1
|
Hu S, Wang Y, Wang Y, Chen X, Tong R. Dielectrophoretic separation and purification: From colloid and biological particles to droplets. J Chromatogr A 2024; 1731:465155. [PMID: 39032216 DOI: 10.1016/j.chroma.2024.465155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
It is indispensable to realize the high level of purification and separation, so that objective particles, such as malignant cells, harmful bacteria, and special proteins or biological molecules, could satisfy the high precise measurement in the pharmaceutical analysis, clinical diagnosis, targeted therapy, and food defense. In addition, this could reveal the intrinsic nature and evolution mechanisms of individual biological variations. Consequently, many techniques related to optical tweezers, microfluidics, acoustophoresis, and electrokinetics can be broadly used to achieve micro- and nano-scale particle separations. Dielectrophoresis (DEP) has been used for various manipulation, concentration, transport, and separation processes of biological particles owing to its early development, mature theory, low cost, and high throughput. Although numerous reviews have discussed the biological applications of DEP techniques, comprehensive descriptions of micro- and nano-scale particle separations feature less frequently in the literature. Therefore, this review summarizes the current state of particle separation attention to relevant technological developments and innovation, including theoretical simulation, microchannel structure, electrode material, pattern and its layout. Moreover, a brief overview of separation applications using DEP in combination with other technologies is also provided. Finally, conclusions, future guidelines, and suggestions for potential promotion are highlighted.
Collapse
Affiliation(s)
- Sheng Hu
- College of Information Science and Engineering, Northeastern University, Shenyang, China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, China.
| | - Yangcheng Wang
- College of Information Science and Engineering, Northeastern University, Shenyang, China
| | - Yanzhe Wang
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, China
| | - Xiaoming Chen
- College of Information Science and Engineering, Northeastern University, Shenyang, China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, China
| | - Ruijie Tong
- College of Information Science and Engineering, Northeastern University, Shenyang, China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, China
| |
Collapse
|
2
|
Wells TN, Schmidt H, Hawkins AR. Constrained Volume Micro- and Nanoparticle Collection Methods in Microfluidic Systems. MICROMACHINES 2024; 15:699. [PMID: 38930668 PMCID: PMC11206162 DOI: 10.3390/mi15060699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Particle trapping and enrichment into confined volumes can be useful in particle processing and analysis. This review is an evaluation of the methods used to trap and enrich particles into constrained volumes in microfluidic and nanofluidic systems. These methods include physical, optical, electrical, magnetic, acoustic, and some hybrid techniques, all capable of locally enhancing nano- and microparticle concentrations on a microscale. Some key qualitative and quantitative comparison points are also explored, illustrating the specific applicability and challenges of each method. A few applications of these types of particle trapping are also discussed, including enhancing biological and chemical sensors, particle washing techniques, and fluid medium exchange systems.
Collapse
Affiliation(s)
- Tanner N. Wells
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Holger Schmidt
- School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Aaron R. Hawkins
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
3
|
Hakim KS, Lapizco-Encinas BH. Analysis of microorganisms with nonlinear electrokinetic microsystems. Electrophoresis 2021; 42:588-604. [PMID: 33151541 DOI: 10.1002/elps.202000233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/04/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Nonlinear electrokinetics (EK), specifically electrophoresis of the second kind, dielectrophoresis (DEP) and electrorotation (EROT), have gained significant interest recently for their flexibility and labeless discriminant manner of operation. The current applications of these technologies are a clear advancement from what they were when first discovered, but also still show strong signs of future growth. The present review article presents a discussion of the current uses of microscale nonlinear EK technologies as analytical, sensing, and purification tools for microorganisms. The discussion is focused on some of the latest discoveries with various nonlinear EK microfluidic techniques, such as DEP particle trapping and EROT for particle assessments, for the analysis of microorganisms ranging from viruses to parasites. Along the way, special focus was given to key research articles from within the past two years to provide the most up-to-date knowledge on the current state-of-the-art within the field of microscale EK, and from there, an outlook on where the future of the field is headed is also included.
