1
|
Li G, Shi Z, Huang L, Wang L. Multiconfigurational Surface Hopping: a Time-Dependent Variational Approach with Momentum-Jump Trajectories. J Chem Theory Comput 2024. [PMID: 39215702 DOI: 10.1021/acs.jctc.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The Ehrenfest mean field dynamics and trajectory surface hopping have been widely used in nonadiabatic dynamics simulations. Based on the time-dependent variational principle (TDVP), the multiconfigurational Ehrenfest (MCE) method has also been developed and can be regarded as a multiconfigurational extension of the traditional Ehrenfest dynamics. However, it is not straightforward to apply the TDVP to surface hopping trajectories because there exists momentum jump during surface hops. To solve this problem, we here propose a multiconfigurational surface hopping (MCSH) method, where continuous momenta are obtained by linear interpolation and the interpolated trajectories are used to construct the basis functions for TDVP in a postprocessing manner. As demonstrated in a series of representative spin-boson models, MCSH achieves high accuracy with only several hundred trajectory bases and can uniformly improve the performance of surface hopping. In principle, MCSH can be combined with all kinds of mixed quantum-classical trajectories and thus has the potential to properly describe general nonadiabatic dynamics.
Collapse
Affiliation(s)
- Guijie Li
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Lei Huang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Li G, Shi Z, Guo X, Wang L. What is Missing in the Mean Field Description of Spatial Distribution of Population? Important Role of Auxiliary Wave Packets in Trajectory Branching. J Phys Chem Lett 2023; 14:9855-9863. [PMID: 37890155 DOI: 10.1021/acs.jpclett.3c02690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
When the traditional Ehrenfest mean field approach is employed to simulate nonadiabatic dynamics, an effective wave packet (WP) on the average potential energy surface (PES) is utilized to describe the nuclear motion. In the fully quantum picture, however, the WP components on different adiabatic PESs gradually separate in space because they evolve under different velocities and forces. Due to trajectory branching of the WP components, proper decoherence needs to be taken into account, and the spatial distribution of population cannot be described by a single effective WP. Here, we propose an auxiliary branching corrected mean field (A-BCMF) method, where trajectories of auxiliary WPs on adiabatic PESs are introduced. As benchmarked in the three standard Tully models, A-BCMF not only gives correct channel populations but also captures an accurate time-dependent spatial distribution of population. Thereby, we reveal the important role of auxiliary WPs in solving intrinsic problems of the widely used mean field description of nonadiabatic dynamics.
Collapse
Affiliation(s)
- Guijie Li
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xin Guo
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Lu TF, Gumber S, Tokina MV, Tomko JA, Hopkins PE, Prezhdo OV. Electron-phonon relaxation at the Au/WSe 2 interface is significantly accelerated by a Ti adhesion layer: time-domain ab initio analysis. NANOSCALE 2022; 14:10514-10523. [PMID: 35833340 DOI: 10.1039/d2nr00728b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thermal transport at nanoscale metal-semiconductor interfaces via electron-phonon coupling is crucial for applications of modern microelectronic, electro-optic and thermoelectric devices. To enhance the device performance, the heat flow can be regulated by modifying the interfacial atomic interactions. We use ab initio time-dependent density functional theory combined with non-adiabatic molecular dynamics to study how the hot electron and hole relaxation rates change on incorporating a thin Ti adhesion layer at the Au/WSe2 interface. The excited charge carrier relaxation is much faster in Au/Ti/WSe2 due to the enhanced electron-phonon coupling, rationalized by the following reasons: (1) Ti atoms are lighter than Au, W and Se atoms and move faster. (2) Ti has a significant contribution to the electronic properties in the relevant energy range. (3) Ti interacts strongly with WSe2 and promotes its bond-scissoring which causes Fermi-level pinning, making WSe2 contribute to electronic properties around the Fermi level. The changes in the relaxation rates are more pronounced for excited electrons compared to holes because both relative and absolute Ti contributions to the electronic properties are larger above than below the Fermi level. The results provide guidance for improving the design of novel and robust materials by optimizing the heat dissipation at metal-semiconductor interfaces.
