2O 4, Pa 2O 5, U 2O 6, and Np 2O 6. A Computational Study. J Phys Chem A 2023; 127:6732-6748. [PMID: 37549315 DOI: 10.1021/acs.jpca.3c03455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The energetics of the hydrolysis reactions for high oxidation states of the dimeric actinide species Th2IVO4, Pa2VO5, and U2VIO6 were calculated at the CCSD(T) level and those for triplet Np2VIO6 at the B3LYP level. Hydrolysis is initiated by the formation of a Lewis acid/base adduct with H2O (physisorbed product), followed by a proton transfer to form a dihydroxide molecule (chemisorbed product); this process was repeated until the initial actinide oxide is fully hydrolyzed. For Th2O4, hydrolysis (chemisorption) by the initial and subsequent H2O molecules prefers proton transfer to terminal oxo groups before the bridge oxo groups. The overall Th2O4 hydration pathway is exothermic with chemisorbed products preferred over the physisorption products, and the fully hydrolyzed Th2(OH)8 can form exothermically. Hydrolysis of Pa2O5 forms isomers of similar energies with no initial preference for bridge or terminal hydroxy groups. The most exothermic hydrolysis product for Pa is Pa2O(OH)8 and the most stable species is Pa2O(OH)8(H2O). Hydrolysis of U2O6 and Np2O6 with strong [O═An═O]2+ actinyl groups occurs first at the bridging oxygens rather than at the terminal oxo groups. The U2O6 and Np2O6 pathways predict hydrated products to be more favored than hydrolyzed products, as more H2O molecules are added. The stability of the U and Np clusters is predicted to decrease with increasing number of hydroxyl groups. The most stable species on the hydration reaction coordinate for U and Np is An2O3(OH)6(H2O).
Collapse
Affiliation(s)
- Eddy M Lontchi
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
22
|
Peluzo BMTC, Makoś MZ, Moura RT, Freindorf M, Kraka E. Linear versus Bent Uranium(II) Metallocenes─A Local Vibrational Mode Study. Inorg Chem 2023. [PMID: 37478353 DOI: 10.1021/acs.inorgchem.3c01761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Uranium metallocenes have recently attracted attention driven by their use as catalysts in organometallic synthesis. In addition to bent U(IV) and U(III), an U(II) metallocene [(η5-C5i Pr5)2U] was synthesized with an unusual linear Cp-U-Cp angle. In this work, we investigated 22 U(II) metallocenes, (i) assessing the intrinsic strength of the U-ring interactions in these complexes with a novel bond strength measure based on our local vibrational mode analysis and (ii) systematically exploring what makes these U(II) metallocenes bent. We included relativistic effects through the NESCau Hamiltonian and complemented the local mode analysis with natural bonding orbital (NBO) and quantum theory of atoms in molecules (QTAIM) data. Our study led to the following results: (i) reduction of bulky U-ring ligand substituents does not lead to bent complexes for alkyl substituents (iPr and iBu) in contrast to SiMe3 ring substituents, which are all bent. (ii) The most bent complexes are [(η5-C5H4SiMe3)2U] (130°) and [η5-P5H5)2U] (143°). (iii) Linear complexes showed one hybridized NBO with s/d character, while bent structures were characterized by s/d/f mixing. (iv) We did not observe a correlation between the strength of the U-ring interaction and the amount of the ring-U-ring bend; the strongest interaction was found for [η5-Cp)2U] and the weakest for [η5-P5H5)2U]. In conclusion, our results provide a foundation for the design of U(II) metallocenes with specific physicochemical properties and increased reactivity.
Collapse
Affiliation(s)
- Bárbara M T C Peluzo
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Małgorzata Z Makoś
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States
| | - Renaldo T Moura
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
- Department of Chemistry and Physics, Center of Agrarian Sciences, Federal University of Paraíba, Areia 58397-000, Paraíba, Brazil
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| |
Collapse
|
23
|
Lu Z, Jackson BA, Miliordos E. Ab Initio Calculations on the Ground and Excited Electronic States of Thorium-Ammonia, Thorium-Aza-Crown, and Thorium-Crown Ether Complexes. Molecules 2023; 28:4712. [PMID: 37375268 DOI: 10.3390/molecules28124712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Positively charged metal-ammonia complexes are known to host peripheral, diffuse electrons around their molecular skeleton. The resulting neutral species form materials known as expanded or liquid metals. Alkali, alkaline earth, and transition metals have been investigated previously in experimental and theoretical studies of both the gas and condensed phase. This work is the first ab initio exploration of an f-block metal-ammonia complex. The ground and excited states are calculated for Th0-3+ complexes with ammonia, crown ethers, and aza-crown ethers. For Th3+ complexes, the one valence electron Th populates the metal's 6d or 7f orbitals. For Th0-2+, the additional electrons prefer occupation of the outer s- and p-type orbitals of the complex, except Th(NH3)10, which uniquely places all four electrons in outer orbitals of the complex. Although thorium coordinates up to ten ammonia ligands, octa-coordinated complexes are more stable. Crown ether complexes have a similar electronic spectrum to ammonia complexes, but excitations of electrons in the outer orbitals of the complex are higher in energy. Aza-crown ethers disfavor the orbitals perpendicular to the crowns, attributed to the N-H bonds pointing along the plane of the crowns.
