1
|
Mortensen JJ, Larsen AH, Kuisma M, Ivanov AV, Taghizadeh A, Peterson A, Haldar A, Dohn AO, Schäfer C, Jónsson EÖ, Hermes ED, Nilsson FA, Kastlunger G, Levi G, Jónsson H, Häkkinen H, Fojt J, Kangsabanik J, Sødequist J, Lehtomäki J, Heske J, Enkovaara J, Winther KT, Dulak M, Melander MM, Ovesen M, Louhivuori M, Walter M, Gjerding M, Lopez-Acevedo O, Erhart P, Warmbier R, Würdemann R, Kaappa S, Latini S, Boland TM, Bligaard T, Skovhus T, Susi T, Maxson T, Rossi T, Chen X, Schmerwitz YLA, Schiøtz J, Olsen T, Jacobsen KW, Thygesen KS. GPAW: An open Python package for electronic structure calculations. J Chem Phys 2024; 160:092503. [PMID: 38450733 DOI: 10.1063/5.0182685] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 03/08/2024] Open
Abstract
We review the GPAW open-source Python package for electronic structure calculations. GPAW is based on the projector-augmented wave method and can solve the self-consistent density functional theory (DFT) equations using three different wave-function representations, namely real-space grids, plane waves, and numerical atomic orbitals. The three representations are complementary and mutually independent and can be connected by transformations via the real-space grid. This multi-basis feature renders GPAW highly versatile and unique among similar codes. By virtue of its modular structure, the GPAW code constitutes an ideal platform for the implementation of new features and methodologies. Moreover, it is well integrated with the Atomic Simulation Environment (ASE), providing a flexible and dynamic user interface. In addition to ground-state DFT calculations, GPAW supports many-body GW band structures, optical excitations from the Bethe-Salpeter Equation, variational calculations of excited states in molecules and solids via direct optimization, and real-time propagation of the Kohn-Sham equations within time-dependent DFT. A range of more advanced methods to describe magnetic excitations and non-collinear magnetism in solids are also now available. In addition, GPAW can calculate non-linear optical tensors of solids, charged crystal point defects, and much more. Recently, support for graphics processing unit (GPU) acceleration has been achieved with minor modifications to the GPAW code thanks to the CuPy library. We end the review with an outlook, describing some future plans for GPAW.
Collapse
Affiliation(s)
- Jens Jørgen Mortensen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ask Hjorth Larsen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mikael Kuisma
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Aleksei V Ivanov
- Riverlane Ltd., St Andrews House, 59 St Andrews Street, Cambridge CB2 3BZ, United Kingdom
| | - Alireza Taghizadeh
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Andrew Peterson
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Anubhab Haldar
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Asmus Ougaard Dohn
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark and Science Institute and Faculty of Physical Sciences, VR-III, University of Iceland, Reykjavík 107, Iceland
| | - Christian Schäfer
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Elvar Örn Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Eric D Hermes
- Quantum-Si, 29 Business Park Drive, Branford, Connecticut 06405, USA
| | | | - Georg Kastlunger
- CatTheory, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Gianluca Levi
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Jakub Fojt
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Jiban Kangsabanik
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Joachim Sødequist
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jouko Lehtomäki
- Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
| | - Julian Heske
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jussi Enkovaara
- CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Kirsten Trøstrup Winther
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Marcin Dulak
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marko M Melander
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Martin Ovesen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Martti Louhivuori
- CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Michael Walter
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Morten Gjerding
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Olga Lopez-Acevedo
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, 050010 Medellin, Colombia
| | - Paul Erhart
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Robert Warmbier
- School of Physics and Mandelstam Institute for Theoretical Physics, University of the Witwatersrand, 1 Jan Smuts Avenue, 2001 Johannesburg, South Africa
| | - Rolf Würdemann
- Freiburger Materialforschungszentrum, Universität Freiburg, Stefan-Meier-Straße 21, D-79104 Freiburg, Germany
| | - Sami Kaappa
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Simone Latini
- Nanomade, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tara Maria Boland
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas Bligaard
- Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Thorbjørn Skovhus
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Toma Susi
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Tristan Maxson
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Tuomas Rossi
- CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Xi Chen
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
| | | | - Jakob Schiøtz
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas Olsen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
2
|
de Kock S, Skudler K, Matsidik R, Sommer M, Müller M, Walter M. NEXAFS spectra of model sulfide chains: implications for sulfur networks obtained from inverse vulcanization. Phys Chem Chem Phys 2023; 25:20395-20404. [PMID: 37465922 DOI: 10.1039/d3cp02285d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Inverse vulcanization is a promising route to stabilize sulfur in lithium-sulfur batteries, but the resulting sulfur strand lengths in the materials are elusive. We address the strand length by characterization via sulfur near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Theoretical predictions of NEXAFS spectra for model molecules containing strands with up to three sulfur atoms are verified by experiment. The near perfect agreement between simulation and experiment on the absolute energy scale allows for the predictions for larger chain lengths also. Inspection and interpretation of NEXAFS spectra from real battery materials on this basis reveals the appearance of single connecting sulfur atoms for very low sulfur content, and of longer strands when the sulfur fraction increases.