Collapse
Affiliation(s)
- Teng-Fei Lu
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning Province, China
| | - Shriya Gumber
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | - Marina V Tokina
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | - John A Tomko
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Patrick E Hopkins
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904, USA
- Department of Physics, University of Virginia, Charlottesville, VA 22904, USA
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
4
|
Xie H, Xu X, Wang L, Zhuang W. Surface hopping dynamics in periodic solid-state materials with a linear vibronic coupling model. J Chem Phys 2022; 156:154116. [PMID: 35459287 DOI: 10.1063/5.0085759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report a surface hopping approach in which the implemented linear vibronic coupling Hamiltonian is constructed and the electronic wavefunction is propagated in the reciprocal space. The parameters of the linear vibronic coupling model, including onsite energies, phonon frequencies, and electron-phonon couplings, are calculated with density-functional theory and density-functional perturbation theory and interpolated in fine sampling points of the Brillouin zone with maximally localized Wannier functions. Using this approach, we studied the relaxation dynamics of the photo-excited hot carrier in a one-dimensional periodic carbon chain. The results show that the completeness of the number of Hilbert space k points and the number of phonon q points plays an important role in the hot carrier relaxation processes. By calculating the relaxation times of hot carriers under different reciprocal space sampling and extrapolating with the stretched-compressed exponential function, the relaxation times of hot electrons and holes in the quasi-continuous energy band are obtained. By considering the feedback effect in the hopping processes and analyzing the time-dependent phonon energy in different normal modes, we found that the long-wave longitudinal optical phonons play a major role in the relaxation dynamics of hot electrons and holes. We, therefore, provided herein an efficient and accurate approach for modeling the photophysical processes in periodic solid-state material systems.
Collapse
Affiliation(s)
- Hua Xie
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoliang Xu
- Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
5
|
Shao C, Xu J, Wang L. Branching and phase corrected surface hopping: A benchmark of nonadiabatic dynamics in multilevel systems. J Chem Phys 2021; 154:234109. [PMID: 34241240 DOI: 10.1063/5.0056224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Since the seminal work of Tully [J. Chem. Phys. 93, 1061 (1990)], two-level scattering models have been extensively adopted as the standard benchmark systems to assess the performance of different trajectory surface hopping methods for nonadiabatic dynamics simulations. Here, we extend the branching and phase corrections to multilevel systems and combine them with both the traditional fewest switches surface hopping (FSSH) and its variant global flux surface hopping (GFSH) algorithms. To get a comprehensive evaluation of the proposed methods, we construct a series of more challenging and diverse three-level and four-level scattering models and use exact quantum solutions as references. Encouragingly, both FSSH and GFSH with the branching and phase corrections produce excellent and nearly identical results in all investigated systems, indicating that the new surface hopping methods are robust to describe multilevel problems and the reliability is insensitive to the definition of self-consistent hopping probabilities in the adiabatic representation. Furthermore, the branching correction is found to be especially important when dealing with strongly repulsive potential energy surfaces, which are common in realistic systems, thus promising for general applications.
Collapse
Affiliation(s)
- Cancan Shao
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jiabo Xu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Freixas VM, White AJ, Nelson T, Song H, Makhov DV, Shalashilin D, Fernandez-Alberti S, Tretiak S. Nonadiabatic Excited-State Molecular Dynamics Methodologies: Comparison and Convergence. J Phys Chem Lett 2021; 12:2970-2982. [PMID: 33730495 DOI: 10.1021/acs.jpclett.1c00266] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Direct atomistic simulation of nonadiabatic molecular dynamics is a challenging goal that allows important insights into fundamental physical phenomena. A variety of frameworks, ranging from fully quantum treatment of nuclei to semiclassical and mixed quantum-classical approaches, were developed. These algorithms are then coupled to specific electronic structure techniques. Such diversity and lack of standardized implementation make it difficult to compare the performance of different methodologies when treating realistic systems. Here, we compare three popular methods for large chromophores: Ehrenfest, surface hopping, and multiconfigurational Ehrenfest with ab initio multiple cloning (MCE-AIMC). These approaches are implemented in the NEXMD software, which features a common computational chemistry model. The resulting comparisons reveal the method performance for population relaxation and coherent vibronic dynamics. Finally, we study the numerical convergence of MCE-AIMC algorithms by considering the number of trajectories, cloning thresholds, and Gaussian wavepacket width. Our results provide helpful reference data for selecting an optimal methodology for simulating excited-state molecular dynamics.