Collapse
Affiliation(s)
- Zhongyuan Lu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| | - Benjamin A Jackson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| |
Collapse
|
24
|
Shee J, Weber JL, Reichman DR, Friesner RA, Zhang S. On the potentially transformative role of auxiliary-field quantum Monte Carlo in quantum chemistry: A highly accurate method for transition metals and beyond. J Chem Phys 2023; 158:140901. [PMID: 37061483 PMCID: PMC10089686 DOI: 10.1063/5.0134009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/01/2023] [Indexed: 04/17/2023] Open
Abstract
Approximate solutions to the ab initio electronic structure problem have been a focus of theoretical and computational chemistry research for much of the past century, with the goal of predicting relevant energy differences to within "chemical accuracy" (1 kcal/mol). For small organic molecules, or in general, for weakly correlated main group chemistry, a hierarchy of single-reference wave function methods has been rigorously established, spanning perturbation theory and the coupled cluster (CC) formalism. For these systems, CC with singles, doubles, and perturbative triples is known to achieve chemical accuracy, albeit at O(N7) computational cost. In addition, a hierarchy of density functional approximations of increasing formal sophistication, known as Jacob's ladder, has been shown to systematically reduce average errors over large datasets representing weakly correlated chemistry. However, the accuracy of such computational models is less clear in the increasingly important frontiers of chemical space including transition metals and f-block compounds, in which strong correlation can play an important role in reactivity. A stochastic method, phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC), has been shown to be capable of producing chemically accurate predictions even for challenging molecular systems beyond the main group, with relatively low O(N3 - N4) cost and near-perfect parallel efficiency. Herein, we present our perspectives on the past, present, and future of the ph-AFQMC method. We focus on its potential in transition metal quantum chemistry to be a highly accurate, systematically improvable method that can reliably probe strongly correlated systems in biology and chemical catalysis and provide reference thermochemical values (for future development of density functionals or interatomic potentials) when experiments are either noisy or absent. Finally, we discuss the present limitations of the method and where we expect near-term development to be most fruitful.
Collapse
Affiliation(s)
- James Shee
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - John L. Weber
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - David R. Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Richard A. Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Shiwei Zhang
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA
| |
Collapse
|
25
|
Nowak A, Boguslawski K. A configuration interaction correction on top of pair coupled cluster doubles. Phys Chem Chem Phys 2023; 25:7289-7301. [PMID: 36810525 DOI: 10.1039/d2cp05171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Numerous numerical studies have shown that geminal-based methods are a promising direction to model strongly correlated systems with low computational costs. Several strategies have been introduced to capture the missing dynamical correlation effects, which typically exploit a posteriori corrections to account for correlation effects associated with broken-pair states or inter-geminal correlations. In this article, we scrutinize the accuracy of the pair coupled cluster doubles (pCCD) method extended by configuration interaction (CI) theory. Specifically, we benchmark various CI models, including, at most double excitations against selected CC corrections as well as conventional single-reference CC methods. A simple Davidson correction is also tested. The accuracy of the proposed pCCD-CI approaches is assessed for challenging small model systems such as the N2 and F2 dimers and various di- and triatomic actinide-containing compounds. In general, the proposed CI methods considerably improve spectroscopic constants compared to the conventional CCSD approach, provided a Davidson correction is included in the theoretical model. At the same time, their accuracy lies between those of the linearized frozen pCCD and frozen pCCD variants.
Collapse
Affiliation(s)
- Artur Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| | - Katharina Boguslawski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
26
|
de Melo GF, Dixon DA. Bonding, Thermodynamics, and Spectroscopy of the Metal Borides UB 0/+/- and WB 0/+/. J Phys Chem A 2023; 127:1588-1597. [PMID: 36753327 DOI: 10.1021/acs.jpca.2c08556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The bonding and spectroscopy of the UB0/+/- and WB0/+/- molecules were examined by performing high-level electronic structure calculation on their low-lying electronic states. The calculations were performed at the SO-CASPT2 level to obtain the low-lying excited states and at the FPD level to calculate the adiabatic electronic affinities (AEA), ionization energies (IE), and bond dissociation energies (BDE). Compared to UC and UN, UB has a much denser manifold of states below 1.7 eV. The ground state of UB is predicted to be 8I5/2, and that of WB is 6Π7/2. The calculated IEs of UB and WB are 6.241 and 7.314 eV, respectively, and the corresponding AEAs are 1.160 and 1.422 eV. The BDE of UB is predicted to be 223.1 kJ/mol, which is considerably lower than those predicted for UC and UN and ∼35 kJ/mol lower than the BDE of WB. NBO calculations show that the U and B are connected by two 1-electron π bonds and one 1-electron σ bond with substantial ionic character and a bond order of 1.5. There are three unpaired electrons in the 5f on U. WB has less ionic character than UB with a doubly occupied π bond and a singly occupied σ bond for a bond order of ∼1.5. The results show that the U in UB behaves more like an actinide and the W in WB more like a transition metal.