Collapse
Affiliation(s)
- Sunel de Kock
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.
| | - Konstantin Skudler
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany
| | - Rukiya Matsidik
- Institute for Chemistry, Polymer Chemistry, Chemnitz University of Technology, 09111 Chemnitz, Germany
- Forschungszentrum MAIN, TU Chemnitz, Rosenbergstraße 6, 09126 Chemnitz, Germany
| | - Michael Sommer
- Institute for Chemistry, Polymer Chemistry, Chemnitz University of Technology, 09111 Chemnitz, Germany
- Forschungszentrum MAIN, TU Chemnitz, Rosenbergstraße 6, 09126 Chemnitz, Germany
| | - Matthias Müller
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany
| | - Michael Walter
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT, Freiburg, Germany
- Fraunhofer IWM, MikroTribologie Centrum μTC, Freiburg, Germany
| |
Collapse
|
3
|
Hao D, Wang Y, Tang X, Zhao X, An Y, Wang W, Li J, Shan X, Lu X. Geometrical and magnetic properties of small titanium and chromium clusters on monolayer hexagonal boron nitride. Phys Chem Chem Phys 2023; 25:6079-6088. [PMID: 36752046 DOI: 10.1039/d2cp05638k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Magnetic clusters on an insulating substrate are potential candidates for spin-based quantum devices. Here we investigate the geometric, electronic, and magnetic structures of small Ti and Cr clusters, from dimers to pentamers, adsorbed on a single-layer hexagonal boron nitride (h-BN) sheet within the framework of density functional theory. The stable adsorption configurations of the Ti clusters and Cr clusters composed of the same number of atoms are found to be totally different from each other. The difference in their bonding mechanisms has been revealed by the density of states and the charge density difference of the corresponding adsorption systems. While chemical bonds are formed between the Ti atoms and the supporting sheet, the Cr clusters are found in the physisorption state on the substrate. In addition, it is shown that the h-BN sheet is energetically favorable for building three-dimensional Ti clusters. These findings support the use of h-BN as a suitable decoupling substrate for manipulation of quantum spin states in small transition metal (TM) clusters and fabrication of devices based on them.
Collapse
Affiliation(s)
- Dong Hao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yueyi Wang
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangqian Tang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xinjia Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yang An
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wenyu Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jianmei Li
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, Heibei 066004, China
| | - Xinyan Shan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Xinghua Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.,Collaborative Innovation Center of Quantum Matter, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
4
|
Badorrek J, Walter M. Computational study on noncovalent interactions between (n, n) single-walled carbon nanotubes and simple lignin model-compounds. J Comput Chem 2021; 43:340-348. [PMID: 34893979 DOI: 10.1002/jcc.26794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022]
Abstract
Composites of carbon nanotubes (CNTs) and lignin are promising and potentially cheap precursors of-to this day-expensive carbon fibers. Since the control of the CNT-lignin interface is crucial to maximize fiber performance, it is imperative to understand the fundamental noncovalent interactions between lignin and CNT. In the present study a density functional theory study is conducted to investigate the fundamental noncovalent interaction strength between metallic (n, n) single-walled CNT (SWCNT) and simple lignin model molecules. In particular, the respective adsorption energies are used to gauge the strength of interaction classes (ππ interaction, CHπ hydrogen bonding and OH-related hydrogen bonding. From the data, substituent-dependent interaction trends as well as class- and curvature-dependent interaction trends are derived. Overall, we find that most of the interaction strength trends appear to be strongly influenced by geometry: flat orientation of the test molecules relative to the (n, n) SWCNT surface and small (n, n) SWCNT curvature-that is, large diameter enhances the CHπ and ππ interactions.