Collapse
Affiliation(s)
- Victor M Freixas
- Universidad Nacional de Quilmes, Roque Saénz Peña 352, B1876BXD Bernal, Argentina
| | - Alexander J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tammie Nelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Huajing Song
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dmitry V Makhov
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
- School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K
| | | | | | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
7
|
Brown SE, Shakib FA. Recent progress in approximate quantum dynamics methods for the study of proton-coupled electron transfer reactions. Phys Chem Chem Phys 2021; 23:2535-2556. [PMID: 33367437 DOI: 10.1039/d0cp05166g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Proton-coupled electron transfer (PCET) reactions are ubiquitous natural processes at the heart of energy conversion reactions in photosynthesis and respiration, DNA repair, and diverse enzymatic reactions. Theoretical formulation and computational method developments have eyed modeling of thermal and photoinduced PCET for the last three decades. The accumulation of these studies, collected in dozens of reviews, accounts, and perspectives, has firmly established the influence of quantum effects, including non-adiabatic electronic transitions, vibrational relaxation, zero-point energy, and proton tunneling, on the rate and mechanism of PCET reactions. Here, we focus on some recently-developed methods, spanning the last eight years, that can quantitatively capture these effects in the PCET context and provide efficient means for their qualitative description in complex systems. The theoretical background of each method and their accuracy with respect to exact results are discussed and the results of relevant PCET simulations based on each method are presented.
Collapse
Affiliation(s)
- Sandra E Brown
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Farnaz A Shakib
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
8
|
Abstract
When nonadiabatic dynamics are described on the basis of trajectories, severe trajectory branching occurs when the nuclear wave packets on some potential energy surfaces are reflected while those on the remaining surfaces are not. As a result, the traditional Ehrenfest mean field (EMF) approximation breaks down. In this study, two versions of the branching corrected mean field (BCMF) method are proposed. Namely, when trajectory branching is identified, BCMF stochastically selects either the reflected or the nonreflected group to build the new mean field trajectory or splits the mean field trajectory into two new trajectories with the corresponding weights. As benchmarked in six standard model systems and an extensive model base with two hundred diverse scattering models, BCMF significantly improves the accuracy while retaining the high efficiency of the traditional EMF. In fact, BCMF closely reproduces the exact quantum dynamics in all investigated systems, thus highlighting the essential role of branching correction in nonadiabatic dynamics simulations of general systems.
Collapse
Affiliation(s)
- Jiabo Xu
- Center for Chemistry of Novel & High-Performance Materials, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Linjun Wang
- Center for Chemistry of Novel & High-Performance Materials, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Nematiaram T, Troisi A. Modeling charge transport in high-mobility molecular semiconductors: Balancing electronic structure and quantum dynamics methods with the help of experiments. J Chem Phys 2020; 152:190902. [DOI: 10.1063/5.0008357] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Tahereh Nematiaram
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Alessandro Troisi
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
10
|
Wang YS, Nijjar P, Zhou X, Bondar DI, Prezhdo OV. Combining Lindblad Master Equation and Surface Hopping to Evolve Distributions of Quantum Particles. J Phys Chem B 2020; 124:4326-4337. [DOI: 10.1021/acs.jpcb.0c03030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yi-Siang Wang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Parmeet Nijjar
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Xin Zhou
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, P. R. China
| | - Denys I. Bondar
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
| | - Oleg V. Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
11
|
Nelson TR, White AJ, Bjorgaard JA, Sifain AE, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg AE, Tretiak S. Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chem Rev 2020; 120:2215-2287. [PMID: 32040312 DOI: 10.1021/acs.chemrev.9b00447] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Optically active molecular materials, such as organic conjugated polymers and biological systems, are characterized by strong coupling between electronic and vibrational degrees of freedom. Typically, simulations must go beyond the Born-Oppenheimer approximation to account for non-adiabatic coupling between excited states. Indeed, non-adiabatic dynamics is commonly associated with exciton dynamics and photophysics involving charge and energy transfer, as well as exciton dissociation and charge recombination. Understanding the photoinduced dynamics in such materials is vital to providing an accurate description of exciton formation, evolution, and decay. This interdisciplinary field has matured significantly over the past decades. Formulation of new theoretical frameworks, development of more efficient and accurate computational algorithms, and evolution of high-performance computer hardware has extended these simulations to very large molecular systems with hundreds of atoms, including numerous studies of organic semiconductors and biomolecules. In this Review, we will describe recent theoretical advances including treatment of electronic decoherence in surface-hopping methods, the role of solvent effects, trivial unavoided crossings, analysis of data based on transition densities, and efficient computational implementations of these numerical methods. We also emphasize newly developed semiclassical approaches, based on the Gaussian approximation, which retain phase and width information to account for significant decoherence and interference effects while maintaining the high efficiency of surface-hopping approaches. The above developments have been employed to successfully describe photophysics in a variety of molecular materials.