Collapse
Affiliation(s)
- Kel S Hakim
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
4
|
Giduthuri AT, Theodossiou SK, Schiele NR, Srivastava SK. Dielectrophoresis as a tool for electrophysiological characterization of stem cells. BIOPHYSICS REVIEWS 2020; 1:011304. [PMID: 38505626 PMCID: PMC10903368 DOI: 10.1063/5.0025056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/20/2020] [Indexed: 03/21/2024]
Abstract
Dielectrophoresis (DEP), a nonlinear electrokinetic technique caused by Maxwell-Wagner interfacial polarization of neutral particles in an electrolyte solution, is a powerful cell manipulation method used widely for various applications such as enrichment, trapping, and sorting of heterogeneous cell populations. While conventional cell characterization and sorting methods require tagging or labeling of cells, DEP has the potential to manipulate cells in a label-free way. Due to its unique ability to characterize and sort cells without the need of labeling, there is renewed interest in using DEP for stem cell research and regenerative medicine. Stem cells have the potential to differentiate into various lineages, but achieving homogeneous cell phenotypes from an initially heterogeneous cell population is a challenge. Using DEP to efficiently and affordably identify, sort, and enrich either undifferentiated or differentiated stem cell populations in a label-free way would advance their potential uses for applications in tissue engineering and regenerative medicine. This review summarizes recent, significant research findings regarding the electrophysiological characterization of stem cells, with a focus on cellular dielectric properties, i.e., permittivity and conductivity, and on studies that have obtained these measurements using techniques that preserve cell viability, such as crossover frequency. Potential applications for DEP in regenerative medicine are also discussed. Overall, DEP is a promising technique and, when used to characterize, sort, and enrich stem cells, will advance stem cell-based regenerative therapies.
Collapse
Affiliation(s)
- Anthony T. Giduthuri
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| | - Sophia K. Theodossiou
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| | - Nathan R. Schiele
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| | - Soumya K. Srivastava
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| |
Collapse
|
5
|
Turcan I, Olariu MA. Dielectrophoretic Manipulation of Cancer Cells and Their Electrical Characterization. ACS COMBINATORIAL SCIENCE 2020; 22:554-578. [PMID: 32786320 DOI: 10.1021/acscombsci.0c00109] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electromanipulation and electrical characterization of cancerous cells is becoming a topic of high interest as the results reported to date demonstrate a good differentiation among various types of cells from an electrical viewpoint. Dielectrophoresis and broadband dielectric spectroscopy are complementary tools for sorting, identification, and characterization of malignant cells and were successfully used on both primary tumor cells and culture cells as well. However, the literature is presenting a plethora of studies with respect to electrical evaluation of these type of cells, and this review is reporting a collection of information regarding the functioning principles of different types of dielectrophoresis setups, theory of cancer cell polarization, and electrical investigation (including here the polarization mechanisms). The interpretation of electrical characteristics against frequency is discussed with respect to interfacial/Maxwell-Wagner polarization and the parasitic influence of electrode polarization. Moreover, the electrical equivalent circuits specific to biological cells polarizations are discussed for a good understanding of the cells' morphology influence. The review also focuses on advantages of specific low-conductivity buffers employed currently for improving the efficiency of dielectrophoresis and provides a set of synthesized data from the literature highlighting clear differentiation between the crossover frequencies of different cancerous cells.