Collapse
Affiliation(s)
- Gabriel F de Melo
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35401, United States
| |
Collapse
|
27
|
Rockow S, Bubas AR, Krauel SP, Stevenson BC, Armentrout PB. Thermochemistry of uranium sulfide cations: guided ion beam and theoretical studies of reactions of U + and US + with CS 2 and collision-induced dissociation of US +. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2175595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Sara Rockow
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Amanda R. Bubas
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | | | | | - P. B. Armentrout
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
28
|
Hong J, Han C, Fei Z, Tang Y, Liu Y, Xu HG, Wang M, Liu H, Xiong XG, Dong C. The additional nitrogen atom breaks the uranyl structure: a combined photoelectron spectroscopy and theoretical study of NUO 2. Phys Chem Chem Phys 2023; 25:4794-4802. [PMID: 36692210 DOI: 10.1039/d2cp05544a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report a joint photoelectron spectroscopic and relativistic quantum chemistry study on gaseous NUO2-. The electron affinity (EA) of the neutral NUO2 molecule is reported for the first time with a value of 2.602(28) eV. The U-O and U-N stretching vibrational modes for the ground state and the first excited state are observed for NUO2. The geometric and electronic structures of both the anions and the corresponding neutrals are investigated by relativistic quantum chemistry calculations to interpret the photoelectron spectra and to provide insights into the nature of the chemical bonding. Both the ground state of the anion and neutral are calculated to be planar structures with C2v symmetry. Unlike the "T"-shape structure of UO3 which has a quasi-linear O-U-O angle, both the ground-state geometries of the anion and neutral have O-U-O bond angles of around 90°. The significant contraction of the O-U-O bond angle indicates the strong interaction between the U and N atoms compared with the "additional" oxygen in UO3. The chemical bonding calculation indicates that multiple bonding of U(VI) can occur in NUO2- and NUO2, and the UVI-N bond is significantly more covalent than the U-O bond. The current experimental and theoretical results reveal the difference between the U-N and U-O bond in the unified molecular system, and expand our understanding of the bonding capacities of actinide elements with the nitrogen atom.
Collapse
Affiliation(s)
- Jing Hong
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Changcai Han
- Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, Shanghai, 200092, P. R. China
| | - Zejie Fei
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.
| | - Yuanyuan Tang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.
| | - Yancheng Liu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mingqing Wang
- Yankuang New Energy R&D Innovation Centre, Shandong Energy Group Co., LTD, China
| | - Hongtao Liu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.
| | - Xiao-Gen Xiong
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China.
| | - Changwu Dong
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China.
| |
Collapse
|
29
|
Graubner T, Karttunen AJ, Kraus F. A Computational Study on Closed-Shell Molecular Hexafluorides MF 6 (M=S, Se, Te, Po, Xe, Rn, Cr, Mo, W, U) - Molecular Structure, Anharmonic Frequency Calculations, and Prediction of the NdF 6 Molecule. Chemphyschem 2023; 24:e202200903. [PMID: 36688413 DOI: 10.1002/cphc.202200903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
Quantum chemical methods were used to study the molecular structure and anharmonic IR spectra of the experimentally known closed-shell molecular hexafluorides MF6 (M=S, Se, Te, Xe, Mo, W, U). First, the molecular structures and harmonic frequencies were investigated using Density Functional Theory (DFT) with all-electron basis sets and explicitly considering the influence of spin-orbit coupling. Second, anharmonic frequencies and IR intensities were calculated with the CCSD(T) coupled cluster method and compared, where available, with IR spectra recorded by us. These comparisons showed satisfactory results. The anharmonic IR spectra provide means for identifying experimentally too little studied or unknown MF6 molecules with M=Cr, Po, Rn. To the best of our knowledge, we predict the NdF6 molecule for the first time and show it to be a true local minimum on the potential energy surface. We used intrinsic bond orbital (IBO) analyses to characterize the bonding situation in comparison with the UF6 molecule.
Collapse
Affiliation(s)
- Tim Graubner
- Fluorchemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Antti J Karttunen
- Department of Chemistry and Materials Science, Aalto University, 00076, Espoo, Finland
| | - Florian Kraus
- Fluorchemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| |
Collapse
|
30
|
North S, Almeida NMS, Melin TL, Wilson AK. Multireference Wavefunction-Based Investigation of the Ground and Excited States of LrF and LrO. J Phys Chem A 2023; 127:107-121. [PMID: 36596472 PMCID: PMC9841984 DOI: 10.1021/acs.jpca.2c06968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/30/2022] [Indexed: 01/05/2023]
Abstract
Complete active space self-consistent field (CASSCF) and multireference configuration interaction with Davidson correction (MRCI+Q) calculations have been carried out for lawrencium fluoride (LrF) and lawrencium oxide (LrO) molecules, detailing 19 and 20 electronic states for LrF and LrO, respectively. For LrF, two dissociation channels were considered, Lr(2P)+F(2P) and Lr(2D)+F(2P). However, due to the more complex electronic manifold of LrO, three dissociation channels were computed: Lr(2P)+O(3P), Lr(2D)+O(3P), and Lr(2P)+O(1D). In addition, equilibrium bond lengths, harmonic vibrational frequencies ωe, anharmonicity constants ωeχe, ΔG1/2 values, and excitation energies Te for the ground and several excited electronic states were calculated for both molecules, for the first time. Bond dissociation energies (BDEs) were calculated for LrF and LrO using several different levels of theory: unrestricted coupled-cluster with single, double, and perturbative triple excitations (UCCSD(T)), density functional theory (B3LYP, TPSS, M06-L, and PBE), and the correlation-consistent composite approach developed for f-elements (f-ccCA).