Collapse
Affiliation(s)
- Tammie R Nelson
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Alexander J White
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Josiah A Bjorgaard
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Andrew E Sifain
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States.,U.S. Army Research Laboratory , Aberdeen Proving Ground , Maryland 21005 , United States
| | - Yu Zhang
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Benjamin Nebgen
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | | | - Dmitry Mozyrsky
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Adrian E Roitberg
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Sergei Tretiak
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|
12
|
Wang L, Qiu J, Bai X, Xu J. Surface hopping methods for nonadiabatic dynamics in extended systems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1435] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Linjun Wang
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Jing Qiu
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Xin Bai
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Jiabo Xu
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| |
Collapse
|
13
|
Sifain AE, Wang L, Tretiak S, Prezhdo OV. Numerical tests of coherence-corrected surface hopping methods using a donor-bridge-acceptor model system. J Chem Phys 2019; 150:194104. [DOI: 10.1063/1.5092999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrew E. Sifain
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485, USA
- Theoretical Division, Center for Nonlinear Studies and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Angeles, New Mexico 87545, USA
| | - Linjun Wang
- Center for Chemistry of Novel and High-Performance Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Angeles, New Mexico 87545, USA
- Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Oleg V. Prezhdo
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485, USA
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, USA
| |
Collapse
|
14
|
Abstract
We present a subspace surface hopping strategy to deal with complex surface crossings in nonadiabatic dynamics. By focusing on only important adiabatic states, we make subspace crossing correction (SCC) in the framework of the standard fewest switches surface hopping (FSSH) and the global flux surface hopping (GFSH). The resulting SCC-FSSH and SCC-GFSH approaches show much better performance than the counterparts using all adiabatic states for surface hopping. As demonstrated in a series of Holstein models with up to over 1000 molecular sites, both SCC-FSSH and SCC-GFSH show excellent size independence with a large time step size of 1 fs. Especially, SCC-GFSH does not refer to nonadiabatic couplings at all and gives a more proper description of superexchange, and thus, it is promising for realistic applications with complex potential energy surfaces.
Collapse
Affiliation(s)
- Jing Qiu
- Center for Chemistry of Novel & High-Performance Materials , and Department of Chemistry , Zhejiang University , Hangzhou 310027 , China
| | - Xin Bai
- Center for Chemistry of Novel & High-Performance Materials , and Department of Chemistry , Zhejiang University , Hangzhou 310027 , China
| | - Linjun Wang
- Center for Chemistry of Novel & High-Performance Materials , and Department of Chemistry , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
15
|
Dou W, Subotnik JE. A Generalized Surface Hopping Algorithm To Model Nonadiabatic Dynamics near Metal Surfaces: The Case of Multiple Electronic Orbitals. J Chem Theory Comput 2017; 13:2430-2439. [DOI: 10.1021/acs.jctc.7b00094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenjie Dou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Nebgen B, Prezhdo OV. Fragment Molecular Orbital Nonadiabatic Molecular Dynamics for Condensed Phase Systems. J Phys Chem A 2016; 120:7205-12. [DOI: 10.1021/acs.jpca.6b05607] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ben Nebgen
- Department
of Chemistry, University of Southern California, Los Angeles, California 90037, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90037, United States
| |
Collapse
|
17
|
Sifain AE, Wang L, Prezhdo OV. Communication: Proper treatment of classically forbidden electronic transitions significantly improves detailed balance in surface hopping. J Chem Phys 2016; 144:211102. [DOI: 10.1063/1.4953444] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Andrew E. Sifain
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485, USA
| | - Linjun Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Oleg V. Prezhdo
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485, USA
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, USA
| |
Collapse
|
18
|
Abstract
Developed 25 years ago, Tully's fewest switches surface hopping (FSSH) has proven to be the most popular approach for simulating quantum-classical dynamics in a broad variety of systems, ranging from the gas phase, to the liquid and solid phases, to biological and nanoscale materials. FSSH is widely adopted as the fundamental platform to introduce modifications as needed. Significant progress has been made recently to enhance the accuracy and efficiency of the surface hopping technique. Various limitations of the standard FSSH-associated with quantum nuclear effects, interference and decoherence, trivial or "unavoided" crossings, superexchange, and representation dependence-have been lifted. These advances are needed to allow one to treat many important phenomena in chemistry, physics, materials, and related disciplines. Examples include charge transport in extended systems such as organic solids, singlet fission in molecular aggregates, Auger-type exciton multiplication, recombination and relaxation in quantum dots and other nanoscale materials, Auger-assisted charge transfer, nonradiative luminescence quenching, and electron-hole recombination. This Perspective summarizes recent advances in the surface hopping formulation of nonadiabatic dynamics and provides an outlook on the future of surface hopping.
