1
|
Cardozo TM, Galliez AP, Borges I, Plasser F, Aquino AJA, Barbatti M, Lischka H. Dynamics of benzene excimer formation from the parallel-displaced dimer. Phys Chem Chem Phys 2018; 21:13916-13924. [PMID: 30570626 DOI: 10.1039/c8cp06354k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Excimers play a key role in a variety of excited-state processes, such as exciton trapping, fluorescence quenching, and singlet-fission. The dynamics of benzene excimer formation in the first 2 ps after S1 excitation from the parallel-displaced geometry of the benzene dimer is reported here. It was simulated via nonadiabatic surface-hopping dynamics using the second-order algebraic diagrammatic construction (ADC(2)). After excitation, the benzene rings take ∼0.5-1.0 ps to approach each other in a parallel-stacked structure of the S1 minimum and stay in the excimer region for ∼0.1-0.4 ps before leaving due to excess vibrational energy. The S1-S2 gap widens considerably while the rings visit the excimer region in the potential energy surface. Our work provides detailed insight into correlations between nuclear and electronic structure in the excimer and shows that decreased ring distance goes along with enhanced charge transfer and that fast exciton transfer happens between the rings, leading to the equal probability of finding the exciton in each ring after around 1.0 ps.
Collapse
Affiliation(s)
- Thiago Messias Cardozo
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil.
| | - Andre Pessoa Galliez
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil.
| | - Itamar Borges
- Departamento de Química, Instituto Militar de Engenharia, Praça General Tibúrcio, 80, 22290-270 Rio de Janeiro, Brazil
| | - Felix Plasser
- Department of Chemistry, Loughborough University, LE11 3TU, UK
| | - Adelia J A Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P. R. China and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA and Institute of Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090 Vienna, Austria.
| | | | - Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P. R. China and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA and Institute of Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090 Vienna, Austria.
| |
Collapse
|
2
|
Wang D, Talipov MR, Ivanov MV, Mirzaei S, Lindeman SV, Cai S, Rathore R, Reid SA. Molecular Actuators in Action: Electron-Transfer-Induced Conformation Transformation in Cofacially Arrayed Polyfluorenes. J Phys Chem Lett 2018; 9:4233-4238. [PMID: 29985630 DOI: 10.1021/acs.jpclett.8b01918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is much current interest in the design of molecular actuators, which undergo reversible, controlled motion in response to an external stimulus (light, heat, oxidation, etc.). Here we describe the design and synthesis of a series of cofacially arrayed polyfluorenes (MeF nH m) with varied end-capping groups, which undergo redox-controlled electromechanical actuation. Such cofacially arrayed polyfluorenes are a model molecular scaffold to investigate fundamental processes of charge and energy transfer across a π-stacked assembly, and we show with the aid of NMR and optical spectroscopies, X-ray crystallography and DFT calculations that in the neutral state the conformation of MeF nH1 and MeF nH2 is open rather than cofacial, with a conformational dependence that is highly influenced by the local environment. Upon (electro)chemical oxidation, these systems undergo a reversible transformation into a closed fully π-stacked conformation, driven by charge-resonance stabilization of the cationic charge. These findings are expected to aid the design of novel wire-like cofacially arrayed systems capable of undergo redox-controlled actuation.