Collapse
Affiliation(s)
- Sasha
C. North
- Department
of Chemistry, Michigan State University, East Lansing, Michigan48824, United States
| | - Nuno M. S. Almeida
- Department
of Chemistry, Michigan State University, East Lansing, Michigan48824, United States
| | - Timothé
R. L. Melin
- Department
of Chemistry, Michigan State University, East Lansing, Michigan48824, United States
| | - Angela K. Wilson
- Department
of Chemistry, Michigan State University, East Lansing, Michigan48824, United States
| |
Collapse
|
31
|
North SC, Jorgensen KR, Pricetolstoy J, Wilson AK. Population analysis and the effects of Gaussian basis set quality and quantum mechanical approach: main group through heavy element species. Front Chem 2023; 11:1152500. [PMID: 37153525 PMCID: PMC10154537 DOI: 10.3389/fchem.2023.1152500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Atomic charge and its distribution across molecules provide important insight into chemical behavior. Though there are many studies on various routes for the determination of atomic charge, there are few studies that examine the broader impact of basis set and quantum method used over many types of population analysis methods across the periodic table. Largely, such a study of population analysis has focused on main-group species. In this work, atomic charges were calculated using several population analysis methods including orbital-based methods (Mulliken, Löwdin, and Natural Population Analysis), volume-based methods (Atoms-in-Molecules (AIM) and Hirshfeld), and potential derived charges (CHELP, CHELPG, and Merz-Kollman). The impact of basis set and quantum mechanical method choices upon population analysis has been considered. The basis sets utilized include Pople (6-21G**, 6-31G**, 6-311G**) and Dunning (cc-pVnZ, aug-cc-pVnZ; n = D, T, Q, 5) basis sets for main group molecules. For the transition metal and heavy element species examined, relativistic forms of the correlation consistent basis sets were used. This is the first time the cc-pVnZ-DK3 and cc-pwCVnZ-DK3 basis sets have been examined with respect to their behavior across all levels of basis sets for atomic charges for an actinide. The quantum methods chosen include two density functional (PBE0 and B3LYP), Hartree-Fock, and second-order Møller-Plesset perturbation theory (MP2) approaches.
Collapse
Affiliation(s)
- Sasha C. North
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Kameron R. Jorgensen
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX, United States
| | - Jason Pricetolstoy
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Angela K. Wilson
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- *Correspondence: Angela K. Wilson,
| |
Collapse
|
32
|
Evaluations of molecular modeling and machine learning for predictive capabilities in binding of lanthanum and actinium with carboxylic acids. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
de Melo GF, Vasiliu M, Liu G, Ciborowski S, Zhu Z, Blankenhorn M, Harris R, Martinez-Martinez C, Dipalo M, Peterson KA, Bowen KH, Dixon DA. Theoretical and Experimental Study of the Spectroscopy and Thermochemistry of UC +/0/. J Phys Chem A 2022; 126:9392-9407. [PMID: 36508745 DOI: 10.1021/acs.jpca.2c06978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A combination of high-level ab initio calculations and anion photoelectron detachment (PD) measurements is reported for the UC, UC-, and UC+ molecules. To better compare the theoretical values with the experimental photoelectron spectrum (PES), a value of 1.493 eV for the adiabatic electron affinity (AEA) of UC was calculated at the Feller-Peterson-Dixon (FPD) level. The lowest vertical detachment energy (VDE) is predicted to be 1.500 eV compared to the experimental value of 1.487 ± 0.035 eV. A shoulder to lower energy in the experimental PD spectrum with the 355 nm laser can be assigned to a combination of low-lying excited states of UC- and excited vibrational states. The VDEs calculated for the low-lying excited electronic states of UC at the SO-CASPT2 level are consistent with the observed additional electron binding energies at 1.990, 2.112, 2.316, and 3.760 eV. Potential energy curves for the Ω states and the associated spectroscopic properties are also reported. Compared to UN and UN+, the bond dissociation energy (BDE) of UC (411.3 kJ/mol) is predicted to be considerably lower. The natural bond orbitals (NBO) calculations show that the UC0/+/- molecules have a bond order of 2.5 with their ground-state configuration arising from changes in the oxidation state of the U atom in terms of the 7s orbital occupation: UC (5f27s1), UC- (5f27s2), and UC+ (5f27s0). The behavior of the UN and UC sequence of molecules and anions differs from the corresponding sequences for UO and UF.
Collapse
Affiliation(s)
- Gabriel F de Melo
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sandra Ciborowski
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Moritz Blankenhorn
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rachel Harris
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | | - Maria Dipalo
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35401, United States
| |
Collapse
|
34
|
Li RS, Liu ZY, Wang YM, Li S, Zhang PJ, Cao ZL. Inter-configuration fluctuation for 5f electrons in uranium hexafluoride: A many-body study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
de Melo GF, Vasiliu M, Liu G, Ciborowski S, Zhu Z, Blankenhorn M, Harris R, Martinez-Martinez C, Dipalo M, Peterson KA, Bowen KH, Dixon DA. Electronic Properties of UN and UN - from Photoelectron Spectroscopy and Correlated Molecular Orbital Theory. J Phys Chem A 2022; 126:7944-7953. [PMID: 36269194 DOI: 10.1021/acs.jpca.2c06012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The results of calculations of the properties of the anion UN- including electron detachment are described, which further expand our knowledge of this diatomic molecule. High-level electronic structure calculations were conducted for the UN and UN- diatomic molecules and compared to photoelectron spectroscopy measurements. The low-lying Ω states were obtained using multireference CASPT2 including spin-orbit effects up to ∼20,000 cm-1. At the Feller-Peterson-Dixon (FPD) level, the adiabatic electron affinity (AEA) of UN is estimated to be 1.402 eV and the vertical detachment energy (VDE) is 1.423 eV. The assignment of the UN excited states shows good agreement with the experimental results with a VDE of 1.424 eV. An Ω = 4 ground state was obtained for UN- which is mainly associated with the 3H ΛS state. Thermochemical calculations estimate a bond dissociation energy (BDE) for UN- (U- + N) of 665.9 kJ/mol, ∼15% larger than that of UN and UN+. The NBO analysis reveals U-N triple bonds for the UN, UN-, and UN+ species.