Collapse
Affiliation(s)
- Ina Turcan
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, Profesor Dimitrie Mangeron Boulevard, No. 21−23, Iasi 700050, Romania
| | - Marius Andrei Olariu
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, Profesor Dimitrie Mangeron Boulevard, No. 21−23, Iasi 700050, Romania
| |
Collapse
|
6
|
Kim D, Sonker M, Ros A. Dielectrophoresis: From Molecular to Micrometer-Scale Analytes. Anal Chem 2018; 91:277-295. [DOI: 10.1021/acs.analchem.8b05454] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daihyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
7
|
Lejard-Malki R, Follet J, Vlandas A, Senez V. Selective electrohydrodynamic concentration of waterborne parasites on a chip. LAB ON A CHIP 2018; 18:3310-3322. [PMID: 30283951 DOI: 10.1039/c8lc00840j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Concentrating diluted samples is a key step to improve detection capabilities. The wise use of scaling laws shows the advantages of working with sub-microliter-sized samples. Rapid progress in MEMS technologies has driven the design of integrated platforms performing many biochemical operations. Here we report a new concentrator device based on electro-hydrodynamic forces which can be easily integrated into electrowetting-on-dielectric (EWOD) platforms. This approach is label-free and applicable to a wide range of micro-objects. The detection and analysis of two common waterborne parasites, Cryptosporidium and Giardia, is a perfect test case due to their global health relevance. By fully controlling the interplay of the various forces acting on the micron-sized Cryptosporidium parvum and Cryptosporidium muris oocysts, we show that it is possible to concentrate them on the side of a 10 μL initial drop and then extract them efficiently from a droplet of a few hundred nanoliters. We performed a finite element modeling of the forces acting on the parasites' oocysts to optimize the electrodes' shapes. We obtained state-of-the-art concentration factors of 12 ± 0.4 times and 2 to 4 times in the sub-region of the drop and the extracted droplet, respectively, with an efficiency of 70 ± 6%. Furthermore, this device had the ability to selectively concentrate parasites of different species out of a mix. We demonstrated this by segregating C. parvum oocysts from either Giardia lamblia cysts or its related species, C. muris oocysts.
Collapse
Affiliation(s)
- Romuald Lejard-Malki
- CNRS, ISEN, UMR 8520 - IEMN, Univ. Lille, Avenue Poincaré, C.S. 60069, 59652 Villeneuve d'Ascq cedex, Lille F-59000, France.
| | | | | | | |
Collapse
|
8
|
Tada S, Hayashi M, Eguchi M, Tsukamoto A. High-throughput separation of cells by dielectrophoresis enhanced with 3D gradient AC electric field. BIOMICROFLUIDICS 2017; 11:064110. [PMID: 29282422 PMCID: PMC5729034 DOI: 10.1063/1.5007003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/25/2017] [Indexed: 06/02/2023]
Abstract
We propose a novel, high-performance dielectrophoretic (DEP) cell-separation flow chamber with a parallel-plate channel geometry. The flow chamber, consisting of a planar electrode on the top and an interdigitated-pair electrode array at the bottom, was developed to facilitate the separation of cells by creating a nonuniform AC electric field throughout the volume of the flow chamber. The operation and performance of the device were evaluated using live and dead human epithermal breast (MCF10A) cells. The separation dynamics of the cell suspension in the flow chamber was also investigated by numerically simulating the trajectories of individual cells. A theoretical model to describe the dynamic cell behavior under the action of DEP, including dipole-dipole interparticle, viscous, and gravitational forces, was developed. The results demonstrated that the live cells traveling through the flow chamber congregated into sites where the electric field gradient was minimal, in the middle of the flow stream slightly above the centerlines of the grounded electrodes at the bottom. Meanwhile, the dead cells were trapped on the edges of the high-voltage electrodes at the bottom. Cells were thus successfully separated with a remarkably high separation ratio (∼98%) at the appropriately tuned field frequency and applied voltage. The numerically predicted behavior and spatial distribution of the cells during separation also showed good agreement with those observed experimentally.
