1
|
Lynch ML, Snell ME, Potter SA, Snell EH, Bowman SEJ. 20 years of crystal hits: progress and promise in ultrahigh-throughput crystallization screening. Acta Crystallogr D Struct Biol 2023; 79:198-205. [PMID: 36876429 PMCID: PMC9986797 DOI: 10.1107/s2059798323001274] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/11/2023] [Indexed: 03/01/2023] Open
Abstract
Diffraction-based structural methods contribute a large fraction of the biomolecular structural models available, providing a critical understanding of macromolecular architecture. These methods require crystallization of the target molecule, which remains a primary bottleneck in crystal-based structure determination. The National High-Throughput Crystallization Center at Hauptman-Woodward Medical Research Institute has focused on overcoming obstacles to crystallization through a combination of robotics-enabled high-throughput screening and advanced imaging to increase the success of finding crystallization conditions. This paper will describe the lessons learned from over 20 years of operation of our high-throughput crystallization services. The current experimental pipelines, instrumentation, imaging capabilities and software for image viewing and crystal scoring are detailed. New developments in the field and opportunities for further improvements in biomolecular crystallization are reflected on.
Collapse
Affiliation(s)
- Miranda L Lynch
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - M Elizabeth Snell
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Stephen A Potter
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Edward H Snell
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Sarah E J Bowman
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
2
|
Ming H, Zhu MF, Li L, Liu QB, Yu WH, Wu ZQ, Liu YM. A review of solvent freeze-out technology for protein crystallization. CrystEngComm 2021. [DOI: 10.1039/d1ce00005e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, we summarize important advances in solvent freeze-out (SFO) technology for protein crystallization, including the background of SFO, its fundamental principle, and some crucial conditions and factors for optimizing SFO technology.
Collapse
Affiliation(s)
- Hui Ming
- School of Bioengineering
- Sichuan University of Science and Engineering
- Zigong 643000
- PR China
| | - Ming-Fu Zhu
- School of Physics
- Zhengzhou University
- Zhengzhou
- PR China
- Henan Chuitian Technology Co. Ltd
| | - Lu Li
- School of Bioengineering
- Sichuan University of Science and Engineering
- Zigong 643000
- PR China
| | - Qing-Bin Liu
- School of Bioengineering
- Sichuan University of Science and Engineering
- Zigong 643000
- PR China
| | - Wen-Hua Yu
- Sichuan Food Fermentation Industry Research and Design Institute
- Chengdu 611130
- PR China
| | - Zi-Qing Wu
- School of Medical Engineering
- Xinxiang Medical University
- Xinxiang 453003
- PR China
| | - Yong-Ming Liu
- School of Bioengineering
- Sichuan University of Science and Engineering
- Zigong 643000
- PR China
| |
Collapse
|
3
|
Beale JH, Bolton R, Marshall SA, Beale EV, Carr SB, Ebrahim A, Moreno-Chicano T, Hough MA, Worrall JAR, Tews I, Owen RL. Successful sample preparation for serial crystallography experiments. J Appl Crystallogr 2019; 52:1385-1396. [PMID: 31798361 PMCID: PMC6878878 DOI: 10.1107/s1600576719013517] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/02/2019] [Indexed: 11/10/2022] Open
Abstract
Serial crystallography, at both synchrotron and X-ray free-electron laser light sources, is becoming increasingly popular. However, the tools in the majority of crystallization laboratories are focused on producing large single crystals by vapour diffusion that fit the cryo-cooled paradigm of modern synchrotron crystallography. This paper presents several case studies and some ideas and strategies on how to perform the conversion from a single crystal grown by vapour diffusion to the many thousands of micro-crystals required for modern serial crystallography grown by batch crystallization. These case studies aim to show (i) how vapour diffusion conditions can be converted into batch by optimizing the length of time crystals take to appear; (ii) how an understanding of the crystallization phase diagram can act as a guide when designing batch crystallization protocols; and (iii) an accessible methodology when attempting to scale batch conditions to larger volumes. These methods are needed to minimize the sample preparation gap between standard rotation crystallography and dedicated serial laboratories, ultimately making serial crystallography more accessible to all crystallographers.