Collapse
Affiliation(s)
- Gabriel F de Melo
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sandra Ciborowski
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Moritz Blankenhorn
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rachel Harris
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | | - Maria Dipalo
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35401, United States
| |
Collapse
|
36
|
Zhang C, Cheng L. Route to Chemical Accuracy for Computational Uranium Thermochemistry. J Chem Theory Comput 2022; 18:6732-6741. [PMID: 36206308 DOI: 10.1021/acs.jctc.2c00812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benchmark spinor-based relativistic coupled-cluster calculations for the ionization energies of the uranium atom, the uranium monoxide molecule (UO), and the uranium dioxide molecule (UO2) and for the bond dissociation energies of UO and UO2 are reported. The accuracy of these calculations in the treatments of relativistic, electron-correlation, and basis-set effects is analyzed. The intrinsic convergence of the computed results and the favorable comparison with the experimental values demonstrate the unique applicability of the spinor representation of quantum-chemical methods to open-shell uranium-containing atomic and molecular species with uranium oxidation states ranging from U(0) to U(V).
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
37
|
Kafle A, Armentrout PB. Sequential Bond Dissociation Energies of Th +(CO) x, x = 3-6: Guided Ion Beam Collision-Induced Dissociation and Quantum Computational Studies. Inorg Chem 2022; 61:15936-15952. [PMID: 36166214 DOI: 10.1021/acs.inorgchem.2c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Collision-induced dissociation (CID) of [Th,xC,xO]+, x = 3-6, with Xe is performed using a guided ion beam tandem mass spectrometer (GIBMS). Products are formed exclusively by the loss of CO ligands. Analyses of the kinetic energy-dependent CID product cross sections yield bond dissociation energies (BDEs) of (CO)x-1Th+-CO at 0 K as 1.09 ± 0.05, 0.82 ± 0.07, 0.63 ± 0.05, and 0.70 ± 0.05 eV, respectively. Different structures of [Th,xC,xO]+ were explored using various electronic structure methods, and BDEs for CO ligand loss from precursor [Th,xC,xO]+ complexes were computed. Both experimental and theoretical results corroborate that the structures of [Th,xC,xO]+, x = 3-6, formed experimentally are homoleptic thorium cation carbonyl complexes, Th+(CO)x. The nonmonotonic trend in experimental BDEs is reproduced theoretically, although ambiguities in the spin states of the x = 4-6 complexes (doublet or quartet) remain. BDEs calculated at the coupled cluster with single, double, and perturbative triple excitations (CCSD(T))/cc-pVXZ//B3LYP/cc-PVXZ (X = T and Q) level and a complete basis set (CBS) extrapolation agree reasonably well with the experimental values for all complexes. Thorium oxide ketenylidene carbonyl cations, OTh+CCO(CO)y, y = 1-4, were calculated to be the most stable structures of [Th,xC,xO]+, x = 3-6, respectively; however, these are not observed in our experiment. Potential energy profiles (PEPs) having either quartet or doublet spin calculated at the B3LYP/cc-pVQZ level suggest that the failure to observe OTh+CCO(CO)y, y = 1-4, is the result of a barrier corresponding to the C-C bond formation, making the formation of OTh+CCO(CO)y inaccessible kinetically under the present experimental conditions.
Collapse
Affiliation(s)
- Arjun Kafle
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112, United States
| | - P B Armentrout
- Department of Chemistry, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
38
|
Autillo M, Wilson RE, Vasiliu M, de Melo GF, Dixon DA. Periodic Trends within Actinyl(VI) Nitrates and Their Structures, Vibrational Spectra, and Electronic Properties. Inorg Chem 2022; 61:15607-15618. [PMID: 36130052 DOI: 10.1021/acs.inorgchem.2c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of actinyl(VI) nitrate salts of the form MAnO2(NO3)3, where M = NH4+ K+, Rb+, Cs+, and Me4N+ and AnO22+ = U, Np, Pu, and AnO2(NO3)2(H2O)2·H2O, and the uranyl tetranitrates M2UO2(NO3)4 have been synthesized from aqueous solution and their structures determined using single-crystal X-ray diffraction. Together, these complexes represent an isostructural series of actinide complexes among the salts crystallized with the same charge-compensating cation and have been studied using vibrational spectroscopy including Raman and Fourier-transform infrared. Periodic trends in both the structural properties of these complexes and their vibrational spectra are presented and discussed, in particular the invariant nature of the O≡An≡O asymmetric stretching frequencies observed across the actinyl series. Electronic structure calculations were performed at a variety of levels of theory to aid in the interpretation of the vibrational data and to correlate trends in the data with the underlying electronic properties of these molecules.
Collapse
Affiliation(s)
- Matthieu Autillo
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Richard E Wilson
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Gabriel F de Melo
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
39
|
Cheng L. Relativistic exact two-component coupled-cluster calculations of electronic g-factors for heavy-atom-containing molecules pertinent to search of new physics. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2113567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
40
|
Hill AN, Meijer AJHM, Hill JG. Correlation Consistent Basis Sets and Core Polarization Potentials for Al-Ar with ccECP Pseudopotentials. J Phys Chem A 2022; 126:5853-5863. [PMID: 35976118 PMCID: PMC9442647 DOI: 10.1021/acs.jpca.2c04446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
New correlation consistent basis sets for the second-row
atoms
(Al–Ar) to be used with the neon-core correlation consistent
effective core potentials (ccECPs) have been developed. The basis
sets, denoted cc-pV(n+d)Z-ccECP (n = D, T, Q), include the “tight”-d functions that are
known to be important for second-row elements. Sets augmented with
additional diffuse functions are also reported. Effective core polarization
potentials (CPPs) to account for the effect of core–valence
correlation have been adjusted for the same elements, and two different
forms of the CPP cutoff function have been analyzed. The accuracy
of both the basis sets and the CPPs is assessed through benchmark
calculations at the coupled-cluster level of theory for atomic and
molecular properties. Agreement with all-electron results is much
improved relative to the basis sets that originally accompanied the
ccECPs; moreover, the combination of cc-pV(n+d)Z-ccECP
and CPPs is found to be a computationally efficient and accurate alternative
to including core electrons in the correlation treatment.
