1
|
Dudás Á, Gyömöre Á, Mészáros BB, Gondár S, Adamik R, Fegyverneki D, Papp D, Otte KB, Ayala S, Daru J, Répási J, Soós T. Selective Reduction of Esters to Access Aldehydes Using Fiddler Crab-Type Boranes. J Am Chem Soc 2025; 147:1112-1122. [PMID: 39723648 DOI: 10.1021/jacs.4c14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The partial reduction of esters to aldehydes is a fundamentally important transformation for the synthesis of numerous fine chemicals and consumer goods. However, despite the many efforts, limitations have persisted, such as competing overreduction, low reproducibility, use of exigent reaction conditions and hazardous chemicals. Here, we report a novel catalyst family with a unique steric design which promotes the catalytic partial reduction of esters with unprecedented, near-perfect selectivity and efficiency. This metal-free catalytic method is ready to be placed at the disposal of chemists to provide valuable aldehyde intermediates and products and shows promise for streamlining synthetic methods in academic and industrial settings.
Collapse
Affiliation(s)
- Ádám Dudás
- Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Ádám Gyömöre
- Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Bence Balázs Mészáros
- Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Stefánia Gondár
- Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Renáta Adamik
- Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Dániel Fegyverneki
- Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Dávid Papp
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | | | - Sergio Ayala
- Provivi, Inc., Santa Monica, California 90404, United States
| | - János Daru
- Department of Organic Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | | | - Tibor Soós
- Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| |
Collapse
|
2
|
Lao KU. Canonical coupled cluster binding benchmark for nanoscale noncovalent complexes at the hundred-atom scale. J Chem Phys 2024; 161:234103. [PMID: 39679503 DOI: 10.1063/5.0242359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
In this study, we introduce two datasets for nanoscale noncovalent binding, featuring complexes at the hundred-atom scale, benchmarked using coupled cluster with single, double, and perturbative triple [CCSD(T)] excitations extrapolated to the complete basis set (CBS) limit. The first dataset, L14, comprises 14 complexes with canonical CCSD(T)/CBS benchmarks, extending the applicability of CCSD(T)/CBS binding benchmarks to systems as large as 113 atoms. The second dataset, vL11, consists of 11 even larger complexes, evaluated using the local CCSD(T)/CBS method with stringent thresholds, covering systems up to 174 atoms. We compare binding energies obtained from local CCSD(T) and fixed-node diffusion Monte Carlo (FN-DMC), which have previously shown discrepancies exceeding the chemical accuracy threshold of 1 kcal/mol in large complexes, with the new canonical CCSD(T)/CBS results. While local CCSD(T)/CBS agrees with canonical CCSD(T)/CBS within binding uncertainties, FN-DMC consistently underestimates binding energies in π-π complexes by over 1 kcal/mol. Potential sources of error in canonical CCSD(T)/CBS are discussed, and we argue that the observed discrepancies are unlikely to originate from CCSD(T) itself. Instead, the fixed-node approximation in FN-DMC warrants further investigation to elucidate these binding discrepancies. Using these datasets as reference, we evaluate the performance of various electronic structure methods, semi-empirical approaches, and machine learning potentials for nanoscale complexes. Based on computational accuracy and stability across system sizes, we recommend MP2+aiD(CCD), PBE0+D4, and ωB97X-3c as reliable methods for investigating noncovalent interactions in nanoscale complexes, maintaining their promising performance observed in smaller systems.
Collapse
Affiliation(s)
- Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| |
Collapse
|
3
|
Chan B, Dawson W, Nakajima T. Data Quality in the Fitting of Approximate Models: A Computational Chemistry Perspective. J Chem Theory Comput 2024; 20:10468-10476. [PMID: 39556867 DOI: 10.1021/acs.jctc.4c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Empirical parametrization underpins many scientific methodologies including certain quantum-chemistry protocols [e.g., density functional theory (DFT), machine-learning (ML) models]. In some cases, the fitting requires a large amount of data, necessitating the use of data obtained using low-cost, and thus low-quality, means. Here we examine the effect of using low-quality data on the resulting method in the context of DFT methods. We use multiple G2/97 data sets of different qualities to fit the DFT-type methods. Encouragingly, this fitting can tolerate a relatively large proportion of low-quality fitting data, which may be attributed to the physical foundations of the DFT models and the use of a modest number of parameters. Further examination using "ML-quality" data shows that adding a large amount of low-quality data to a small number of high-quality ones may not offer tangible benefits. On the other hand, when the high-quality data is limited in scope, diversification by a modest amount of low-quality data improves the performance. Quantitatively, for parametrizing DFT (and perhaps also quantum-chemistry ML models), caution should be taken when more than 50% of the fitting set contains questionable data, and that the average error of the full set is more than 20 kJ mol-1. One may also follow the recently proposed transferability principles to ensure diversity in the fitting set.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - William Dawson
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Takahito Nakajima
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
4
|
Chamkin AA, Chamkina ES. Assessment of the applicability of DFT methods to [Cp*Rh]-catalyzed hydrogen evolution processes. J Comput Chem 2024; 45:2624-2639. [PMID: 39052232 DOI: 10.1002/jcc.27468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
The present computational study provides a benchmark of density functional theory (DFT) methods in describing hydrogen evolution processes catalyzed by [Cp*Rh]-containing organometallic complexes. A test set was composed of 26 elementary reactions featuring chemical transformations and bonding situations essential for the field, including the emerging concept of non-innocent Cp* behavior. Reference values were obtained from a highly accurate 3/4 complete basis set and 6/7 complete PNO space extrapolated DLPNO-CCSD(T) energies. The performance of lower-level extrapolation procedures was also assessed. We considered 84 density functionals (DF) (including 13 generalized gradient approximations (GGA), nine meta-GGAs, 33 hybrids, and 29 double-hybrids) and three composite methods (HF-3c, PBEh-3c, and r2SCAN-3c), combined with different types of dispersion corrections (D3(0), D3BJ, D4, and VV10). The most accurate approach is the PBE0-DH-D3BJ (MAD of 1.36 kcal mol-1) followed by TPSS0-D3BJ (MAD of 1.60 kcal mol-1). Low-cost r2SCAN-3c composite provides a less accurate but much faster alternative (MAD of 2.39 kcal mol-1). The widely used Minnesota-family M06-L, M06, and M06-2X DFs should be avoided (MADs of 3.70, 3.94, and 4.01 kcal mol-1, respectively).
Collapse
Affiliation(s)
- Aleksandr A Chamkin
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
| | - Elena S Chamkina
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Lemke Y, Kussmann J, Ochsenfeld C. Highly Accurate and Robust Constraint-Based Orbital-Optimized Core Excitations. J Phys Chem A 2024; 128:9804-9818. [PMID: 39495940 PMCID: PMC11571214 DOI: 10.1021/acs.jpca.4c04139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024]
Abstract
We adapt our recently developed constraint-based orbital-optimized excited-state method (COOX) for the computation of core excitations. COOX is a constrained density functional theory (cDFT) approach based on excitation amplitudes from linear-response time-dependent DFT (LR-TDDFT), and has been shown to provide accurate excitation energies and excited-state properties for valence excitations within a spin-restricted formalism. To extend COOX to core-excited states, we introduce a spin-unrestricted variant which allows us to obtain orbital-optimized core excitations with a single constraint. Using a triplet purification scheme in combination with the constrained unrestricted Hartree-Fock formalism, scalar-relativistic zero-order regular approximation corrections, and a semiempirical treatment of spin-orbit coupling, COOX is shown to produce highly accurate results for K- and L-edge excitations of second- and third-period atoms with subelectronvolt errors despite being based on LR-TDDFT, for which core excitations pose a well-known challenge. L- and M-edge excitations of heavier atoms up to uranium are also computationally feasible and numerically stable, but may require more advanced treatment of relativistic effects. Furthermore, COOX is shown to perform on par with or better than the popular ΔSCF approach while exhibiting more robust convergence, highlighting it as a promising tool for inexpensive and accurate simulations of X-ray absorption spectra.
Collapse
Affiliation(s)
- Yannick Lemke
- Chair
of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany
| | - Jörg Kussmann
- Chair
of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany
| | - Christian Ochsenfeld
- Chair
of Theoretical Chemistry, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich D-81377, Germany
- Max-Planck-Institute
for Solid State Research, Heisenbergstr. 1, Stuttgart D-70569, Germany
| |
Collapse
|
6
|
Sutton P, Saunier J, Lao KU, El-Shall MS. Sequential Reactions of Acetylene with the Benzonitrile Radical Cation: New Insights into Structures and Rate Coefficients of the Covalent Ion Products. J Phys Chem Lett 2024; 15:11067-11076. [PMID: 39471052 PMCID: PMC11552070 DOI: 10.1021/acs.jpclett.4c02496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
Benzonitrile radical cations generated in ionizing environments such as solar nebulae and interstellar clouds can react with neutral molecules such as acetylene to form a variety of nitrogen-containing complex organics. Herein, we present results from mass-selected ion mobility experiments and coupled-cluster and DFT calculations for the sequential reactions of acetylene with the benzonitrile radical cation (C7NH5+•). The results reveal the formation of two covalently bonded adduct ions C9NH7+• and C11NH9+• with individual rate coefficients of 2.1(±0.4) × 10-11 cm3 s-1 and 1.1(±0.9) × 10-11 cm3 s-1, respectively measured at 334.5 K. The direct addition of acetylene onto the N atom of the benzonitrile cation results in the formation of a N-acetylene-benzonitrile+• radical cation with a calculated collision cross-section of 67.5 Å2 in perfect agreement with the measured cross-section of 67.5 Å2 of the C9NH7+• adduct. The measured collision cross-section of the second covalent adduct C11NH9+• (72.2 Å2) is also in excellent agreement with the calculated cross-section (71.2 Å2) of the lowest energy isomer of the C11NH9+• ion corresponding to the 2-phenylpyridine structure. The formation of the bicyclic 2-phenylpyridine radical cation is explained by the rapid conversion of the classical radical cation C11NH9+• into a distonic ion structure that can efficiently cyclize in an exothermic transformation to form the 2-phenylpyridine radical cation. This intriguing mechanism could explain the formation of N-containing complex organics in different regions of outer space. The current results are expected to have direct implications for the search for nitrogen-containing complex organics in space.
Collapse
Affiliation(s)
- Paige Sutton
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284-2006, United
States
| | - John Saunier
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284-2006, United
States
| | - Ka Un Lao
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284-2006, United
States
| | - M. Samy El-Shall
- Department of Chemistry, Virginia
Commonwealth University, Richmond, Virginia 23284-2006, United
States
| |
Collapse
|
7
|
Jones AC, Goerigk L. Exploring non-covalent interactions in excited states: beyond aromatic excimer models. Phys Chem Chem Phys 2024; 26:25192-25207. [PMID: 39314200 DOI: 10.1039/d4cp03214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Time-dependent density functional theory (TD-DFT) offers a relatively accurate and inexpensive approach for excited state calculations. However, conventional TD-DFT may suffer from the same poor description of non-covalent interactions (NCIs) which is known from ground-state DFT. In this work we present a comprehensive benchmark study of TD-DFT for excited-state NCIs. This is achieved by calculating dissociation curves for excited complexes ('exciplexes'), whose binding strength depends on excited-state NCIs including electrostatics, Pauli repulsion, charge-transfer, and London dispersion. Reference dissociation curves are calculated with the reasonably accurate wave function method SCS-CC2/CBS(3,4) which is used to benchmark a range of TD-DFT methods. Additionally, we test the effect of ground-state dispersion corrections, DFT-D3(BJ) and VV10, for exciplex binding. Overall, we find that TD-DFT methods generally under-bind exciplexes which can be explained by the missing dispersion forces. Underbinding errors reduce going up the rungs of Jacob's ladder. Further, the D3(BJ) dispersion correction is essential for good accuracy in most cases. Likewise, the VV10-type non-local kernel yields relatively low errors and has comparable performance in either its fully self-consistent implementation or as a post-SCF additive correction, but its impact is solely on ground-state energies and not on excitation energies. From our analysis, the most robust TD-DFT methods for exciplexes with localised excitations in their equilibrium and non-equilibrium geometries are the double hybrids B2GP-PLYP-D3(BJ) and B2PLYP-D3(BJ). Their range-separated versions ωB2(GP-)PLYP-D3(BJ) or the spin-opposite scaled, range-separated double hybrid SOS-ωB88PP86 can be recommended when charge transfer plays a role in the excitations. We also identify the need for a state-specific dispersion correction as the next step for improved TD-DFT performance.