Collapse
Affiliation(s)
- John H. Beale
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, UK
| | - Rachel Bolton
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephen A. Marshall
- Manchester Institute of Biotechnology, The University of Manchester, Princess Street, Manchester M1 7DN, UK
| | - Emma V. Beale
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, UK
| | - Stephen B. Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, UK
| | - Ali Ebrahim
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, UK
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Tadeo Moreno-Chicano
- Institute de Biologie Structurale, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Michael A. Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | | | - Ivo Tews
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Robin L. Owen
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, UK
| |
Collapse
|
4
|
Bruno AE, Soares AS, Owen RL, Snell EH. The use of haptic interfaces and web services in crystallography: an application for a 'screen to beam' interface. J Appl Crystallogr 2016; 49:2082-2090. [PMID: 27980513 PMCID: PMC5139995 DOI: 10.1107/s160057671601431x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/08/2016] [Indexed: 11/10/2022] Open
Abstract
Haptic interfaces have become common in consumer electronics. They enable easy interaction and information entry without the use of a mouse or keyboard. The work presented here illustrates the application of a haptic interface to crystallization screening in order to provide a natural means for visualizing and selecting results. By linking this to a cloud-based database and web-based application program interface, the same application shifts the approach from 'point and click' to 'touch and share', where results can be selected, annotated and discussed collaboratively. In the crystallographic application, given a suitable crystallization plate, beamline and robotic end effector, the resulting information can be used to close the loop between screening and X-ray analysis, allowing a direct and efficient 'screen to beam' approach. The application is not limited to the area of crystallization screening; 'touch and share' can be used by any information-rich scientific analysis and geographically distributed collaboration.
Collapse
Affiliation(s)
- Andrew E. Bruno
- Center for Computational Research, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Alexei S. Soares
- Photon Sciences Directorate, Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973, USA
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 ODE, UK
| | - Edward H. Snell
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Department of Structural Biology, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
5
|
Barnes CO, Kovaleva EG, Fu X, Stevenson HP, Brewster AS, DePonte DP, Baxter EL, Cohen AE, Calero G. Assessment of microcrystal quality by transmission electron microscopy for efficient serial femtosecond crystallography. Arch Biochem Biophys 2016; 602:61-68. [PMID: 26944553 DOI: 10.1016/j.abb.2016.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 12/13/2022]
Abstract
Serial femtosecond crystallography (SFX) employing high-intensity X-ray free-electron laser (XFEL) sources has enabled structural studies on microcrystalline protein samples at non-cryogenic temperatures. However, the identification and optimization of conditions that produce well diffracting microcrystals remains an experimental challenge. Here, we report parallel SFX and transmission electron microscopy (TEM) experiments using fragmented microcrystals of wild type (WT) homoprotocatechuate 2,3-dioxygenase (HPCD) and an active site variant (H200Q). Despite identical crystallization conditions and morphology, as well as similar crystal size and density, the indexing efficiency of the diffraction data collected using the H200Q variant sample was over 7-fold higher compared to the diffraction results obtained using the WT sample. TEM analysis revealed an abundance of protein aggregates, crystal conglomerates and a smaller population of highly ordered lattices in the WT sample as compared to the H200Q variant sample. While not reported herein, the 1.75 Å resolution structure of the H200Q variant was determined from ∼16 min of beam time, demonstrating the utility of TEM analysis in evaluating sample monodispersity and lattice quality, parameters critical to the efficiency of SFX experiments.
Collapse
Affiliation(s)
- Christopher O Barnes
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Elena G Kovaleva
- Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA
| | - Xiaofeng Fu
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Hilary P Stevenson
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Aaron S Brewster
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| |
Collapse
|
6
|
Luft JR, Wolfley JR, Franks EC, Lauricella AM, Gualtieri EJ, Snell EH, Xiao R, Everett JK, Montelione GT. The detection and subsequent volume optimization of biological nanocrystals. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2015; 2:041710. [PMID: 26798809 PMCID: PMC4711624 DOI: 10.1063/1.4921199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/05/2015] [Indexed: 06/05/2023]
Abstract
Identifying and then optimizing initial crystallization conditions is a prerequisite for macromolecular structure determination by crystallography. Improved technologies enable data collection on crystals that are difficult if not impossible to detect using visible imaging. The application of second-order nonlinear imaging of chiral crystals and ultraviolet two-photon excited fluorescence detection is shown to be applicable in a high-throughput manner to rapidly verify the presence of nanocrystals in crystallization screening conditions. It is noted that the nanocrystals are rarely seen without also producing microcrystals from other chemical conditions. A crystal volume optimization method is described and associated with a phase diagram for crystallization.
Collapse
Affiliation(s)
| | - Jennifer R Wolfley
- Hauptman-Woodward Medical Research Institute , 700 Ellicott Street, Buffalo, New York 14203, USA
| | - Eleanor Cook Franks
- Hauptman-Woodward Medical Research Institute , 700 Ellicott Street, Buffalo, New York 14203, USA
| | - Angela M Lauricella
- Hauptman-Woodward Medical Research Institute , 700 Ellicott Street, Buffalo, New York 14203, USA
| | - Ellen J Gualtieri
- Formulatrix, Inc. , 10 DeAngelo Drive, Bedford, Massachusetts 01730, USA
| | | | - Rong Xiao
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey , 679 Hoes Lane, Piscataway, New Jersey 08854-8021, USA
| | - John K Everett
- Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey , 679 Hoes Lane, Piscataway, New Jersey 08854-8021, USA
| | | |
Collapse
|