Collapse
Affiliation(s)
- Adam N Hill
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Anthony J H M Meijer
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - J Grant Hill
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| |
Collapse
|
41
|
de Melo GF, Vasiliu M, Marshall M, Zhu Z, Tufekci BA, Ciborowski SM, Blankenhorn M, Harris RM, Bowen KH, Dixon DA. Experimental and Computational Description of the Interaction of H and H - with U. J Phys Chem A 2022; 126:4432-4443. [PMID: 35767645 DOI: 10.1021/acs.jpca.2c03115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The results of ab initio correlated molecular orbital theory electronic structure calculations for low-lying electronic states are presented for UH and UH- and compared to photoelectron spectroscopy measurements. The calculations were performed at the CCSD(T)/CBS and multireference CASPT2 including spin-orbit effects by the state interacting approach levels. The ground states of UH and UH- are predicted to be 4Ι9/2 and 5Λ6, respectively. The spectroscopic parameters Te, re, ωe, ωexe, and Be were obtained, and potential energy curves were calculated for the low energy Ω states of UH. The calculated adiabatic electron affinity is 0.468 eV in excellent agreement with an experimental value of 0.462 ± 0.013 eV. The lowest vertical detachment energy was predicted to be 0.506 eV for the ground state, and the adiabatic ionization energy (IE) is predicted to be 6.116 eV. The bond dissociation energy (BDE) and heat of formation values of UH were obtained using the IE calculated at the Feller-Peterson-Dixon level. For UH, UH-, and UH+, the BDEs were predicted to be 225.5, 197.9, and 235.5 kJ/mol, respectively. The BDE for UH is predicted to be ∼20% lower in energy than that for ThH. The analysis of the natural bond orbitals shows a significant U+H- ionic component in the bond of UH.
Collapse
Affiliation(s)
- Gabriel F de Melo
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Mary Marshall
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Burak A Tufekci
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sandra M Ciborowski
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Moritz Blankenhorn
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rachel M Harris
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| |
Collapse
|
42
|
Zhang C, Cheng L. Atomic Mean-Field Approach within Exact Two-Component Theory Based on the Dirac-Coulomb-Breit Hamiltonian. J Phys Chem A 2022; 126:4537-4553. [PMID: 35763592 DOI: 10.1021/acs.jpca.2c02181] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An extension of the exact two-component theory with atomic mean-field integrals (the X2CAMF scheme) to the treatment of the Breit term together with efficient implementation using an atomic Dirac-Coulomb-Breit Hartree-Fock program is reported. The accuracy of the X2CAMF scheme for treating the contributions from the Breit term to the molecular properties is demonstrated using benchmark calculations of equilibrium bond lengths, harmonic frequencies, and dipole moments for molecules containing elements across the periodic table. Calculations of the properties for molecules containing period four elements aiming at high accuracy as well as for Th- and U-containing molecules are also presented and compared with experimental results to demonstrate the usefulness of the X2CAMF scheme in combination with accurate treatments of electron correlation by the coupled-cluster (CC) methods. The combination of CC methods and the X2CAMF scheme shows potential to extend the accuracy of CC calculations to heavy elements, e.g., to computational heavy-element thermochemistry.
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
43
|
Marks JH, Batchelor AG, Blais JRC, Duncan MA. Cation Complexes of Uranium and Thorium with Cyclooctatetraene: Photochemistry and Decomposition Products. J Phys Chem A 2022; 126:4230-4240. [PMID: 35749286 DOI: 10.1021/acs.jpca.2c03035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ion-molecule complexes of uranium or thorium singly-charged positive ions bound to cyclooctatetraene (COT), i.e., M+(COT)1,2, are produced by laser ablation and studied with UV laser photodissociation. The ions are selected by mass and excited at 355 or 532 nm, and the ionized dissociation products are detected using a reflectron time-of-flight mass spectrometer. The abundant fragments M+(C6H6), M+(C4H4), and M+(C2H2) occur for complexes of both metals, whereas the M+(C4H2), M+(C3H3), and M+(C5H5) fragments are prominent for uranium complexes but not for thorium. Additional experiments investigate the dissociation of M+(benzene)1,2 ions which may be intermediates in the fragmentation of the COT ions. The experiments are complemented by computational quantum chemistry to investigate the structures and energetics of fragment ions. Various cation-π and metallacycle structures are indicated for different fragment ions. The metal ion-ligand bond energies for corresponding complex ions are systematically greater for the thorium species. The computed thermochemistry makes it possible to explain the mechanistic details of the photochemical fragmentation processes and to reveal new actinide organometallic structures.