Collapse
Affiliation(s)
- Linjun Wang
- Department of Chemistry, Zhejiang University , Hangzhou 310027, China
| | - Alexey Akimov
- Department of Chemistry, State University of New York at Buffalo , Buffalo, New York 14260-3000, United States
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-1062, United States
| |
Collapse
|
19
|
White A, Tretiak S, Mozyrsky D. Coupled wave-packets for non-adiabatic molecular dynamics: a generalization of Gaussian wave-packet dynamics to multiple potential energy surfaces. Chem Sci 2016; 7:4905-4911. [PMID: 30155138 PMCID: PMC6018303 DOI: 10.1039/c6sc01319h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/21/2016] [Indexed: 12/24/2022] Open
Abstract
Coupled wave-packets for non-adiabatic dynamics is a new method for simulation of molecular dynamics on coupled potential energy surfaces, which efficiency and correctly accounts for decoherence and interferences effects.
Accurate simulation of the non-adiabatic dynamics of molecules in excited electronic states is key to understanding molecular photo-physical processes. Here we present a novel method, based on a semi-classical approximation, that is as efficient as the commonly used mean field Ehrenfest or ad hoc surface hopping methods and properly accounts for interference and decoherence effects. This novel method is an extension of Heller's thawed Gaussian wave-packet dynamics that includes coupling between potential energy surfaces. By studying several standard test problems we demonstrate that the accuracy of the method can be systematically improved while maintaining high efficiency. The method is suitable for investigating the role of quantum coherence in the non-adiabatic dynamics of many-atom molecules.
Collapse
Affiliation(s)
- Alexander White
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , NM , USA . ; ; .,Center for Nonlinear Studies , USA
| | - Sergei Tretiak
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , NM , USA . ; ; .,Center for Nonlinear Studies , USA.,Center for Integrated Nanotechnologies , USA
| | - Dmitry Mozyrsky
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , NM , USA . ; ;
| |
Collapse
|
20
|
Restoring electronic coherence/decoherence for a trajectory-based nonadiabatic molecular dynamics. Sci Rep 2016; 6:24198. [PMID: 27063337 PMCID: PMC4827081 DOI: 10.1038/srep24198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/22/2016] [Indexed: 11/23/2022] Open
Abstract
By utilizing the time-independent semiclassical phase integral, we obtained modified coupled time-dependent Schrödinger equations that restore coherences and induce decoherences within original simple trajectory-based nonadiabatic molecular dynamic algorithms. Nonadiabatic transition probabilities simulated from both Tully’s fewest switches and semiclassical Ehrenfest algorithms follow exact quantum electronic oscillations and amplitudes for three out of the four well-known model systems. Within the present theory, nonadiabatic transitions estimated from statistical ensemble of trajectories accurately follow those of the modified electronic wave functions. The present theory can be immediately applied to the molecular dynamic simulations of photochemical and photophysical processes involving electronic excited states.
Collapse
|
21
|
Martinez F, Hanna G. Mixed Quantum-Classical Simulations of Transient Absorption Pump–Probe Signals for a Photo-Induced Electron Transfer Reaction Coupled to an Inner-Sphere Vibrational Mode. J Phys Chem A 2016; 120:3196-205. [DOI: 10.1021/acs.jpca.5b11727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Franz Martinez
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Gabriel Hanna
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
22
|
Shakib FA, Hanna G. New insights into the nonadiabatic state population dynamics of model proton-coupled electron transfer reactions from the mixed quantum-classical Liouville approach. J Chem Phys 2016; 144:024110. [DOI: 10.1063/1.4939586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Farnaz A. Shakib
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gabriel Hanna
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
23
|
Wang L, Sifain AE, Prezhdo OV. Communication: Global flux surface hopping in Liouville space. J Chem Phys 2015; 143:191102. [DOI: 10.1063/1.4935971] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Linjun Wang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, USA
| | - Andrew E. Sifain
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485, USA
| | - Oleg V. Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, USA
| |
Collapse
|