Collapse
Affiliation(s)
- Ariel C Jones
- School of Chemistry, The University of Melbourne, Parkville, Australia.
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
8
|
Lebeda T, Aschebrock T, Kümmel S. Balancing the Contributions to the Gradient Expansion: Accurate Binding and Band Gaps with a Nonempirical Meta-GGA. PHYSICAL REVIEW LETTERS 2024; 133:136402. [PMID: 39392972 DOI: 10.1103/physrevlett.133.136402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/21/2024] [Accepted: 08/21/2024] [Indexed: 10/13/2024]
Abstract
The gradient expansion has been a long-standing guide rail in density-functional theory. We here demonstrate that for exchange-correlation approximations that depend on the gradient of the density and the kinetic energy density, i.e., for meta-generalized gradient approximations (meta-GGAs), there is a so far unexploited degree of freedom in the gradient expansion that allows to shift the relative weight of gradient and kinetic energy contributions. As the dependence on the kinetic energy density determines the derivative discontinuity, this allows to construct meta-GGAs that adhere to the known exact constraints, yet have new properties. We demonstrate this with the construction of a meta-GGA that describes both electronic bonds and band gaps with remarkable accuracy.
Collapse
|
9
|
Gray M, Bowling PE, Herbert JM. Comment on "Benchmarking Basis Sets for Density Functional Theory Thermochemistry Calculations: Why Unpolarized Basis Sets and the Polarized 6-311G Family Should Be Avoided". J Phys Chem A 2024; 128:7739-7745. [PMID: 39190891 DOI: 10.1021/acs.jpca.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Montgomery Gray
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Paige E Bowling
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
10
|
Plett C, Grimme S, Hansen A. Toward Reliable Conformational Energies of Amino Acids and Dipeptides─The DipCONFS Benchmark and DipCONL Datasets. J Chem Theory Comput 2024. [PMID: 39259679 DOI: 10.1021/acs.jctc.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Simulating peptides and proteins is becoming increasingly important, leading to a growing need for efficient computational methods. These are typically semiempirical quantum mechanical (SQM) methods, force fields (FFs), or machine-learned interatomic potentials (MLIPs), all of which require a large amount of accurate data for robust training and evaluation. To assess potential reference methods and complement the available data, we introduce two sets, DipCONFL and DipCONFS, which cover large parts of the conformational space of 17 amino acids and their 289 possible dipeptides in aqueous solution. The conformers were selected from the exhaustive PeptideCS dataset by Andris et al. [ J. Phys. Chem. B 2022, 126, 5949-5958]. The structures, originally generated with GFN2-xTB, were reoptimized using the accurate r2SCAN-3c density functional theory (DFT) composite method including the implicit CPCM water solvation model. The DipCONFS benchmark set contains 918 conformers and is one of the largest sets with highly accurate coupled cluster conformational energies so far. It is employed to evaluate various DFT and wave function theory (WFT) methods, especially regarding whether they are accurate enough to be used as reliable reference methods for larger datasets intended for training and testing more approximated SQM, FF, and MLIP methods. The results reveal that the originally provided BP86-D3(BJ)/DGauss-DZVP conformational energies are not sufficiently accurate. Among the DFT methods tested as an alternative reference level, the revDSD-PBEP86-D4 double hybrid performs best with a mean absolute error (MAD) of 0.2 kcal mol-1 compared with the PNO-LCCSD(T)-F12b reference. The very efficient r2SCAN-3c composite method also shows excellent results, with an MAD of 0.3 kcal mol-1, similar to the best-tested hybrid ωB97M-D4. With these findings, we compiled the large DipCONFL set, which includes over 29,000 realistic conformers in solution with reasonably accurate r2SCAN-3c reference conformational energies, gradients, and further properties potentially relevant for training MLIP methods. This set, also in comparison to DipCONFS, is used to assess the performance of various SQM, FF, and MLIP methods robustly and can complement training sets for those.
Collapse
Affiliation(s)
- Christoph Plett
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| |
Collapse
|
11
|
Bogo N, Stein CJ. Benchmarking DFT-based excited-state methods for intermolecular charge-transfer excitations. Phys Chem Chem Phys 2024; 26:21575-21588. [PMID: 39082837 DOI: 10.1039/d4cp01866d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Intermolecular charge-transfer is a highly important process in biology and energy-conversion applications where generated charges need to be transported over several moieties. However, its theoretical description is challenging since the high accuracy required to describe these excited states must be accessible for calculations on large molecular systems. In this benchmark study, we identify reliable low-scaling computational methods for this task. Our reference results were obtained from highly accurate wavefunction calculations that restrict the size of the benchmark systems. However, the density-functional theory based methods that we identify as accurate can be applied to much larger systems. Since targeting charge-transfer states requires the unambiguous classification of an excited state, we first analyze several charge-transfer descriptors for their reliability concerning intermolecular charge-transfer and single out the charge-transfer distance calculated based on the variation of electron density upon excitation (DCT) as an optimal choice for our purposes. In general, best results are obtained for orbital-optimized methods and among those, the maximum overlap method proved to be the most numerically stable variant when using the initial MOs as reference orbitals. Favorable error cancellation with optimally-tuned range-separated hybrid functionals and a rather small basis set can provide an economical yet reasonable wavefunction when using time-dependent density functional theory, which provides relevant information about the excited-state character to be used in the orbital-optimized methods. The qualitative agreement makes these fast calculations attractive for high-throughput screening applications.
Collapse
Affiliation(s)
- Nicola Bogo
- Faculty of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
- Department of Chemistry and Catalysis Research Center, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany.
| | - Christopher J Stein
- Department of Chemistry and Catalysis Research Center, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany.
| |
Collapse
|
12
|
Kunze L, Froitzheim T, Hansen A, Grimme S, Mewes JM. ΔDFT Predicts Inverted Singlet-Triplet Gaps with Chemical Accuracy at a Fraction of the Cost of Wave Function-Based Approaches. J Phys Chem Lett 2024:8065-8077. [PMID: 39083761 DOI: 10.1021/acs.jpclett.4c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Efficient OLEDs need to quickly convert singlet and triplet excitons into photons. Molecules with an inverted singlet-triplet energy gap (INVEST) are promising candidates for this task. However, typical INVEST molecules have drawbacks like too low oscillator strengths and excitation energies. High-throughput screening could identify suitable INVEST molecules, but existing methods are problematic: The workhorse method TD-DFT cannot reproduce gap inversion, while wave function-based methods are too slow. This study proposes a state-specific method based on unrestricted Kohn-Sham DFT with common hybrid functionals. Tuned on the new INVEST15 benchmark set, this method achieves an error of less than 1 kcal/mol, which is traced back to error cancellation between spin contamination and dynamic correlation. Applied to the larger and structurally diverse NAH159 set in a black-box fashion, the method maintains a small error (1.2 kcal/mol) and accurately predicts gap signs in 83% of cases, confirming its robustness and suitability for screening workflows.
Collapse
Affiliation(s)
- Lukas Kunze
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Thomas Froitzheim
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Jan-Michael Mewes
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
- beeOLED GmbH, Niedersedlitzer Str. 75c, 01257 Dresden, Germany
| |
Collapse
|
13
|
Zubatyuk R, Biczysko M, Ranasinghe K, Moriarty NW, Gokcan H, Kruse H, Poon BK, Adams PD, Waller MP, Roitberg AE, Isayev O, Afonine PV. AQuaRef: Machine learning accelerated quantum refinement of protein structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.604493. [PMID: 39071315 PMCID: PMC11275739 DOI: 10.1101/2024.07.21.604493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cryo-EM and X-ray crystallography provide crucial experimental data for obtaining atomic-detail models of biomacromolecules. Refining these models relies on library-based stereochemical restraints, which, in addition to being limited to known chemical entities, do not include meaningful noncovalent interactions relying solely on nonbonded repulsions. Quantum mechanical (QM) calculations could alleviate these issues but are too expensive for large molecules. We present a novel AI-enabled Quantum Refinement (AQuaRef) based on AIMNet2 neural network potential mimicking QM at substantially lower computational costs. By refining 41 cryo-EM and 30 X-ray structures, we show that this approach yields atomic models with superior geometric quality compared to standard techniques, while maintaining an equal or better fit to experimental data.
Collapse
Affiliation(s)
- Roman Zubatyuk
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Malgorzata Biczysko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | - Nigel W. Moriarty
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| | - Hatice Gokcan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - Billy K. Poon
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| | - Paul D. Adams
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
| | | | - Adrian E. Roitberg
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Olexandr Isayev
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Pavel V. Afonine
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8235, USA
| |
Collapse
|
14
|
Renningholtz T, Lim ERX, James MJ, Trujillo C. Computational methods for investigating organic radical species. Org Biomol Chem 2024. [PMID: 39012651 DOI: 10.1039/d4ob00532e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Computational analysis of organic radical species presents significant challenges. This study compares the efficacy of various DFT and wavefunction methods in predicting radical stabilisation energies, bond dissociation energies, and redox potentials for organic radicals. The hybrid meta-GGA M062X-D3(0), and the range-separated hybrids ωB97M-V and ωB97M-D3(BJ) emerged as the most reliable functionals, consistently providing accurate predictions across different basis sets including 6-311G**, cc-pVTZ, and def2-TZVP.
Collapse
Affiliation(s)
- Tim Renningholtz
- The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Ethan R X Lim
- The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Michael J James
- The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Cristina Trujillo
- The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- TBSI - School of Chemistry, The University of Dublin, Trinity College, D02 R590 Dublin 2, Ireland
| |
Collapse
|
15
|
Pullanchery S, Kulik S, Schönfeldová T, Egan CK, Cassone G, Hassanali A, Roke S. pH drives electron density fluctuations that enhance electric field-induced liquid flow. Nat Commun 2024; 15:5951. [PMID: 39009573 PMCID: PMC11251051 DOI: 10.1038/s41467-024-50030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Liquid flow along a charged interface is commonly described by classical continuum theory, which represents the electric double layer by uniformly distributed point charges. The electrophoretic mobility of hydrophobic nanodroplets in water doubles in magnitude when the pH is varied from neutral to mildly basic (pH 7 → 11). Classical continuum theory predicts that this increase in mobility is due to an increased surface charge. Here, by combining all-optical measurements of surface charge and molecular structure, as well as electronic structure calculations, we show that surface charge and molecular structure at the nanodroplet surface are identical at neutral and mildly basic pH. We propose that the force that propels the droplets originates from two factors: Negative charge on the droplet surface due to charge transfer from and within water, and anisotropic gradients in the fluctuating polarization induced by the electric field. Both charge density fluctuations couple with the external electric field, and lead to droplet flow. Replacing chloride by hydroxide doubles both the charge conductivity via the Grotthuss mechanism, and the droplet mobility. This general mechanism deeply impacts a plethora of processes in biology, chemistry, and nanotechnology and provides an explanation of how pH influences hydrodynamic phenomena and the limitations of classical continuum theory currently used to rationalize these effects.