Collapse
Affiliation(s)
- Shigeru Tada
- Department of Applied Physics, National Defense Academy, Kanagawa, Japan
| | - Masako Hayashi
- Department of Applied Physics, National Defense Academy, Kanagawa, Japan
| | | | - Akira Tsukamoto
- Department of Applied Physics, National Defense Academy, Kanagawa, Japan
| |
Collapse
|
9
|
Fernandez RE, Rohani A, Farmehini V, Swami NS. Review: Microbial analysis in dielectrophoretic microfluidic systems. Anal Chim Acta 2017; 966:11-33. [PMID: 28372723 PMCID: PMC5424535 DOI: 10.1016/j.aca.2017.02.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022]
Abstract
Infections caused by various known and emerging pathogenic microorganisms, including antibiotic-resistant strains, are a major threat to global health and well-being. This highlights the urgent need for detection systems for microbial identification, quantification and characterization towards assessing infections, prescribing therapies and understanding the dynamic cellular modifications. Current state-of-the-art microbial detection systems exhibit a trade-off between sensitivity and assay time, which could be alleviated by selective and label-free microbial capture onto the sensor surface from dilute samples. AC electrokinetic methods, such as dielectrophoresis, enable frequency-selective capture of viable microbial cells and spores due to polarization based on their distinguishing size, shape and sub-cellular compositional characteristics, for downstream coupling to various detection modalities. Following elucidation of the polarization mechanisms that distinguish bacterial cells from each other, as well as from mammalian cells, this review compares the microfluidic platforms for dielectrophoretic manipulation of microbials and their coupling to various detection modalities, including immuno-capture, impedance measurement, Raman spectroscopy and nucleic acid amplification methods, as well as for phenotypic assessment of microbial viability and antibiotic susceptibility. Based on the urgent need within point-of-care diagnostics towards reducing assay times and enhancing capture of the target organism, as well as the emerging interest in isolating intact microbials based on their phenotype and subcellular features, we envision widespread adoption of these label-free and selective electrokinetic techniques.
Collapse
Affiliation(s)
- Renny E Fernandez
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Ali Rohani
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Vahid Farmehini
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Nathan S Swami
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
10
|
Siebman C, Velev OD, Slaveykova VI. Alternating Current-Dielectrophoresis Collection and Chaining of Phytoplankton on Chip: Comparison of Individual Species and Artificial Communities. BIOSENSORS 2017; 7:E4. [PMID: 28067772 PMCID: PMC5371777 DOI: 10.3390/bios7010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 01/26/2023]
Abstract
The capability of alternating current (AC) dielectrophoresis (DEP) for on-chip capture and chaining of the three species representative of freshwater phytoplankton was evaluated. The effects of the AC field intensity, frequency and duration on the chaining efficiency and chain lengths of green alga Chlamydomonas reinhardtii, cyanobacterium Synechocystis sp. and diatom Cyclotella meneghiniana were characterized systematically. C. reinhardtii showed an increase of the chaining efficiency from 100 Hz to 500 kHz at all field intensities; C. meneghiniana presented a decrease of chaining efficiency from 100 Hz to 1 kHz followed by a significant increase from 1 kHz to 500 kHz, while Synechocystis sp. exhibited low chaining tendency at all frequencies and all field intensities. The experimentally-determined DEP response and cell alignment of each microorganism were in agreement with their effective polarizability. Mixtures of cells in equal proportion or 10-times excess of Synechocystis sp. showed important differences in terms of chaining efficiency and length of the chains compared with the results obtained when the cells were alone in suspension. While a constant degree of chaining was observed with the mixture of C. reinhardtii and C. meneghiniana, the presence of Synechocystis sp. in each mixture suppressed the formation of chains for the two other phytoplankton species. All of these results prove the potential of DEP to discriminate different phytoplankton species depending on their effective polarizability and to enable their manipulation, such as specific collection or separation in freshwater.
Collapse
Affiliation(s)
- Coralie Siebman
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Science, Faculty of Sciences, University of Geneva, 66 Boulevard Carl-Vogt, CH-1211 Genève 4, Switzerland.
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Science, Faculty of Sciences, University of Geneva, 66 Boulevard Carl-Vogt, CH-1211 Genève 4, Switzerland.