Collapse
Affiliation(s)
- Joshua H Marks
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Anna G Batchelor
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - John R C Blais
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael A Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
44
|
Gole JL, Chalek CL, Mason MM, de Melo GF, Vasiliu M, Dixon DA. Observation of Selectively Populated Monohalide Excited States from the Reactions of Group 3 Metal (Sc, Y, and La) Monomers and Dimers with Halogen-Containing Molecules. J Phys Chem A 2022; 126:3403-3426. [PMID: 35613075 DOI: 10.1021/acs.jpca.2c01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemiluminescent reactions of the group 3 metals Sc and Y with F2, Cl2, Br2, ClF, ICl (Sc), IBr (Y), and SF6 and La with F2, SF6, Cl2, and ClF have been studied at low pressures (6 × 10-6 to 4 × 10-4 Torr) using a beam-gas arrangement and extended to the 10-3 Torr multiple collision pressure range. Contrary to previous reports, the observed chemiluminescent spectra are primarily attributed to emission from the metal monohalides. Extensive pressure and temperature dependence studies and high-level correlated molecular orbital theory calculations of the bond dissociation energies support this conclusion and the attribution of the chemiluminescence. Evidence for the "selective" production of a monohalide excited electronic state is obtained for several of the Sc and Y reactions. All reactions producing the metal monofluorides are first order with respect to the oxidant, while reactions producing the monochlorides and monobromides are found to be "faster than first order" with respect to the oxidant. This difference is associated with the metal halide bond dissociation energies and the metal halide product internal density of states. Analysis of the temperature dependence for six representative reactions indicates that the "selective" excited-state formation of the metal monohalides proceeds via a direct mechanism with negligible activation energy. We compare and contrast the present results with previous experiments and interpretations which have assigned the selective emission from these systems to the group 3 dihalides produced in a two-step reaction sequence analogous to an electron jump process. The current results suggest a distinctly different interpretation of the observed processes in these systems. The observed selectivity observed in these studies is remarkable given the significant number of known and potential excited states in the scandium and yttrium halides as well as their different electronic configurations.
Collapse
Affiliation(s)
- James L Gole
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Carl L Chalek
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Marcos M Mason
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Gabriel F de Melo
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
45
|
North SC, Wilson AK. Ab Initio Composite Approaches for Heavy Element Energetics: Ionization Potentials for the Actinide Series of Elements. J Phys Chem A 2022; 126:3027-3042. [PMID: 35427146 DOI: 10.1021/acs.jpca.2c01007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first, second, and third gas-phase ionization potentials have been determined for the actinide series of elements using an ab initio composite scalar and fully relativistic approach, employing the coupled cluster with single, double, and perturbative triple excitations (CCSD(T)) and Dirac Hartree-Fock (DHF) methods, extrapolated to the complete basis set (CBS) limit. The impact of electron correlation and basis set choice within this framework are examined. Additionally, the first three ionization potentials were obtained using an ab initio heavy element correlation-consistent Composite Approach (here referred to as α-ccCA). This is the first utilization of a ccCA for actinide species.
Collapse
Affiliation(s)
- Sasha C North
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
46
|
Vasiliu M, Marshall M, Zhu Z, Bowen KH, Dixon DA. Molecular Properties of Thorium Hydrides: Electron Affinities and Thermochemistry. J Phys Chem A 2022; 126:2388-2396. [PMID: 35411767 DOI: 10.1021/acs.jpca.2c01460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-level electronic structure calculations of the ground and low-lying energy electronic states for ThHx and ThHx- for x = 2-5 are reported and compared to available anion photoelectron detachment experiments. The adiabatic electron affinities (EAs) are predicted to be 0.82, 0.88, 0.51, and 2.36 eV for x = 2 to 5, respectively, at the Feller-Peterson-Dixon (FPD) level. The vertical detachment energies (VDEs) are predicted to be 0.84, 0.88, 0.81, and 4.38 eV for x = 2-5, respectively. The corresponding experimental VDEs are 0.871 eV for x = 2, 0.88 eV for x = 3, and 4.09 eV for x = 5. As for ThH, there is a significant spin-orbit (SO) correction for the EA of ThH2, and this correction decreases substantially for x > 2. The observed ThH2- photoelectron spectrum has many transitions as predicted at the CASPT2-SO level. The FPD bond dissociation energies (BDEs) increase from 67 to 75 kcal/mol for x = 2 to x = 4 at the FPD level. The BDE for ThH5 is much lower as it is a complex of H2 with ThH3. The hydride affinities for x = 2 to 4 are all comparable and near 70 kcal/mol. A natural bond orbital analysis is consistent with a significant Th+-H- ionic contribution to the Th-H bonds. There is very little participation of the 5f orbitals in the bonding and the valence electrons on the Th are dominated by 7s and 6d for the neutrals and anions except for ThH2- where there is a significant contribution from the 7p.
Collapse
Affiliation(s)
- Monica Vasiliu
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Mary Marshall
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35401, United States
| |
Collapse
|
47
|
Lutz JJ, Byrd JN, Lotrich VF, Jensen DS, Zádor J, Hubbard JA. A theoretical investigation of the hydrolysis of uranium hexafluoride: the initiation mechanism and vibrational spectroscopy. Phys Chem Chem Phys 2022; 24:9634-9647. [PMID: 35404371 DOI: 10.1039/d1cp05268c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Depleted uranium hexafluoride (UF6), a stockpiled byproduct of the nuclear fuel cycle, reacts readily with atmospheric humidity, but the mechanism is poorly understood. We compare several potential initiation steps at a consistent level of theory, generating underlying structures and vibrational modes using hybrid density functional theory (DFT) and computing relative energies of stationary points with double-hybrid (DH) DFT. A benchmark comparison is performed to assess the quality of DH-DFT data using reference energy differences obtained using a complete-basis-limit coupled-cluster (CC) composite method. The associated large-basis CC computations were enabled by a new general-purpose pseudopotential capability implemented as part of this work. Dispersion-corrected parameter-free DH-DFT methods, namely PBE0-DH-D3(BJ) and PBE-QIDH-D3(BJ), provided mean unsigned errors within chemical accuracy (1 kcal mol-1) for a set of barrier heights corresponding to the most energetically favorable initiation steps. The hydrolysis mechanism is found to proceed via intermolecular hydrogen transfer within van der Waals complexes involving UF6, UF5OH, and UOF4, in agreement with previous studies, followed by the formation of a previously unappreciated dihydroxide intermediate, UF4(OH)2. The dihydroxide is predicted to form under both kinetic and thermodynamic control, and, unlike the alternate pathway leading to the UO2F2 monomer, its reaction energy is exothermic, in agreement with observation. Finally, harmonic and anharmonic vibrational simulations are performed to reinterpret literature infrared spectroscopy in light of this newly identified species.