Collapse
Affiliation(s)
- S Pullanchery
- Laboratory for fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - S Kulik
- Laboratory for fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - T Schönfeldová
- Laboratory for fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - C K Egan
- International Centre for Theoretical Physics, Trieste, Italy
| | - G Cassone
- Institute for Physical-Chemical Processes, Italian National Research Council (IPCF-CNR), Messina, Italy
| | - A Hassanali
- International Centre for Theoretical Physics, Trieste, Italy.
| | - S Roke
- Laboratory for fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Materials Science and Engineering (IMX), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
16
|
Spencer RJ, Zhanserkeev AA, Yang EL, Steele RP. The Near-Sightedness of Many-Body Interactions in Anharmonic Vibrational Couplings. J Am Chem Soc 2024; 146:15376-15392. [PMID: 38771156 DOI: 10.1021/jacs.4c03198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Couplings between vibrational motions are driven by electronic interactions, and these couplings carry special significance in vibrational energy transfer, multidimensional spectroscopy experiments, and simulations of vibrational spectra. In this investigation, the many-body contributions to these couplings are analyzed computationally in the context of clathrate-like alkali metal cation hydrates, including Cs+(H2O)20, Rb+(H2O)20, and K+(H2O)20, using both analytic and quantum-chemistry potential energy surfaces. Although the harmonic spectra and one-dimensional anharmonic spectra depend strongly on these many-body interactions, the mode-pair couplings were, perhaps surprisingly, found to be dominated by one-body effects, even in cases of couplings to low-frequency modes that involved the motion of multiple water molecules. The origin of this effect was traced mainly to geometric distortion within water monomers and cancellation of many-body effects in differential couplings, and the effect was also shown to be agnostic to the identity of the ion. These outcomes provide new understanding of vibrational couplings and suggest the possibility of improved computational methods for the simulation of infrared and Raman spectra.
Collapse
Affiliation(s)
- Ryan J Spencer
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Asylbek A Zhanserkeev
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Emily L Yang
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ryan P Steele
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
17
|
Chan B. Limiting factors in the accuracy of DFT calculation for redox potentials. J Comput Chem 2024; 45:1177-1186. [PMID: 38311976 DOI: 10.1002/jcc.27320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
In the present study, we have investigated factors affecting the accuracy of computational chemistry calculation of redox potentials, namely the gas-phase ionization energy (IE) and electron affinity (EA), and the continuum solvation effect. In general, double-hybrid density functional theory methods yield IEs and EAs that are on average within ~0.1 eV of our high-level W3X-L benchmark, with the best performing method being DSD-BLYP/ma-def2-QZVPP. For lower-cost methods, the average errors are ~0.2-0.3 eV, with ωB97X-3c being the most accurate (~0.15 eV). For the solvation component, essentially all methods have an average error of ~0.3 eV, which shows the limitation of the continuum solvation model. Curiously, the directly calculated redox potentials show errors of ~0.3 eV for all methods. These errors are notably smaller than what can be expected from error propagation with the two components (IE and EA, and solvation effect). Such a discrepancy can be attributed to the cancellation of errors, with the lowest-cost GFN2-xTB method benefiting the most, and the most accurate ωB97X-3c method benefiting the least. For organometallic species, the redox potentials show large deviations exceeding ~0.5 eV even for DSD-BLYP. The large errors are attributed to those for the gas-phase IEs and EAs, which represents a major barrier to the accurate calculation of redox potentials for such systems.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Nagasaki, Japan
- RIKEN Center for Computational Science, Kobe, Japan
| |
Collapse
|
18
|
Tonon G, Mauceri M, Cavarzerani E, Piccolo R, Santo C, Demitri N, Orian L, Nogara PA, Rocha JBT, Canzonieri V, Rizzolio F, Visentin F, Scattolin T. Unveiling the promising anticancer activity of palladium(II)-aryl complexes bearing diphosphine ligands: a structure-activity relationship analysis. Dalton Trans 2024; 53:8463-8477. [PMID: 38686752 DOI: 10.1039/d4dt00919c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In continuation of our previous works on the cytotoxic properties of organopalladium compounds, in this contribution we describe the first systematic study of the anticancer activity of Pd(II)-aryl complexes. To this end, we have prepared and thoroughly characterized a wide range of palladium derivatives bearing different diphosphine, aryl and halide ligands, developing, when necessary, specific synthetic protocols. Most of the synthesized compounds showed remarkable cytotoxicity towards ovarian and breast cancer cell lines, with IC50 values often comparable to or lower than that of cisplatin. The most promising complexes ([PdI(Ph)(dppe)] and [PdI(p-CH3-Ph)(dppe)]), characterized by a diphosphine ligand with a low bite angle, exhibited, in addition to excellent cytotoxicity towards cancer cells, low activity on normal cells (MRC5 human lung fibroblasts). Specific immunofluorescence tests (cytochrome c and H2AX assays), performed to clarify the possible mechanism of action of this class of organopalladium derivatives, seemed to indicate DNA as the primary cellular target, whereas caspase 3/7 assays proved that the complex [PdI(Ph)(dppe)] was able to promote intrinsic apoptotic cell death. A detailed molecular docking analysis confirmed the importance of a diphosphine ligand with a reduced bite angle to ensure a strong DNA-complex interaction. Finally, one of the most promising complexes was tested towards patient-derived organoids, showing promising ex vivo cytotoxicity.
Collapse
Affiliation(s)
- Giovanni Tonon
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Matteo Mauceri
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Enrico Cavarzerani
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Rachele Piccolo
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Claudio Santo
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Nicola Demitri
- Elettra - Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - João Batista T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCSvia Franco Gallini 2, 33081, Aviano, Italy.
- Department of Medical, Surgical and Health Sciences, Università degli Studi di Trieste, Strada di Fiume 447, Trieste, Italy
| | - Flavio Rizzolio
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCSvia Franco Gallini 2, 33081, Aviano, Italy.
| | - Fabiano Visentin
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
19
|
Gasevic T, Bursch M, Ma Q, Grimme S, Werner HJ, Hansen A. The p-block challenge: assessing quantum chemistry methods for inorganic heterocycle dimerizations. Phys Chem Chem Phys 2024; 26:13884-13908. [PMID: 38661329 DOI: 10.1039/d3cp06217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The elements of the p-block of the periodic table are of high interest in various chemical and technical applications like frustrated Lewis-pairs (FLP) or opto-electronics. However, high-quality benchmark data to assess approximate density functional theory (DFT) for their theoretical description are sparse. In this work, we present a benchmark set of 604 dimerization energies of 302 "inorganic benzenes" composed of all non-carbon p-block elements of main groups III to VI up to polonium. This so-called IHD302 test set comprises two classes of structures formed by covalent bonding and by weaker donor-acceptor (WDA) interactions, respectively. Generating reliable reference data with ab initio methods is challenging due to large electron correlation contributions, core-valence correlation effects, and especially the slow basis set convergence. To compute reference values for these dimerization reactions, after thorough testing, we applied a computational protocol using state-of-the-art explicitly correlated local coupled cluster theory termed PNO-LCCSD(T)-F12/cc-VTZ-PP-F12(corr.). It includes a basis set correction at the PNO-LMP2-F12/aug-cc-pwCVTZ level. Based on these reference data, we assess 26 DFT methods in combination with three different dispersion corrections and the def2-QZVPP basis set, five composite DFT approaches, and five semi-empirical quantum mechanical methods. For the covalent dimerizations, the r2SCAN-D4 meta-GGA, the r2SCAN0-D4 and ωB97M-V hybrids, and the revDSD-PBEP86-D4 double-hybrid functional are found to be the best-performing methods among the evaluated functionals of the respective class. However, since def2 basis sets for the 4th period are not associated to relativistic pseudo-potentials, we obtained significant errors in the covalent dimerization energies (up to 6 kcal mol-1) for molecules containing p-block elements of the 4th period. Significant improvements were achieved for systems containing 4th row elements by using ECP10MDF pseudopotentials along with re-contracted aug-cc-pVQZ-PP-KS basis sets introduced in this work with the contraction coefficients taken from atomic DFT (PBE0) calculations. Overall, the IHD302 set represents a challenge to contemporary quantum chemical methods. This is due to a large number of spatially close p-element bonds which are underrepresented in other benchmark sets, and the partial covalent bonding character for the WDA interactions. The IHD302 set may be helpful to develop more robust and transferable approximate quantum chemical methods in the future.
Collapse
Affiliation(s)
- Thomas Gasevic
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
- FACCTs GmbH, 50677, Koeln, Germany
| | - Qianli Ma
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| |
Collapse
|
20
|
Chan B, Dawson W, Nakajima T. Sorting drug conformers in enzyme active sites: the XTB way. Phys Chem Chem Phys 2024; 26:12610-12618. [PMID: 38597505 DOI: 10.1039/d4cp00930d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In the present study, we have used the MEI196 set of interaction energies to investigate low-cost computational chemistry approaches for the calculation of binding between a molecule and its environment. Density functional theory (DFT) methods, when used with the vDZP basis set, yield good agreement with the reference energies. On the other hand, semi-empirical methods are less accurate as expected. By examining different groups of systems within MEI196 that contain species of a similar nature, we find that chemical similarity leads to cancellation of errors in the calculation of relative binding energies. Importantly, the semi-empirical method GFN1-xTB (XTB1) yields reasonable results for this purpose. We have thus further assessed the performance of XTB1 for calculating relative energies of docking poses of substrates in enzyme active sites represented by cluster models or within the ONIOM protocol. The results support the observations on error cancellation. This paves the way for the use of XTB1 in parts of large-scale virtual screening workflows to accelerate the drug discovery process.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan.
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, 650-0047, Japan
| | - William Dawson
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, 650-0047, Japan
| | - Takahito Nakajima
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
21
|
Sitkiewicz SP, Ferradás RR, Ramos-Cordoba E, Zaleśny R, Matito E, Luis JM. Spurious Oscillations Caused by Density Functional Approximations: Who is to Blame? Exchange or Correlation? J Chem Theory Comput 2024; 20:3144-3153. [PMID: 38570186 PMCID: PMC11044272 DOI: 10.1021/acs.jctc.3c01339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
We analyze the varying susceptibilities of different density functional approximations (DFAs) to present spurious oscillations on the profiles of several vibrational properties. Among other problems, these spurious oscillations cause significant errors in harmonic and anharmonic IR and Raman frequencies and intensities. This work hinges on a judicious strategy to dissect the exchange and correlation components of DFAs and pinpoint the origins of these oscillations. We identify spurious oscillations in derivatives of all energy components with respect to nuclear displacements, including those energy terms that do not involve numerical integrations. These indirect spurious oscillations are attributed to suboptimal electron densities resulting from a self-consistent field procedure using a DFA that exhibits direct spurious oscillations. Direct oscillations stem from inaccurate numerical integration of the exchange and correlation energy density functionals. A thorough analysis of direct spurious oscillations reveals that only a handful of exchange and correlation components are insensitive to spurious oscillations, giving rise to three families of functionals, BH&H, LSDA, and BLYP. Among the functionals in these families, we encounter four widespread DFAs: BLYP, B3LYP, LC-BLYP, and CAM-B3LYP. Certain DFAs like PBE appear less sensitive to spurious oscillations due to compensatory cancellations between their energy components. Additionally, we found non-negligible but small oscillations in PBE and TPSS, which could be safely employed provided a sufficiently large integration grid is used in the calculations. These findings hint at the key components of current approximations to be improved and emphasize the necessity to develop accurate DFAs suitable for studying molecular spectroscopies.