| |
Collapse
|
11
|
Tada S, Nakanishi A, Eguchi M, Ochi K, Baba M, Tsukamoto A. Enhancement of continuous-flow separation of viable/nonviable yeast cells using a nonuniform alternating current electric field with complex spatial distribution. BIOMICROFLUIDICS 2016; 10:034110. [PMID: 27279934 PMCID: PMC4874929 DOI: 10.1063/1.4950999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/09/2016] [Indexed: 05/09/2023]
Abstract
The variability in cell response to AC electric fields is selective enough to separate not only the cell types but also the activation states of similar cells. In this work, we use dielectrophoresis (DEP), which exploits the differences in the dielectric properties of cells, to separate nonviable and viable cells. A parallel-plate DEP device consisting of a bottom face with an array of micro-fabricated interdigitated electrodes and a top face with a plane electrode was proposed to facilitate the separation of cells by creating a nonuniform electric field throughout the flow channel. The operation and performance of the device were evaluated using live and dead yeast cells as model biological particles. Further, numerical simulations were conducted for the cell suspensions flowing in a channel with a nonuniform AC electric field, modeled on the basis of the equation of motion of particles, to characterize the separation efficiency by changing the frequency of applied AC voltage. Results demonstrated that dead cells traveling through the channel were focused onto a site around the minimum electric field gradient in the middle of the flow stream, while live cells were trapped on the bottom face. Cells were thus successfully separated under the appropriately tuned frequency of 1 MHz. Predictions showed good agreement with the observation. The proposed DEP device provides a new approach to, for instance, hematological analysis or the separation of different cancer cells for application in circulating tumor cell identification.
Collapse
Affiliation(s)
- Shigeru Tada
- Department of Applied Physics, National Defense Academy , Yokosuka, Kanagawa 239-8686, Japan
| | - Arisa Nakanishi
- Department of Applied Physics, National Defense Academy , Yokosuka, Kanagawa 239-8686, Japan
| | | | - Kengo Ochi
- Department of Applied Physics, National Defense Academy , Yokosuka, Kanagawa 239-8686, Japan
| | - Megumi Baba
- Department of Applied Physics, National Defense Academy , Yokosuka, Kanagawa 239-8686, Japan
| | - Akira Tsukamoto
- Department of Applied Physics, National Defense Academy , Yokosuka, Kanagawa 239-8686, Japan
| |
Collapse
|
12
|
Allahrabbi N, Chia YSM, Saifullah MSM, Lim KM, Yung LYL. A hybrid dielectrophoretic system for trapping of microorganisms from water. BIOMICROFLUIDICS 2015; 9:034110. [PMID: 26180567 PMCID: PMC4474952 DOI: 10.1063/1.4922276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/28/2015] [Indexed: 05/24/2023]
Abstract
Assessment of the microbial safety of water resources is among the most critical issues in global water safety. As the current detection methods have limitations such as high cost and long process time, new detection techniques have transpired among which microfluidics is the most attractive alternative. Here, we show a novel hybrid dielectrophoretic (DEP) system to separate and detect two common waterborne pathogens, Escherichia coli (E. coli), a bacterium, and Cryptosporidium parvum (C. parvum), a protozoan parasite, from water. The hybrid DEP system integrates a chemical surface coating with a microfluidic device containing inter-digitated microelectrodes to impart positive dielectrophoresis for enhanced trapping of the cells. Trimethoxy(3,3,3-trifluoropropyl) silane, (3-aminopropyl)triethoxysilane, and polydiallyl dimethyl ammonium chloride (p-DADMAC) were used as surface coatings. Static cell adhesion tests showed that among these coatings, the p-DADMAC-coated glass surface provided the most effective cell adhesion for both the pathogens. This was attributed to the positively charged p-DADMAC-coated surface interacting electrostatically with the negatively charged cells suspended in water leading to increased cell trapping efficiency. The trapping efficiency of E. coli and C. parvum increased from 29.0% and 61.3% in an uncoated DEP system to 51.9% and 82.2% in the hybrid DEP system, respectively. The hybrid system improved the cell trapping by encouraging the formation of cell pearl-chaining. The increment in trapping efficiency in the hybrid DEP system was achieved at an optimal frequency of 1 MHz and voltage of 2.5 Vpp for C. parvum and 2 Vpp for E. coli, the latter is lower than 2.5 Vpp and 7 Vpp, respectively, utilized for obtaining similar efficiency in an uncoated DEP system.
Collapse
Affiliation(s)
| | - Yi Shi Michelle Chia
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore
| | - Mohammad S M Saifullah
- Institute of Materials Research and Engineering , ASTAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Republic of Singapore
| | - Kian-Meng Lim
- Department of Mechanical Engineering, National University of Singapore , 9 Engineering Drive 1, Singapore 117576, Republic of Singapore
| | - Lin Yue Lanry Yung
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore
| |
Collapse
|