Collapse
Affiliation(s)
- Jesse J Lutz
- Center for Computing Research (CCR), Sandia National Laboratories, Albuquerque, New Mexico, USA.
| | - Jason N Byrd
- ENSCO, Inc., 4849 North Wickham Road, Melbourne, Florida, 32940, USA
| | - Victor F Lotrich
- ENSCO, Inc., 4849 North Wickham Road, Melbourne, Florida, 32940, USA
| | - Daniel S Jensen
- Center for Computing Research (CCR), Sandia National Laboratories, Albuquerque, New Mexico, USA.
| | - Judit Zádor
- Combustion Research Facility, Sandia National Laboratories, Livermore, California, USA
| | - Joshua A Hubbard
- Center for Computing Research (CCR), Sandia National Laboratories, Albuquerque, New Mexico, USA.
| |
Collapse
|
48
|
Kasper JM, Li X, Kozimor SA, Batista ER, Yang P. Relativistic Effects in Modeling the Ligand K-Edge X-ray Absorption Near-Edge Structure of Uranium Complexes. J Chem Theory Comput 2022; 18:2171-2179. [PMID: 35274960 DOI: 10.1021/acs.jctc.1c00851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accurate modeling of the complex electronic structure of actinide complexes requires full inclusion of relativistic effects. In this study, we examine the effect of explicit inclusion of spin-orbit coupling (SOC) versus scalar relativistic effects on the predicted spectra for heavy-element complexes. In this study, we employ a relativistic two-component Hamiltonian in the X2C form with all of the electrons in the system being considered explicitly to compare and contrast with previous studies that included the relativistic effects by means of relativistic effective core potentials (RECPs). A few uranium complexes are chosen as model systems. Comparison of the computed Cl K-edge X-ray absorption spectra with experimental data shows significantly improved agreement when a variational relativistic treatment of SOC is performed. In particular, we note the importance of SOC terms to obtain not only correct transition energies but also correct intensities for these heavy-element complexes because of the redistribution of ligand bonding character among the valence MOs. While RECPs generally agree well with all-electron scalar relativistic calculations, there are some differences in the predicted spectra of open-shell systems. These methods are still suitable for broad application to analyze the qualitative nature of transitions in X-ray absorption spectra, but caution is recommended for quantitative analysis, as SOC can be non-negligible for both open- and closed-shell heavy-element systems.
Collapse
Affiliation(s)
- Joseph M Kasper
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Stosh A Kozimor
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
49
|
Zhu Z, Marshall M, Bowen KH, Peterson KA. ThAu2−, ThAu2O−, and ThAuOH− anions: Photoelectron spectroscopic and theoretical characterization. J Chem Phys 2022; 156:054305. [DOI: 10.1063/5.0079795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Mary Marshall
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Kit H. Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Kirk A. Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
50
|
Vasiliu M, Peterson KA, Marshall M, Zhu Z, Tufekci BA, Bowen KH, Dixon DA. Interaction of Th with H 0/-/+: Combined Experimental and Theoretical Thermodynamic Properties. J Phys Chem A 2022; 126:198-210. [PMID: 34989579 DOI: 10.1021/acs.jpca.1c07598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-level electronic structure calculations of the low-lying energy electronic states for ThH, ThH-, and ThH+ are reported and compared to experimental measurements. The inclusion of spin-orbit coupling is critical to predict the ground-state ordering as inclusion of spin-orbit switches the coupled-cluster CCSD(T) ordering of the two lowest energy states for ThH and ThH+. At the multireference spin-orbit SO-CASPT2 level, the ground states of ThH, ThH-, and ThH+ are predicted to be the 2Δ3/2, 3Φ2, and 3Δ1 states, respectively. The adiabatic electron affinity is calculated to be 0.820 eV, and the vertical detachment energy is calculated to be 0.832 eV in comparison to an experimental value of 0.87 ± 0.02 eV. The observed ThH- photoelectron spectrum has many transitions, which approximately correlate with excitations of Th+ and/or Th. The adiabatic ionization energy of ThH including spin-orbit corrections is calculated to be 6.181 eV. The natural bond orbital results are consistent with a significant contribution of the Th+H- ionic configuration to the bonding in ThH. The bond dissociation energies for ThH, ThH-, and ThH+ using the Feller-Peterson-Dixon approach were calculated to be similar for all three molecules and lie between 259 and 280 kJ/mol.
Collapse
Affiliation(s)
- Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35401, Unites States
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, Unites States
| | - Mary Marshall
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, Unites States
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, Unites States
| | - Burak A Tufekci
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, Unites States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, Unites States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35401, Unites States
| |
Collapse
|