Collapse
Affiliation(s)
- Sebastian P. Sitkiewicz
- Donostia
International Physics Center (DIPC), Donostia 20018, Euskadi, Spain
- Wrocław
Centre for Networking and Supercomputing, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław PL-50370, Poland
| | - Rubén R. Ferradás
- Donostia
International Physics Center (DIPC), Donostia 20018, Euskadi, Spain
| | - Eloy Ramos-Cordoba
- Donostia
International Physics Center (DIPC), Donostia 20018, Euskadi, Spain
- Polimero
eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea,
Euskal Herriko Unibertsitatea UPV/EHU, P.K. 1072, Donostia 20080, Euskadi, Spain
- Ikerbasque
Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Euskadi, Spain
- Institute
for Advanced Chemistry of Catalonia (IQAC), CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Robert Zaleśny
- Faculty
of
Chemistry, Wrocław University of Science
and Technology, Wyb.
Wyspiańskiego 27, Wrocław PL-50370, Poland
| | - Eduard Matito
- Donostia
International Physics Center (DIPC), Donostia 20018, Euskadi, Spain
- Ikerbasque
Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Euskadi, Spain
| | - Josep M. Luis
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Girona 17003, Catalonia, Spain
| |
Collapse
|
22
|
M Zahir FZ, Hay MA, Janetzki JT, Gable RW, Goerigk L, Boskovic C. Predicting valence tautomerism in diverse cobalt-dioxolene complexes: elucidation of the role of ligands and solvent. Chem Sci 2024; 15:5694-5710. [PMID: 38638213 PMCID: PMC11023039 DOI: 10.1039/d3sc04493a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/08/2024] [Indexed: 04/20/2024] Open
Abstract
The ability of molecular switches to reversibly interconvert between different forms promises potential applications at the scale of single molecules up to bulk materials. One type of molecular switch comprises cobalt-dioxolene compounds that exhibit thermally-induced valence tautomerism (VT) interconversions between low spin Co(iii)-catecholate (LS-CoIII-cat) and high spin Co(ii)-semiquinonate (HS-CoII-sq) forms. Two families of these compounds have been investigated for decades but have generally been considered separately: neutral [Co(diox)(sq)(N2L)] and cationic [Co(diox)(N4L)]+ complexes (diox = generic dioxolene, N2L/N4L = bidentate/tetradentate N-donor ancillary ligand). Computational identification of promising new candidate compounds prior to experimental exploration is beneficial for environmental and cost considerations but requires a thorough understanding of the underlying thermochemical parameters that influence the switching. Herein, we report a robust approach for the analysis of both cobalt-dioxolene families, which involved a quantitative density functional theory-based study benchmarked with reliable quasi-experimental references. The best-performing M06L-D4/def2-TZVPP level of theory has subsequently been verified by the synthesis and experimental investigation of three new complexes, two of which exhibit thermally-induced VT, while the third remains in the LS-CoIII-cat form across all temperatures, in agreement with prediction. Valence tautomerism in solution is markedly solvent-dependent, but the origin of this has not been definitively established. We have extended our computational approach to elucidate the correlation of VT transition temperature with solvent stabilisation energy and change in dipole moment. This new understanding may inform the development of VT compounds for applications in soft materials including films, gels, and polymers.
Collapse
Affiliation(s)
- F Zahra M Zahir
- School of Chemistry, University of Melbourne Victoria 3010 Australia
| | - Moya A Hay
- School of Chemistry, University of Melbourne Victoria 3010 Australia
| | - Jett T Janetzki
- School of Chemistry, University of Melbourne Victoria 3010 Australia
| | - Robert W Gable
- School of Chemistry, University of Melbourne Victoria 3010 Australia
| | - Lars Goerigk
- School of Chemistry, University of Melbourne Victoria 3010 Australia
| | - Colette Boskovic
- School of Chemistry, University of Melbourne Victoria 3010 Australia
| |
Collapse
|
23
|
Wensink FJ, Smink CE, Stevenson BC, Steele RP, Bakker JM, Armentrout PB. IR spectroscopic characterization of [M,C,2H] + (M = Ru and Rh) products formed by reacting 4d transition metal cations with oxirane: Spectroscopic evidence for multireference character in RhCH 2. Phys Chem Chem Phys 2024; 26:11445-11458. [PMID: 38572552 PMCID: PMC11022548 DOI: 10.1039/d4cp00012a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
A combination of infrared multiple-photon dissociation (IRMPD) action spectroscopy and quantum chemical calculations was employed to investigate the [M,C,2H]+ (M = Ru and Rh) species. These ions were formed by reacting laser ablated M+ ions with oxirane (ethylene oxide, c-C2H4O) in a room-temperature ion trap. IRMPD spectra for the Ru species exhibit one major band and two side bands, whereas spectra for the Rh species contain more distinct bands. Comparison with density functional theory (DFT), coupled-cluster (CCSD), and equation-of-motion spin-flip CCSD (EOM-SF-CCSD) calculations allows assignment of the [M,C,2H]+ structures. For the spectrum of [Ru,C,2H]+, a combination of HRuCH+ and RuCH2+ structures reproduces the observed spectrum at all levels of theory. The well-resolved spectrum of [Rh,C,2H]+ could not be assigned unambiguously to any calculated structure using DFT approaches. The EOM-SF-CCSD calculations showed that the ground-state surface has multireference electronic character, and symmetric carbenes in both the 1A1 and 3A2 states are needed to reproduce the observed spectrum.
Collapse
Affiliation(s)
- Frank J Wensink
- Radboud University, Institute for Molecules and Materials, HFML-FELIX, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Corry E Smink
- Radboud University, Institute for Molecules and Materials, HFML-FELIX, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Brandon C Stevenson
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, USA.
| | - Ryan P Steele
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, USA.
| | - Joost M Bakker
- Radboud University, Institute for Molecules and Materials, HFML-FELIX, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - P B Armentrout
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
24
|
Patra A, Pipim GB, Krylov AI, Mallikarjun Sharada S. Performance of Density Functionals for Excited-State Properties of Isolated Chromophores and Exciplexes: Emission Spectra, Solvatochromic Shifts, and Charge-Transfer Character. J Chem Theory Comput 2024; 20:2520-2537. [PMID: 38488640 DOI: 10.1021/acs.jctc.4c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This study assesses the performance of various meta-generalized gradient approximation (meta-GGA), global hybrid, and range-separated hybrid (RSH) density functionals in capturing the excited-state properties of organic chromophores and their excited-state complexes (exciplexes). Motivated by their uses in solar energy harvesting and photoredox CO2 reduction, we use oligo-(p-phenylenes) and their excited-state complexes with triethylamine as model systems. We focus on the fluorescence properties of these systems, specifically emission energies. We also consider solvatochromic shifts and wave function characteristics. The latter is described by using reduced quantities such as natural transition orbitals (NTOs) and exciton descriptors. The functionals are benchmarked against the experimental fluorescence spectra and the equation-of-motion coupled-cluster method with single and double excitations. Both in isolated chromophores and in exciplexes, meta-GGA functionals drastically underestimate the emission energies and exhibit significant exciton delocalization and anticorrelation between electron and hole motion. The performance of global hybrid functionals is strongly dependent on the percentage of exact exchange. Our study identifies RSH GGAs as the best-performing functionals, with ωPBE demonstrating the best agreement with experimental results. RSH meta-GGAs often overestimate emission energies in exciplexes and yield larger hole NTOs. Their performance can be improved by optimally tuning the range-separation parameter.
Collapse
Affiliation(s)
- Abhilash Patra
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - George Baffour Pipim
- Department of Chemistry, University of Southern California, Los Angeles ,California 90089, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles ,California 90089, United States
| | - Shaama Mallikarjun Sharada
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles ,California 90089, United States
| |
Collapse
|
25
|
Schattenberg C, Kaupp M. Implementation and First Evaluation of Strong-Correlation-Corrected Local Hybrid Functionals for the Calculation of NMR Shieldings and Shifts. J Phys Chem A 2024; 128:2253-2271. [PMID: 38456430 PMCID: PMC10961831 DOI: 10.1021/acs.jpca.3c08507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
Local hybrid functionals containing strong-correlation factors (scLHs) and range-separated local hybrids (RSLHs) have been integrated into an efficient coupled-perturbed Kohn-Sham implementation for the calculation of nuclear shielding constants. Several scLHs and the ωLH22t RSLH have then been evaluated for the first time for the extended NS372 benchmark set of main-group shieldings and shifts and the TM70 benchmark of 3d transition-metal shifts. The effects of the strong-correlation corrections have been analyzed with respect to the spatial distribution of the sc-factors, which locally diminish exact-exchange admixture at certain regions in a molecule. The scLH22t, scLH23t-mBR, and scLH23t-mBR-P functionals, which contain a "damped" strong-correlation factor to retain the excellent performance of the underlying LH20t functional for weakly correlated situations, tend to make smaller corrections to shieldings and shifts than the "undamped" scLH22ta functional. While the latter functional can also deteriorate agreement with the reference data in certain weakly correlated cases, it provides overall better performance, in particular for systems where static correlation is appreciable. This pertains only to a minority of systems in the NS372 main-group test set but to many more systems in the TM70 transition-metal test set, in particular for high-oxidation-state complexes, e.g., Cr(+VI) complexes and other systems with stretched bonds. Another undamped scLH, the simpler LDA-based scLH21ct-SVWN-m, also tends to provide significant improvements in many cases. The differences between the functionals and species can be rationalized on the basis of one-dimensional plots of the strong-correlation factors, augmented by isosurface plots of the fractional orbital density (FOD). Position-dependent exact-exchange admixture is thus shown to provide substantial flexibility in treating response properties like NMR shifts for both weakly and strongly correlated systems.
Collapse
Affiliation(s)
- Caspar
Jonas Schattenberg
- Research
Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie
(FMP), Robert-Roessle-Str.
10, 13125 Berlin, Germany
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
26
|
Avagliano D, Skreta M, Arellano-Rubach S, Aspuru-Guzik A. DELFI: a computer oracle for recommending density functionals for excited states calculations. Chem Sci 2024; 15:4489-4503. [PMID: 38516092 PMCID: PMC10952086 DOI: 10.1039/d3sc06440a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/23/2024] Open
Abstract
Density functional theory (DFT) is the workhorse of computational quantum chemistry. One of its main limitations is that choosing the right functional is a non-trivial task left for human experts. The choice is particularly hard for excited state calculations when using its time-dependent formulation (TD-DFT). This is due to the approximations of the method, but also because the photophysical properties of a molecule are defined by a manifold of states that all need to be properly described. This includes not only the relative energy of the states, but also capturing the correct character, order, and intensity of the transitions. In this work, we developed a neural network to recommend functionals to be used on molecules for TD-DFT calculations, by simultaneously considering all these properties for a manifold of states. This was possible by developing a scoring system to define the accuracy of an excited state's calculation against a higher-accuracy reference. The scoring system is generalizable to any level of theory; we here applied it to evaluate the performance of common functionals of different rungs against a higher accuracy method on a large set of organic molecules. The results are collected in a database that we released and made open, providing four million data points to the community for future applications. The scoring system assigns a value between zero and one hundred to each functional for each molecule, transforming the complicated task of learning photophysical properties into a simpler regression task. We used the dataset to train a graph attention neural network to predict the scores for unseen molecules. We call this oracle DELFI (Data-driven EvaLuation of Functionals by Inference), which can be used to quickly screen and predict the ranking of functionals to calculate the optical properties of organic molecules. We validated DELFI in two in silico experiments: choosing a common functional for a series of spiropyran-merocyanine isomers and a unique functional to screen a large dataset of over 50 000 organic photovoltaic molecules, for which an extensive benchmark would be unfeasible. A corresponding web application allows DELFI to be easily run and the results to be analyzed, alleviating the hurdle of choosing the right functional for TD-DFT calculations.