Collapse
Affiliation(s)
- Jan Badorrek
- Freiburger Materialforschungszentrum, Freiburg im Breisgau, Germany
| | - Michael Walter
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Universität Freiburg, Freiburg im Breisgau, Germany.,Cluster of Excellence livMatS @ FIT, Freiburg im Breisgau, Germany.,Fraunhofer IWM, Freiburg im Breisgau, Germany
| |
Collapse
|
5
|
Borisova SD, Eremeev SV, Rusina GG, Chulkov EV. Magnetic and vibrational properties of small chromium clusters on the Cu(111) surface. Phys Chem Chem Phys 2021; 23:7814-7821. [PMID: 33155011 DOI: 10.1039/d0cp05223j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure and magnetic properties of small Cr clusters, Cr3 and Cr4, adsorbed on the Cu(111) surface have been investigated using density functional theory (DFT) calculations and their vibrational properties have been studied within calculations based on tight-binding second moment approximation interatomic interaction potentials (TBSMA). It has been shown that the magnetic ordering in the Cr clusters significantly affects their crystal structure and symmetry, which influences the vibrational modes of the clusters and nearest neighbor copper atoms. In turn, these modes select potentially possible structures of Cr3 and Cr4, prohibiting the lowest total energy cluster structure as dynamically unstable.
Collapse
Affiliation(s)
- S D Borisova
- Institute of Strength Physics and Materials Science, 634055, Tomsk, Russia.
| | | | | | | |
Collapse
|
6
|
Vargas−Hernández RA. Bayesian Optimization for Calibrating and Selecting Hybrid-Density Functional Models. J Phys Chem A 2020; 124:4053-4061. [DOI: 10.1021/acs.jpca.0c01375] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- R. A. Vargas−Hernández
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
7
|
Spectrophotometric determination and computational study of fluoride in hexavalent chromium electroplating bath. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Zhang Y, Zhang W, Singh DJ. Localization in the SCAN meta-generalized gradient approximation functional leading to broken symmetry ground states for graphene and benzene. Phys Chem Chem Phys 2020; 22:19585-19591. [DOI: 10.1039/d0cp03567j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SCAN over localizes orbitals leading to spin symmetry broken ground states in graphene and benzene.
Collapse
Affiliation(s)
- Yubo Zhang
- Department of Physics and Shenzhen Institute for Quantum Science & Engineering
- Southern University of Science and Technology
- Shenzhen
- China
- Guangdong Provincial Key Lab for Computational Science and Materials Design, and Shenzhen Municipal Key Lab for Advanced Quantum Materials and Devices
| | - Wenqing Zhang
- Department of Physics and Shenzhen Institute for Quantum Science & Engineering
- Southern University of Science and Technology
- Shenzhen
- China
- Guangdong Provincial Key Lab for Computational Science and Materials Design, and Shenzhen Municipal Key Lab for Advanced Quantum Materials and Devices
| | - David J. Singh
- Department of Physics and Astronomy
- University of Missouri
- Columbia
- USA
- Department of Chemistry
| |
Collapse
|
9
|
Walter M, Moseler M. Ab Initio Wavelength-Dependent Raman Spectra: Placzek Approximation and Beyond. J Chem Theory Comput 2019; 16:576-586. [DOI: 10.1021/acs.jctc.9b00584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Michael Walter
- Fraunhofer IWM, MikroTribologie Centrum μTC, Wöhlerstrasse 11, D-79108 Freiburg, Germany
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT − Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Michael Moseler
- Fraunhofer IWM, MikroTribologie Centrum μTC, Wöhlerstrasse 11, D-79108 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT − Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- Physikalisches Institut, Universität Freiburg, Herrmann-Herder-Straße 3, D-79104 Freiburg, Germany
- Freiburger Materialforschungszentrum, Universität Freiburg, Stefan-Meier-Straße 21, D-79104 Freiburg, Germany
| |
Collapse
|
10
|
Ghassemizadeh R, Moore B, Momose T, Walter M. Stability and IR Spectroscopy of Zwitterionic Form of β-Alanine in Water Clusters. J Phys Chem B 2019; 123:4392-4399. [DOI: 10.1021/acs.jpcb.9b00654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Reyhaneh Ghassemizadeh