Collapse
Affiliation(s)
- Davide Avagliano
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George Street Toronto ON M5S 2E4 Canada
| | - Marta Skreta
- Department of Computer Science, University of Toronto 40 St. George Street Toronto ON M5S 2E4 Canada
- Vector Institute for Artificial Intelligence 661 University Ave. Suite 710 ON M5G 1M1 Toronto Canada
| | | | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
- Department of Computer Science, University of Toronto 40 St. George Street Toronto ON M5S 2E4 Canada
- Vector Institute for Artificial Intelligence 661 University Ave. Suite 710 ON M5G 1M1 Toronto Canada
- Department of Materials Science & Engineering, University of Toronto 184 College St Toronto M5S 3E4 Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto 200 College St ON M5S 3E5 Toronto Canada
- Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR) 66118 University Ave. M5G 1M1 Toronto Canada
- Acceleration Consortium 80 St George St M5S 3H6 Toronto Canada
| |
Collapse
|
27
|
Gasevic T, Kleine Büning JB, Grimme S, Bursch M. Benchmark Study on the Calculation of 207Pb NMR Chemical Shifts. Inorg Chem 2024; 63:5052-5064. [PMID: 38446045 PMCID: PMC10951955 DOI: 10.1021/acs.inorgchem.3c04539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
A benchmark set for the computation of 207Pb nuclear magnetic resonance (NMR) chemical shifts is presented. The PbS50 set includes conformer ensembles of 50 lead-containing molecular compounds and their experimentally measured 207Pb NMR chemical shifts. Various bonding motifs at the Pb center with up to seven bonding partners are included. Six different solvents were used in the measurements. The respective shifts lie in the range between +10745 and -5030 ppm. Several calculation settings are assessed by evaluating computed 207Pb NMR shifts for the use with different density functional approximations (DFAs), relativistic approaches, treatment of the conformational space, and levels for geometry optimization. Relativistic effects were included explicitly with the zeroth order regular approximation (ZORA), for which only the spin-orbit variant was able to yield reliable results. In total, seven GGAs and three hybrid DFAs were tested. Hybrid DFAs significantly outperform GGAs. The most accurate DFAs are mPW1PW with a mean absolute deviation (MAD) of 429 ppm and PBE0 with an MAD of 446 ppm. Conformational influences are small as most compounds are rigid, but more flexible structures still benefit from Boltzmann averaging. Including explicit relativistic treatments such as SO-ZORA in the geometry optimization does not show any significant improvement over the use of effective core potentials (ECPs).
Collapse
Affiliation(s)
- Thomas Gasevic
- Mulliken
Center for Theoretical Chemistry, Clausius Institute for Physical
and Theoretical Chemistry, University of
Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Julius B. Kleine Büning
- Mulliken
Center for Theoretical Chemistry, Clausius Institute for Physical
and Theoretical Chemistry, University of
Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken
Center for Theoretical Chemistry, Clausius Institute for Physical
and Theoretical Chemistry, University of
Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Markus Bursch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
28
|
Plett C, Grimme S, Hansen A. Conformational energies of biomolecules in solution: Extending the MPCONF196 benchmark with explicit water molecules. J Comput Chem 2024; 45:419-429. [PMID: 37982322 DOI: 10.1002/jcc.27248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/21/2023]
Abstract
A prerequisite for the computational prediction of molecular properties like conformational energies of biomolecules is a reliable, robust, and computationally affordable method usually selected according to its performance for relevant benchmark sets. However, most of these sets comprise molecules in the gas phase and do not cover interactions with a solvent, even though biomolecules typically occur in aqueous solution. To address this issue, we introduce a with explicit water molecules solvated version of a gas-phase benchmark set containing 196 conformers of 13 peptides and other relevant macrocycles, namely MPCONF196 [J. Řezáč et al., JCTC 2018, 14, 1254-1266], and provide very accurate PNO-LCCSD(T)-F12b/AVQZ' reference values. The novel solvMPCONF196 benchmark set features two additional challenges beyond the description of conformers in the gas phase: conformer-water and water-water interactions. The overall best performing method for this set is the double hybrid revDSDPBEP86-D4/def2-QZVPP yielding conformational energies of almost coupled cluster quality. Furthermore, some (meta-)GGAs and hybrid functionals like B97M-V and ω B97M-D with a large basis set reproduce the coupled cluster reference with an MAD below 1 kcal mol- 1 . If more efficient methods are required, the composite DFT-method r2 SCAN-3c (MAD of 1.2 kcal mol- 1 ) is a good alternative, and when conformational energies of polypeptides or macrocycles with more than 500-1000 atoms are in the focus, the semi-empirical GFN2-xTB or the MMFF94 force field (for very large systems) are recommended.
Collapse
Affiliation(s)
- Christoph Plett
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Universität Bonn, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Universität Bonn, Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Universität Bonn, Bonn, Germany
| |
Collapse
|
29
|
Li H, Mansoori Kermani M, Ottochian A, Crescenzi O, Janesko BG, Truhlar DG, Scalmani G, Frisch MJ, Ciofini I, Adamo C. Modeling Multi-Step Organic Reactions: Can Density Functional Theory Deliver Misleading Chemistry? J Am Chem Soc 2024; 146:6721-6732. [PMID: 38413362 DOI: 10.1021/jacs.3c12713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Many organic reactions are characterized by a complex mechanism with a variety of transition states and intermediates of different chemical natures. Their correct and accurate theoretical characterization critically depends on the accuracy of the computational method used. In this work, we study a complex ambimodal cycloaddition with five transition states, two intermediates, and three products, and we ask whether density functional theory (DFT) can provide a correct description of this type of complex and multifaceted reaction. Our work fills a gap in that most systematic benchmarks of DFT for chemical reactions have considered much simpler reactions. Our results show that many density functionals not only lead to seriously large errors but also differ from one another in predicting whether the reaction is ambimodal. Only a few of the available functionals provide a balanced description of the complex and multifaceted reactions. The parameters varied in the tested functionals are the ingredients, the treatment of medium-range and nonlocal correlation energy, and the inclusion of Hartree-Fock exchange. These results show a clear need for more benchmarks on the mechanisms of large molecules in complex reactions.
Collapse
Affiliation(s)
- Hanwei Li
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris F-75005, France
| | - Maryam Mansoori Kermani
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Alistar Ottochian
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris F-75005, France
| | - Orlando Crescenzi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, Napoli 80126, Italy
| | - Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | | | | | - Ilaria Ciofini
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris F-75005, France
| | - Carlo Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris F-75005, France
- Institut Universitaire de France, 103 Boulevard Saint Michel, Paris F-75005, France
| |
Collapse
|
30
|
Li H, Brémond E, Sancho-García JC, Pérez-Jiménez ÁJ, Scalmani G, Frisch MJ, Adamo C. Axial-equatorial equilibrium in substituted cyclohexanes: a DFT perspective on a small but complex problem. Phys Chem Chem Phys 2024; 26:8094-8105. [PMID: 38384253 DOI: 10.1039/d3cp06141h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In Chemistry, complexity is not necessarily associated to large systems, as illustrated by the textbook example of axial-equatorial equilibrium in mono-substituted cyclohexanes. The difficulty in modelling such a simple isomerization is related to the need for reproducing the delicate balance between two forces, with opposite effects, namely the attractive London dispersion and the repulsive steric interactions. Such balance is a stimulating challenge for density-functional approximations and it is systematically explored here by considering 20 mono-substituted cyclohexanes. In comparison to highly accurate CCSD(T) reference calculations, their axial-equatorial equilibrium is studied with a large set of 48 exchange-correlation approximations, spanning from semilocal to hybrid to more recent double hybrid functionals. This dataset, called SAV20 (as Steric A-values for 20 molecules), allows to highlight the difficulties encountered by common and more original DFT approaches, including those corrected for dispersion with empirical potentials, the 6-31G*-ACP model, and our cost-effective PBE-QIDH/DH-SVPD protocol, in modeling these challenging interactions. Interestingly, the performance of the approaches considered in this contribution on the SAV20 dataset does not correlate with that obtained with other more standard datasets, such as S66, IDISP or NC15, thus indicating that SAV20 covers physicochemical features not already considered in previous noncovalent interaction benchmarks.
Collapse
Affiliation(s)
- Hanwei Li
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Health and Life Sciences, F-75005 Paris, France.
| | - Eric Brémond
- Université Paris Cité, ITODYS, CNRS, F-75006 Paris, France
| | | | | | | | | | - Carlo Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Health and Life Sciences, F-75005 Paris, France.
| |
Collapse
|
31
|
Compagno N, Piccolo R, Bortolamiol E, Demitri N, Rizzolio F, Visentin F, Scattolin T. Platinum(0)-η 2-1,2-( E)ditosylethene Complexes Bearing Phosphine, Isocyanide and N-Heterocyclic Carbene Ligands: Synthesis and Cytotoxicity towards Ovarian and Breast Cancer Cells. Molecules 2024; 29:1119. [PMID: 38474631 DOI: 10.3390/molecules29051119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
A wide range of platinum(0)-η2-(E)-1,2-ditosylethene complexes bearing isocyanide, phosphine and N-heterocyclic carbene ancillary ligands have been prepared with high yields and selectivity. All the novel products underwent thorough characterization using spectroscopic techniques, including NMR and FT-IR analyses. Additionally, for some compounds, the solid-state structures were elucidated through X-ray diffractometry. The synthesized complexes were successively evaluated for their potential as anticancer agents against two ovarian cancer cell lines (A2780 and A2780cis) and one breast cancer cell line (MDA-MB-231). The majority of the compounds displayed promising cytotoxicity within the micromolar range against A2780 and MDA-MB-231 cells, with IC50 values comparable to or even surpassing those of cisplatin. However, only a subset of compounds was cytotoxic against cisplatin-resistant cancer cells (A2780cis). Furthermore, the assessment of antiproliferative activity on MRC-5 normal cells revealed certain compounds to exhibit in vitro selectivity. Notably, complexes 3d, 6a and 6b showed low cytotoxicity towards normal cells (IC50 > 100 µM) while concurrently displaying potent cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Nicola Compagno
- Department of Molecular Sciences, Nanosystems Università Ca' Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy
| | - Rachele Piccolo
- Department of Molecular Sciences, Nanosystems Università Ca' Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy
| | - Enrica Bortolamiol
- Department of Molecular Sciences, Nanosystems Università Ca' Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy
| | - Nicola Demitri
- Area Science Park Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5, Basovizza, 34149 Trieste, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences, Nanosystems Università Ca' Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Department of Molecular Sciences, Nanosystems Università Ca' Foscari, Campus Scientifico, Via Torino 155, 30174 Venezia, Italy
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
32
|
Franzke YJ, Bruder F, Gillhuber S, Holzer C, Weigend F. Paramagnetic Nuclear Magnetic Resonance Shifts for Triplet Systems and Beyond with Modern Relativistic Density Functional Methods. J Phys Chem A 2024; 128:670-686. [PMID: 38195394 DOI: 10.1021/acs.jpca.3c07093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
An efficient framework for the calculation of paramagnetic NMR (pNMR) shifts within exact two-component (X2C) theory and (current-dependent) density functional theory (DFT) up to the class of local hybrid functionals (LHFs) is presented. Generally, pNMR shifts for systems with more than one unpaired electron depend on the orbital shielding contribution and a temperature-dependent term. The latter includes zero-field splitting (ZFS), hyperfine coupling (HFC), and the g-tensor. For consistency, we calculate these three tensors at the same level of theory, i.e., using scalar-relativistic X2C augmented with spin-orbit perturbation theory. Results for pNMR chemical shifts of transition-metal complexes reveal that this X2C-DFT framework can yield good results for both the shifts and the individual tensor contributions of metallocenes and related systems, especially if the HFC constant is large. For small HFC constants, the relative error is often large, and sometimes the sign may be off. 4d and 5d complexes with more complicated structures demonstrate the limitations of a fully DFT-based approach. Additionally, a Co-based complex with a very large ZFS and pronounced multireference character is not well described. Here, a hybrid DFT-multireference framework is necessary for accurate results. Our results show that X2C is sufficient to describe relativistic effects and computationally cheaper than a fully relativistic approach. Thus, it allows use of large basis sets for converged HFCs. Overall, current-dependent meta-generalized gradient approximations and LHFs show some potential; however, the currently available functionals leave a lot to be desired, and the predictive power is limited.
Collapse
Affiliation(s)
- Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Florian Bruder
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Sebastian Gillhuber
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| |
Collapse
|
33
|
Wappett DA, Goerigk L. Exploring CPS-Extrapolated DLPNO-CCSD(T 1) Reference Values for Benchmarking DFT Methods on Enzymatically Catalyzed Reactions. J Phys Chem A 2024; 128:62-72. [PMID: 38124376 DOI: 10.1021/acs.jpca.3c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Domain-based local pair natural orbital coupled-cluster singles doubles with perturbative triples [DLPNO-CCSD(T)] is regularly used to calculate reliable benchmark reference values at a computational cost significantly lower than that of canonical CCSD(T). Recent work has shown that even greater accuracy can be obtained at only a small additional cost through extrapolation to the complete PNO space (CPS) limit. Herein, we test two levels of CPS extrapolation, CPS(5,6), which approximates the accuracy of standard TightPNO, and CPS(6,7), which surpasses it, as benchmark values to test density functional approximations (DFAs) on a small set of organic and transition-metal-dependent enzyme active site models. Between the different reference levels of theory, there are changes in the magnitudes of the absolute deviations for all functionals, but these are small and there is minimal impact on the relative rankings of the tested DFAs. The differences are more significant for the metalloenzymes than the organic enzymes, so we repeat the tests on our entire ENZYMES22 set of organic enzyme active site models [Wappett, D. A.; Goerigk, L. J. Phys. Chem. A 2019, 123, 7057-7074] to confirm that using the CPS extrapolations for the reference values has negligible impact on the benchmarking outcomes. This means that we can particularly recommend CPS(5,6) as an alternative to standard TightPNO settings for calculating reference values, increasing the applicability of DLPNO-CCSD(T) in benchmarking reaction energies and barrier heights of larger models of organic enzymes. DLPNO-CCSD(T1)/CPS(6,7) energies for ENZYMES22 are finally presented as updated reference values for the set, reflecting the recent improvements in the method.
Collapse
Affiliation(s)
- Dominique A Wappett
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
34
|
Bursch M, Grimme S, Hansen A. Influence of Steric and Dispersion Interactions on the Thermochemistry of Crowded (Fluoro)alkyl Compounds. Acc Chem Res 2024; 57:153-163. [PMID: 38102118 DOI: 10.1021/acs.accounts.3c00634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
ConspectusAlkanes play a pivotal role in industrial, environmental, and biological processes. They are characterized by their carbon-carbon single-bond structure, remarkable stability, and conformational diversity. Fluorination of such compounds imparts unique physicochemical properties that often enhance pharmacokinetic profiles, metabolic stability, and receptor interactions while keeping beneficial properties. However, such per- and polyfluoroalkyl substances (PFAS) show a persistent presence in the environment and potential adverse health effects, which propelled them to the forefront of global environmental and health discussions. Alkyl compounds are also prototypical for stereoelectronic (SE) effects that are widely applied in chemistry. Substituents are typically described as electron-density-donating/withdrawing and/or responsible for sterically interacting with reagents or strategic groups in the molecule. That alkane branching can result in higher stability compared to less-branched isomers has been investigated in detail also by testing quantum chemical methods, in particular density functional theory (DFT). Alkane branching results in spatially compact structures with close intramolecular contacts so that at a specific size the detailed balance of attractive London dispersion and covalent versus repulsive Pauli exchange interactions shifts to new, chemically unfragile situations. This may lead to dissociation at room temperature and opens the central question: what is the smallest crowed alkane that cannot be made synthetically? In this Account, we try to shed light on the interplay among the various (free) energy components for crowded (fluoro)alkane dissociation. In this context, homolytic cleavage of the central C-C bond in a series of model alkanes of increasing size with tert-butyl (tBu), adamantyl (Ad), and [1.1.1]propellanyl (Prop) substituents is investigated. Reference energies are calculated at the PNO-LCCSD(T)-F12b level and used to benchmark the performance of contemporary DFT functionals. In line with previous conclusions, the application of dispersion corrections to density functionals is mandatory. For crowed structures, the accurate description of the midrange correlation effects, specifically repulsive van der Waals interactions, is crucial, and we observed that the density-dependent VV10 correction is superior to D4 in this context, although the asymptotic region is better described by the latter. The best available dispersion-inclusive functionals show systematic and reasonably small residual errors and can be safely applied to large systems (>100 atoms), for which coupled cluster methods with large basis sets are not computationally feasible anymore. For qualitatively correct predictions of synthetic accessibility under equilibrium conditions (free energy), the inclusion of thermostatistical (entropy) contributions is also essential. According to our results, tetra-tert-butylmethane (C17tBu) is the largest and most crowded system with a positive dissociation free energy and should be synthesizable. The difference between hydrogenated and perfluorinated systems originates from the increase in the steric repulsion of spatially close substituents, which is not compensated to the same extent by attractive orbital and dispersion interactions. A sometimes-assumed similar steric demand for fluorine and hydrogen atoms is not corroborated by our investigations on crowded systems. Perfluorination is found to substantially decrease thermal stability, rendering perfluorinated hexamethylethane (C8tBuF) the last potentially stable representative.
Collapse
Affiliation(s)
- Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Beringstraße 4, D-53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Beringstraße 4, D-53115 Bonn, Germany
| |
Collapse
|
35
|
Li Y, Zeng P, Lou Q, Su X, Li W, Wang X. Prediction of 19F NMR chemical shifts for organic compounds with ORCA. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 358:107611. [PMID: 38104491 DOI: 10.1016/j.jmr.2023.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/11/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Accurate assignment of 19F NMR has long been a challenge, and quantum chemical methods are possible solutions. Herein we reported a scaling method for the prediction of 19F NMR chemical shift with freely available ORCA program package. Performance of 31 DFT functionals coupled with 11 basis sets were evaluated and influence of geometry optimization was also studied with five functionals coupled with three basis sets. The significance of geometry was further examined through the execution of relaxed surface scans of seven flexible compounds, and averaged shieldings of obtained conformers yielded notable improvement of the correlation between calculated isotropic shielidings and experimental chemical shifts. Utilization of the best scaling factor obtained successfully assigned of fluorine atoms in multifluorinated molecules with different conformations. The method reported here was computationally inexpensive, easily available with acceptable accuracy.
Collapse
Affiliation(s)
- Yueyang Li
- Institute of Advanced Synthesis, Institute of Chemical Biology and Functional Molecules, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ping Zeng
- Institute of Advanced Synthesis, Institute of Chemical Biology and Functional Molecules, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qing Lou
- Institute of Advanced Synthesis, Institute of Chemical Biology and Functional Molecules, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiao Su
- Institute of Advanced Synthesis, Institute of Chemical Biology and Functional Molecules, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wei Li
- Institute of Advanced Synthesis, Institute of Chemical Biology and Functional Molecules, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China(1)
| | - Xiaojian Wang
- Institute of Advanced Synthesis, Institute of Chemical Biology and Functional Molecules, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
36
|
Schattenberg C, Wodyński A, Åström H, Sundholm D, Kaupp M, Lehtola S. Revisiting Gauge-Independent Kinetic Energy Densities in Meta-GGAs and Local Hybrid Calculations of Magnetizabilities. J Phys Chem A 2023; 127:10896-10907. [PMID: 38100678 PMCID: PMC10758120 DOI: 10.1021/acs.jpca.3c06244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
In a recent study [J. Chem. Theory Comput. 2021, 17, 1457-1468], some of us examined the accuracy of magnetizabilities calculated with density functionals representing the local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA (mGGA), as well as global hybrid (GH) and range-separated (RS) hybrid functionals by assessment against accurate reference values obtained with coupled-cluster theory with singles, doubles, and perturbative triples [CCSD(T)]. Our study was later extended to local hybrid (LH) functionals by Holzer et al. [J. Chem. Theory Comput. 2021, 17, 2928-2947]; in this work, we examine a larger selection of LH functionals, also including range-separated LH (RSLH) functionals and strong-correlation LH (scLH) functionals. Holzer et al. also studied the importance of the physically correct handling of the magnetic gauge dependence of the kinetic energy density (τ) in mGGA calculations by comparing the Maximoff-Scuseria formulation of τ used in our aforementioned study to the more physical current-density extension derived by Dobson. In this work, we also revisit this comparison with a larger selection of mGGA functionals. We find that the newly tested LH, RSLH, and scLH functionals outperform all of the functionals considered in the previous studies. The various LH functionals afford the seven lowest mean absolute errors while also showing remarkably small standard deviations and mean errors. Most strikingly, the best two functionals are scLHs that also perform remarkably well in cases with significant multiconfigurational character, such as the ozone molecule, which is traditionally excluded from statistical error evaluations due to its large errors with common density functionals.