- Physikalisches Institut, Universität Freiburg, Herrmann-Herder-Strasse 3, D-79104 Freiburg, Germany
| | - Brendan Moore
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| | - Takamasa Momose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| | - Michael Walter
- Physikalisches Institut, Universität Freiburg, Herrmann-Herder-Strasse 3, D-79104 Freiburg, Germany
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Fraunhofer IWM, MikroTribologie Centrum μTC, Wöhlerstrasse 11, D-79108 Freiburg, Germany
| |
Collapse
|
11
|
Spivak M, López X, de Graaf C. Trends in the Bond Multiplicity of Cr2, Cr3, and Cr2M (M = Zn, Ni, Fe, Mn) Complexes Extracted from Multiconfigurational Wave Functions. J Phys Chem A 2019; 123:1538-1547. [DOI: 10.1021/acs.jpca.8b10124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mariano Spivak
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Xavier López
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Coen de Graaf
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
12
|
Würdemann R, Walter M. Charge Transfer Excitations with Range Separated Functionals Using Improved Virtual Orbitals. J Chem Theory Comput 2018; 14:3667-3676. [DOI: 10.1021/acs.jctc.8b00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rolf Würdemann
- Freiburger Materialforschungszentrum, Universität Freiburg, Stefan-Meier-Straße 21, D-79104 Freiburg, Germany
| | - Michael Walter
- Freiburger Zentrum für interaktive Werkstoffe und bioinspirierte Technologien, Universität Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- Fraunhofer IWM, Wöhlerstrasse 11, D-79108 Freiburg, Germany
| |
Collapse
|
13
|
Reichenbach T, Mondal K, Jäger M, Vent-Schmidt T, Himmel D, Dybbert V, Bruix A, Krossing I, Walter M, Moseler M. Ab initio study of CO2 hydrogenation mechanisms on inverse ZnO/Cu catalysts. J Catal 2018. [DOI: 10.1016/j.jcat.2018.01.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Brügner O, Reichenbach T, Sommer M, Walter M. Substituent Correlations Characterized by Hammett Constants in the Spiropyran–Merocyanine Transition. J Phys Chem A 2017; 121:2683-2687. [DOI: 10.1021/acs.jpca.7b01248] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oliver Brügner
- Freiburger Institut für Interaktive Materialien und Bioinspirierte Technologien, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Thomas Reichenbach
- Fraunhofer Institut für Werkstoffmechanik (IWM), Wöhlerstraße 11, 79108 Freiburg, Germany
- Freiburger Materialforschungszentrum, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
| | - Michael Sommer
- Makromolekulare
Chemie, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
| | - Michael Walter
- Freiburger Institut für Interaktive Materialien und Bioinspirierte Technologien, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Fraunhofer Institut für Werkstoffmechanik (IWM), Wöhlerstraße 11, 79108 Freiburg, Germany
| |
Collapse
|
15
|
Gutsev GL, Bozhenko KV, Gutsev LG, Utenyshev AN, Aldoshin SM. Transitions from Stable to Metastable States in the Cr2On and Cr2On– Series, n = 1–14. J Phys Chem A 2017; 121:845-854. [DOI: 10.1021/acs.jpca.6b11036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G. L. Gutsev
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, United States
| | - K. V. Bozhenko
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
- Department
of Physical and Colloid Chemistry, Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - L. G. Gutsev
- Department
of Chemistry and Biochemistry, Florida State University, Tallahassee 32306, United States
| | - A. N. Utenyshev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
| | - S. M. Aldoshin
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Moscow Region, Russia
| |
Collapse
|
16
|
Joy J, Jemmis ED. A halogen bond route to shorten the ultrashort sextuple bonds in Cr2 and Mo2. Chem Commun (Camb) 2017; 53:8168-8171. [DOI: 10.1039/c7cc04653g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Selective extraction of destabilizing σ-electrons from the sextuple bond of Cr2 and Mo2via σ-hole on a halogen bond donor shortens and strengthens the ultra-short metal–metal bond.
Collapse
Affiliation(s)
- Jyothish Joy
- School of Chemistry
- Indian Institute of Science Education and Research-Thiruvananthapuram
- Kerala
- India
| | | |
Collapse
|