Collapse
Affiliation(s)
- Caspar
J. Schattenberg
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Artur Wodyński
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Hugo Åström
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtanens plats 1), University of Helsinki FI-00014, Finland
| | - Dage Sundholm
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtanens plats 1), University of Helsinki FI-00014, Finland
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Susi Lehtola
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtanens plats 1), University of Helsinki FI-00014, Finland
- Molecular
Sciences Software Institute, Blacksburg, Virginia 24061, United States
| |
Collapse
|
37
|
Chan B. DAPD Set of Pd-Containing Diatomic Molecules: Accurate Molecular Properties and the Great Lengths to Obtain Them. J Chem Theory Comput 2023; 19:9260-9268. [PMID: 38096563 DOI: 10.1021/acs.jctc.3c01060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
In the present study, we obtained reliable bond energy, bond length, and zero-point vibrational frequency for a set of diatomic Pd species (the DAPD set). It includes PdH, Pd2, and PdX (X = B, C, N, O, F, Al, Si, P, S, and Cl). Our highest-level protocol (W4X-L) represents scalar and spin-orbit relativistic, valence- and inner-valence correlated, extrapolated CCSDTQ(5) energy. The DAPD set of molecules is challenging for computational chemistry methods in different manners; for Pd2, the spin-orbit contribution to the bond energy is fairly large, whereas for PdC and PdSi, the post-CCSD(T) correlation components are considerable. The diverse range of requirements represents a significant challenge for lower-level methods. While density functional theory (DFT) methods generally yield good agreements for bond lengths and vibrational frequencies, large deviations are found for bond energies. In general, hybrid DFT methods are more accurate than nonhybrid functionals, but the agreement in individual cases varies. This illustrates the critical role that new high-quality reference data would play in the continual development of lower-cost methods.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
38
|
Wappett D, Goerigk L. Benchmarking Density Functional Theory Methods for Metalloenzyme Reactions: The Introduction of the MME55 Set. J Chem Theory Comput 2023; 19:8365-8383. [PMID: 37943578 PMCID: PMC10688432 DOI: 10.1021/acs.jctc.3c00558] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
We present a new benchmark set of metalloenzyme model reaction energies and barrier heights that we call MME55. The set contains 10 different enzymes, representing eight transition metals, both open and closed shell systems, and system sizes of up to 116 atoms. We use four DLPNO-CCSD(T)-based approaches to calculate reference values against which we then benchmark the performance of a range of density functional approximations with and without dispersion corrections. Dispersion corrections improve the results across the board, and triple-ζ basis sets provide the best balance of efficiency and accuracy. Jacob's ladder is reproduced for the whole set based on averaged mean absolute (percent) deviations, with the double hybrids SOS0-PBE0-2-D3(BJ) and revDOD-PBEP86-D4 standing out as the most accurate methods for the MME55 set. The range-separated hybrids ωB97M-V and ωB97X-V also perform well here and can be recommended as a reliable compromise between accuracy and efficiency; they have already been shown to be robust across many other types of chemical problems, as well. Despite the popularity of B3LYP in computational enzymology, it is not a strong performer on our benchmark set, and we discourage its use for enzyme energetics.
Collapse
Affiliation(s)
- Dominique
A. Wappett
- School of Chemistry, The University
of Melbourne, Melbourne, Victoria 3010, Australia
| | - Lars Goerigk
- School of Chemistry, The University
of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
39
|
Bruder F, Franzke YJ, Holzer C, Weigend F. Zero-field splitting parameters within exact two-component theory and modern density functional theory using seminumerical integration. J Chem Phys 2023; 159:194117. [PMID: 37987521 DOI: 10.1063/5.0175758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
An efficient implementation of zero-field splitting parameters based on the work of Schmitt et al. [J. Chem. Phys. 134, 194113 (2011)] is presented. Seminumerical integration techniques are used for the two-electron spin-dipole contribution and the response equations of the spin-orbit perturbation. The original formulation is further generalized. First, it is extended to meta-generalized gradient approximations and local hybrid functionals. For these functional classes, the response of the paramagnetic current density is considered in the coupled-perturbed Kohn-Sham equations for the spin-orbit perturbation term. Second, the spin-orbit perturbation is formulated within relativistic exact two-component theory and the screened nuclear spin-orbit (SNSO) approximation. The accuracy of the implementation is demonstrated for transition-metal and diatomic main-group compounds. The efficiency is assessed for Mn and Mo complexes. Here, it is found that coarse integration grids for the seminumerical schemes lead to drastic speedups while introducing clearly negligible errors. In addition, the SNSO approximation substantially reduces the computational demands and leads to very similar results as the spin-orbit mean field Ansatz.
Collapse
Affiliation(s)
- Florian Bruder
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| |
Collapse
|
40
|
Abedi M, Behler J, Goldsmith CF. High-Dimensional Neural Network Potentials for Accurate Prediction of Equation of State: A Case Study of Methane. J Chem Theory Comput 2023; 19:7825-7832. [PMID: 37902963 DOI: 10.1021/acs.jctc.3c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Machine learning-based interatomic potentials, such as those provided by neural networks, are increasingly important in molecular dynamics simulations. In the present work, we consider the applicability and robustness of machine learning molecular dynamics to predict the equation of state properties of methane by using high-dimensional neural network potentials (HDNNPs). We investigate two different strategies for generating training data: one strategy based upon bulk representations using periodic cells and another strategy based upon clusters of molecules. We assess the accuracy of the trained potentials by predicting the equilibrium mass density for a wide range of thermodynamic conditions to characterize the liquid phase, supercritical fluid, and gas phase, as well as the liquid-vapor coexistence curve. Our results show an excellent agreement with reference phase diagrams, with an average error below ∼2% for all studied phases. Moreover, we confirm the applicability of models trained on cluster data sets for producing accurate and reliable results.
Collapse
Affiliation(s)
- Mostafa Abedi
- School of Engineering, Brown University, Providence, Rhode Island 02906, United States
| | - Jörg Behler
- Lehrstuhl für Theoretische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany
| | - C Franklin Goldsmith
- School of Engineering, Brown University, Providence, Rhode Island 02906, United States
| |
Collapse
|
41
|
Ai W, Su NQ, Fang WH. Short-range screened density matrix functional for proper descriptions of thermochemistry, thermochemical kinetics, nonbonded interactions, and singlet diradicals. J Chem Phys 2023; 159:174110. [PMID: 37933778 DOI: 10.1063/5.0169234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023] Open
Abstract
Common one-electron reduced density matrix (1-RDM) functionals that depend on Coulomb and exchange-only integrals tend to underestimate dynamic correlation, preventing reduced density matrix functional theory (RDMFT) from achieving comparable accuracy to density functional theory in main-group thermochemistry and thermochemical kinetics. The recently developed ωP22 functional introduces a semi-local density functional to screen the erroneous short-range portion of 1-RDM functionals without double-counting correlation, potentially providing a better treatment of dynamic correlation around equilibrium geometries. Herein, we systematically evaluate the performance of this functional model, which consists of two parameters, on main-group thermochemistry, thermochemical kinetics, nonbonded interactions, and more. Tests on atomization energies, vibrational frequencies, and reaction barriers reveal that the ωP22 functional model can reliably predict properties at equilibrium and slightly away from equilibrium geometries. In particular, it outperforms commonly used density functionals in the prediction of reaction barriers, nonbonded interactions, and singlet diradicals, thus enhancing the predictive power of RDMFT for routine calculations of thermochemistry and thermochemical kinetics around equilibrium geometries. Further development is needed in the future to refine short- and long-range approximations in the functional model in order to achieve an excellent description of properties both near and far from equilibrium geometries.
Collapse
Affiliation(s)
- Wenna Ai
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Neil Qiang Su
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Wei-Hai Fang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
42
|
Manukovsky N, Kamieniarz G, Kronik L. Spin state and magnetic coupling in polynuclear Ni(II) complexes from density functional theory: is there an optimal amount of Fock exchange? J Chem Phys 2023; 159:154103. [PMID: 37846951 DOI: 10.1063/5.0169105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
Reliable prediction of the ground-state spin and magnetic coupling constants in transition-metal complexes is a well-known challenge for density functional theory (DFT). One popular strategy for addressing this long-standing issue involves the modification of the fraction of Fock exchange in a hybrid functional. Here we explore the viability of this approach using three polynuclear metal-organic complexes based on a Ni4O4 cubane motif, having different ground state spin values (S = 0, 2, 4) owing to the use of different ligands. We systematically search for an optimum fraction of Fock exchange, across various global, range-separated, and double hybrid functionals. We find that for all functionals tested, at best there only exists a very narrow range of Fock exchange fractions which results in a correct prediction of the ground-state spin for all three complexes. The useful range is functional dependent, but general trends can be identified. Typically, at least two similar systems must be used in order to determine both an upper and lower limit of the optimal range. This is likely owing to conflicting demands of minimizing delocalization errors, which typically requires a higher percentage of Fock exchange, and addressing static correlation, which typically requires a lower one. Furthermore, we find that within the optimal range of Fock exchange, the sign and relative magnitude of Ni-Ni magnetic coupling constants are reasonably well reproduced, but there is still room for quantitative improvement in the prediction. Thus, the prediction of spin state and magnetic coupling in polynuclear complexes remains an ongoing challenge for DFT.
Collapse
Affiliation(s)
- Nurit Manukovsky
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 7610001, Israel
| | | | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 7610001, Israel
| |
Collapse
|
43
|
Li WL, Chen K, Rossomme E, Head-Gordon M, Head-Gordon T. Greater transferability and accuracy of norm-conserving pseudopotentials using nonlinear core corrections. Chem Sci 2023; 14:10934-10943. [PMID: 37829021 PMCID: PMC10566506 DOI: 10.1039/d3sc03709f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
We present an investigation into the transferability of pseudopotentials (PPs) with a nonlinear core correction (NLCC) using the Goedecker, Teter, and Hutter (GTH) protocol across a range of pure GGA, meta-GGA and hybrid functionals, and their impact on thermochemical and non-thermochemical properties. The GTH-NLCC PP for the PBE density functional demonstrates remarkable transferability to the PBE0 and ωB97X-V exchange-correlation functionals, and relative to no NLCC, improves agreement significantly for thermochemical benchmarks compared to all-electron calculations. On the other hand, the B97M-rV meta-GGA functional performs poorly with the PBE-derived GTH-NLCC PP, which is mitigated by reoptimizing the NLCC parameters for this specific functional. The findings reveal that atomization energies exhibit the greatest improvements from use of the NLCC, which thus provides an important correction needed for covalent interactions relevant to applications involving chemical reactivity. Finally we test the NLCC-GTH PPs when combined with medium-size TZV2P molecularly optimized (MOLOPT) basis sets which are typically utilized in condensed phase simulations, and show that they lead to consistently good results when compared to all-electron calculations for atomization energies, ionization potentials, barrier heights, and non-covalent interactions, but lead to somewhat larger errors for electron affinities.
Collapse
Affiliation(s)
- Wan-Lu Li
- Kenneth S. Pitzer Center for Theoretical Chemistry USA
- Department of Chemistry USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory USA
- Department of Nanoengineering and Materials Science and Engineering Program, University of California San Diego La Jolla California 92093 USA
| | - Kaixuan Chen
- Kenneth S. Pitzer Center for Theoretical Chemistry USA
- Department of Chemistry USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory USA
| | - Elliot Rossomme
- Kenneth S. Pitzer Center for Theoretical Chemistry USA
- Department of Chemistry USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry USA
- Department of Chemistry USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory USA
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry USA
- Department of Chemistry USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory USA
- Department of Chemical and Biomolecular Engineering USA
- Department of Bioengineering, University of California, Berkeley Berkeley California 94720 USA
| |
Collapse
|
44
|
Budnikov AS, Krylov IB, Lastovko AV, Dolotov RA, Shevchenko MI, Terent'ev AO. The diacetyliminoxyl radical in oxidative functionalization of alkenes. Org Biomol Chem 2023; 21:7758-7766. [PMID: 37698014 DOI: 10.1039/d3ob00925d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The intermolecular oxime radical addition to CC bonds was observed and studied for the first time. The diacetyliminoxyl radical was proposed as a model radical reagent for the study of oxime radical reactivity towards unsaturated substrates, which is important in the light of the active development of synthetic applications of oxime radicals. In the present work it was found that the diacetyliminoxyl radical reacts with vinylarenes and conjugated dienes to give radical addition products, whereas unconjugated alkenes can undergo radical addition or allylic hydrogen substitution by diacetyliminoxyl depending on the substrate structure. Remarkably, substituted alkenes give high yields of C-O coupling products despite the significant steric hindrance, whereas unsubstituted alkenes give lower yields of the C-O coupling products. The observed atypical C-O coupling yield dependence on the alkene structure was explained by the discovered ability of the diacetyliminoxyl radical to attack alkenes with the formation of a C-N bond instead of a C-O bond giving side products. This side process is not expected for sterically hindered alkenes due to lower steric availability of the N-atom in diacetyliminoxyl than that of the O-atom.
Collapse
Affiliation(s)
- Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Andrey V Lastovko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Roman A Dolotov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Mikhail I Shevchenko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
45
|
O’Reilly RJ, Karton A. The influence of substituents in governing the strength of the P-X bonds of substituted halophosphines R 1R 2P-X (X = F and Cl). Front Chem 2023; 11:1283418. [PMID: 37854977 PMCID: PMC10579588 DOI: 10.3389/fchem.2023.1283418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023] Open
Abstract
In this study, the gas-phase homolytic P-F and P-Cl bond dissociation energies (BDEs) of a set of thirty fluorophosphine (R1R2P-F) and thirty chlorophosphine-type (R1R2P-Cl) molecules have been obtained using the high-level W2 thermochemical protocol. For the R1R2P-F species, the P-F BDEs (at 298 K) differ by up to 117.0 kJ mol-1, with (H3Si)2P-F having the lowest BDE (439.5 kJ mol-1) and F2P-F having the largest BDE (556.5 kJ mol-1). In the case of the chlorophosphine-type molecules, the difference in BDEs is considerably smaller (i.e., 72.6 kJ mol-1), with (NC)2P-Cl having the lowest P-Cl BDE (299.8 kJ mol-1) and (HO)2P-Cl having the largest (372.4 kJ mol-1). We have further analyzed the effect of substituents in governing the P-F and P-Cl BDEs by considering the effect of substituents in the parent halogenated precursors (using molecule stabilization enthalpies) and the effect of substituents in the product radicals (using radical stabilization enthalpies). Finally, we have also assessed the performance of a wide range of DFT methods for their ability to compute the gas-phase P-F and P-Cl BDEs contained in this dataset. We find that, overall, the double hybrid functional DSD-PBEB95 offers the best performance for both bond types, with mean absolute deviations of just 2.1 (P-F BDEs) and 2.2 (P-Cl BDEs) kJ mol-1.
Collapse
Affiliation(s)
- Robert J. O’Reilly
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Amir Karton
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
46
|
Scheele T, Neudecker T. Investigating the accuracy of density functional methods for molecules in electric fields. J Chem Phys 2023; 159:124111. [PMID: 38127387 DOI: 10.1063/5.0164372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/05/2023] [Indexed: 12/23/2023] Open
Abstract
The use of oriented external electric fields (OEEFs) as a potential tool for catalyzing chemical reactions has gained traction in recent years. Electronic structure calculations using OEEFs are commonly done using methods based on density functional theory (DFT), but until now, the performance of DFT methods for calculating molecules in OEEFs had not been assessed in a more general scope. Looking at the accuracy of molecular geometries, electronic energies, and electric dipole moments compared to accurate coupled-cluster with perturbative triples data, we have investigated a wide variety of density functionals using different basis sets to determine how well the individual functionals perform on various types of chemical bonds. We found that most functionals accurately calculate geometries in OEEFs and that small basis sets are sufficient in many cases. Calculations of electronic energies show a significant error introduced by the OEEF, which the use of a larger basis set helps mitigate. Our findings show that DFT methods can be used for accurate calculations in OEEFs, allowing researchers to make full use of the advantages that they bring.
Collapse
Affiliation(s)
- Tarek Scheele
- University of Bremen, Institute for Physical and Theoretical Chemistry, Leobener Straße NW2, D-28359 Bremen, Germany
| | - Tim Neudecker
- University of Bremen, Institute for Physical and Theoretical Chemistry, Leobener Straße NW2, D-28359 Bremen, Germany
- Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, D-28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359 Bremen, Germany
| |
Collapse
|
47
|
Konopkina EA, Pozdeev AS, Kalle P, Kirsanov DO, Smol'yanov NA, Kirsanova AA, Kalmykov SN, Petrov VG, Borisova NE, Matveev PI. Sensing and extraction of hazardous metals by di-phosphonates of heterocycles: a combined experimental and theoretical study. Dalton Trans 2023; 52:12934-12947. [PMID: 37646311 DOI: 10.1039/d3dt01534c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In this study, pyridine and phenanthroline diphosphonate ligands were investigated for the first time from the context of solvent extraction and potentiometric sensing of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) cations. The extraction efficiency under the same conditions for phenanthroline-diphosphonates is considerably higher than that for pyridine ligands. At the same time, the pyridine-diphosphonates show pronounced selectivity towards lead in this metal series. The extraction systems with phenanthroline diphosphonates provided the most efficient extraction of Cd(II) and Pb(II) cations (D > 90). The newly developed pyridine and phenanthroline diphosphonate ligands have proven to be highly effective components in plasticized polymeric membranes. These ligands can be utilized to construct potentiometric ion sensors that exhibit a notable response specifically towards Pb(II) cations. Among the previously reported tetradentate ligands, the phenanthroline diphosphonate ligand, when incorporated into plasticized polymeric membranes, demonstrated the highest sensitivity towards d-metals and Pb(II). The structure of the single crystal complex of Pb(II) and Cd(II) with pyridine-diphosphonates was studied by X-ray diffraction analysis (XRD). The geometry of Cu(II), Zn(II), Cd(II) and Pb(II) complexes and the energy effect of the complex formation, including pseudo-oligomerization reactions, were determined by DFT calculations. The high sensing and extraction efficiency of diphosphonates with respect to Pb(II) is consistent with the minimum values of complex formation energies. The variation in sensory and extraction properties observed among the studied diphosphonate ligands is influenced by the ability to form polynuclear complexes with Pb(II) cations, whereas such properties are absent in the case of Cd(II) cations.
Collapse
Affiliation(s)
- Ekaterina A Konopkina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Anton S Pozdeev
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT, 84322-0300, USA
| | - Paulina Kalle
- N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitry O Kirsanov
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg, Russian Federation
- ITMO University, Saint-Petersburg, Russian Federation
| | | | - Anna A Kirsanova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Stepan N Kalmykov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Vladimir G Petrov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Nataliya E Borisova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation.
| | - Petr I Matveev
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
48
|
Rettig A, Lee J, Head-Gordon M. Even Faster Exact Exchange for Solids via Tensor Hypercontraction. J Chem Theory Comput 2023; 19:5773-5784. [PMID: 37586065 DOI: 10.1021/acs.jctc.3c00407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Hybrid density functional theory (DFT) remains intractable for large periodic systems due to the demanding computational cost of exact exchange. We apply the tensor hypercontraction (THC) (or interpolative separable density fitting) approximation to periodic hybrid DFT calculations with Gaussian-type orbitals using the Gaussian plane wave approach. This is done to lower the computational scaling with respect to the number of basis functions (N) and k-points (Nk) at a fixed system size. Additionally, we propose an algorithm to fit only occupied orbital products via THC (i.e., a set of points, NISDF) to further reduce computation time and memory usage. This algorithm has linear scaling cost with k-points, no explicit dependence of NISDF on basis set size, and overall cubic scaling with unit cell size. Significant speedups and reduced memory usage may be obtained for moderately sized k-point meshes, with additional gains for large k-point meshes. Adequate accuracy can be obtained using THC-oo-K for self-consistent calculations. We perform illustrative hybrid density function theory calculations on the benzene crystal in the basis set and thermodynamic limits to highlight the utility of this algorithm.
Collapse
Affiliation(s)
- Adam Rettig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joonho Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
49
|
O’Reilly RJ, Karton A. A Systematic Exploration of B-F Bond Dissociation Enthalpies of Fluoroborane-Type Molecules at the CCSD(T)/CBS Level. Molecules 2023; 28:5707. [PMID: 37570677 PMCID: PMC10420309 DOI: 10.3390/molecules28155707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Fluoroborane-type molecules (R1R2B-F) are of interest in synthetic chemistry, but to date, apart from a handful of small species (such as H2BF, HBF2, and BF3), little is known concerning the effect of substituents in governing the strength of the B-F bonds of such species toward homolytic dissociation in the gas phase. In this study, we have calculated the bond dissociation enthalpies (BDEs) of thirty unique B-F bonds at the CCSD(T)/CBS level using the high-level W1w thermochemical protocol. The B-F bonds in all species considered are very strong, ranging from 545.9 kJ mol-1 in (H2B)2B-F to 729.2 kJ mol-1 HBF2. Nevertheless, these BDEs still vary over a wide range of 183.3 kJ mol-1. The structural properties that affect the BDEs are examined in detail, and the homolytic BDEs are rationalized based on molecule stabilization enthalpies and radical stabilization enthalpies. Since polar B-F bonds may represent a challenging test case for density functional theory (DFT) methods, we proceed to examine the performance of a wide range of DFT methods across the rungs of Jacob's Ladder for their ability to compute B-F BDEs. We find that only a handful of DFT methods can reproduce the CCSD(T)/CBS BDEs with mean absolute deviations (MADs) below the threshold of chemical accuracy (i.e., with average deviations below 4.2 kJ mol-1). The only functionals capable of achieving this feat were (MADs given in parentheses): ωB97M-V (4.0), BMK (3.5), DSD-BLYP (3.8), and DSD-PBEB95 (1.8 kJ mol-1).
Collapse
Affiliation(s)
- Robert J. O’Reilly
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Amir Karton
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
50
|
Vysotskiy VP, Torbjörnsson M, Jiang H, Larsson ED, Cao L, Ryde U, Zhai H, Lee S, Chan GKL. Assessment of DFT functionals for a minimal nitrogenase [Fe(SH)4H]- model employing state-of-the-art ab initio methods. J Chem Phys 2023; 159:044106. [PMID: 37486046 DOI: 10.1063/5.0152611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
We have designed a [Fe(SH)4H]- model with the fifth proton binding either to Fe or S. We show that the energy difference between these two isomers (∆E) is hard to estimate with quantum-mechanical (QM) methods. For example, different density functional theory (DFT) methods give ∆E estimates that vary by almost 140 kJ/mol, mainly depending on the amount of exact Hartree-Fock included (0%-54%). The model is so small that it can be treated by many high-level QM methods, including coupled-cluster (CC) and multiconfigurational perturbation theory approaches. With extrapolated CC series (up to fully connected coupled-cluster calculations with singles, doubles, and triples) and semistochastic heat-bath configuration interaction methods, we obtain results that seem to be converged to full configuration interaction results within 5 kJ/mol. Our best result for ∆E is 101 kJ/mol. With this reference, we show that M06 and B3LYP-D3 give the best results among 35 DFT methods tested for this system. Brueckner doubles coupled cluster with perturbaitve triples seems to be the most accurate coupled-cluster approach with approximate triples. CCSD(T) with Kohn-Sham orbitals gives results within 4-11 kJ/mol of the extrapolated CC results, depending on the DFT method. Single-reference CC calculations seem to be reasonably accurate (giving an error of ∼5 kJ/mol compared to multireference methods), even if the D1 diagnostic is quite high (0.25) for one of the two isomers.
Collapse
Affiliation(s)
- Victor P Vysotskiy
- Department of Computational Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | - Magne Torbjörnsson
- Department of Computational Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | - Hao Jiang
- Department of Computational Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | - Ernst D Larsson
- Department of Computational Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | - Lili Cao
- Department of Computational Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Computational Chemistry, Lund University, Chemical Centre, SE-221 00 Lund, Sweden
| | - Huanchen Zhai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|