Collapse
Affiliation(s)
- Denan Wang
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53201 , United States
| | - Marat R Talipov
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53201 , United States
| | - Maxim V Ivanov
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53201 , United States
| | - Saber Mirzaei
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53201 , United States
| | - Sergey V Lindeman
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53201 , United States
| | - Sheng Cai
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53201 , United States
| | - Rajendra Rathore
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53201 , United States
| | - Scott A Reid
- Department of Chemistry , Marquette University , Milwaukee , Wisconsin 53201 , United States
| |
Collapse
|
3
|
Lischka H, Nachtigallová D, Aquino AJA, Szalay PG, Plasser F, Machado FBC, Barbatti M. Multireference Approaches for Excited States of Molecules. Chem Rev 2018; 118:7293-7361. [DOI: 10.1021/acs.chemrev.8b00244] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hans Lischka
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Adélia J. A. Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna, Austria
| | - Péter G. Szalay
- ELTE Eötvös Loránd University, Laboratory of Theoretical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Felix Plasser
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Department of Chemistry, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | | |
Collapse
|
4
|
Gao Y, Liu H, Zhang S, Gu Q, Shen Y, Ge Y, Yang B. Excimer formation and evolution of excited state properties in discrete dimeric stacking of an anthracene derivative: a computational investigation. Phys Chem Chem Phys 2018; 20:12129-12137. [PMID: 29682655 DOI: 10.1039/c8cp00834e] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, density functional theory (DFT) computations were performed to investigate the discrete dimer of a mono-substituted anthracene derivative (2-TA-AN), which exhibited highly efficient pure excimer fluorescence in its crystal form. As a more practical model, its geometry, potential energy curve and excited state property were systematically calculated to better understand the excimer formation process and photophysical properties. The compressed excimer geometry is responsible for the highly efficient excimer emission, arising from the enhanced rigidity that greatly suppresses its non-radiative vibrations. Potential energy curves along three directions reveal the non-uniqueness of excimer formation along the long axis of anthracene, which is in a good agreement with the experimental findings. Upon decreasing the displacement, the intermonomer charge-transfer (CT) component gradually increased towards an approximately equivalent hybridization with the locally-emissive (LE) state of the monomer during the formation of the excimer. The excimer emission wavelength versus intermonomer CT content shows a similar trend along the three directions, revealing a turning point related to the essential transition of the excited state properties from the LE of the monomer to the HLCT of the excimer. The present results will contribute to the better understanding of the structure-property relationships in excimer formation and photophysical properties.
Collapse
Affiliation(s)
- Yu Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
5
|
Reilly N, Ivanov M, Uhler B, Talipov M, Rathore R, Reid SA. First Experimental Evidence for the Diverse Requirements of Excimer vs Hole Stabilization in π-Stacked Assemblies. J Phys Chem Lett 2016; 7:3042-3045. [PMID: 27447947 DOI: 10.1021/acs.jpclett.6b01201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Exciton formation and charge separation and transport are key dynamical events in a variety of functional polymeric materials and biological systems, including DNA. Beyond the necessary cofacial approach of a pair of aromatic molecules at van der Waals contact, the extent of overlap and necessary geometrical reorganization for optimal stabilization of an excimer vs dimer cation radical remain unresolved. Here, we compare experimentally the dynamics of excimer formation (via emission) and charge stabilization (via threshold ionization) of a novel covalently linked, cofacially stacked fluorene dimer (F2) with the unlinked van der Waals dimer of fluorene, that is, (F)2. Although the measured ionization potentials are identical, the excimeric state is stabilized by up to ∼30 kJ/mol in covalently linked F2. Supported by theory, this work demonstrates for the first time experimentally that optimal stabilization of an excimer requires a perfect sandwich-like geometry with maximal overlap, whereas hole stabilization in π-stacked aggregates is less geometrically restrictive.
Collapse
Affiliation(s)
- Neil Reilly
- Department of Chemistry, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53233, United States
| | - Maxim Ivanov
- Department of Chemistry, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53233, United States
| | - Brandon Uhler
- Department of Chemistry, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53233, United States
| | - Marat Talipov
- Department of Chemistry, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53233, United States
| | - Rajendra Rathore
- Department of Chemistry, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53233, United States
| | - Scott A Reid
- Department of Chemistry, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53233, United States
| |
Collapse
|
6
|
Frey JA, Holzer C, Klopper W, Leutwyler S. Experimental and Theoretical Determination of Dissociation Energies of Dispersion-Dominated Aromatic Molecular Complexes. Chem Rev 2016; 116:5614-41. [DOI: 10.1021/acs.chemrev.5b00652] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jann A. Frey
- Departement
für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Christof Holzer
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, D-76131 Karlsruhe, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, D-76131 Karlsruhe, Germany
| | - Samuel Leutwyler
- Departement
für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
7
|
Tuna D, Lefrancois D, Wolański Ł, Gozem S, Schapiro I, Andruniów T, Dreuw A, Olivucci M. Assessment of Approximate Coupled-Cluster and Algebraic-Diagrammatic-Construction Methods for Ground- and Excited-State Reaction Paths and the Conical-Intersection Seam of a Retinal-Chromophore Model. J Chem Theory Comput 2015; 11:5758-81. [PMID: 26642989 DOI: 10.1021/acs.jctc.5b00022] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As a minimal model of the chromophore of rhodopsin proteins, the penta-2,4-dieniminium cation (PSB3) poses a challenging test system for the assessment of electronic-structure methods for the exploration of ground- and excited-state potential-energy surfaces, the topography of conical intersections, and the dimensionality (topology) of the branching space. Herein, we report on the performance of the approximate linear-response coupled-cluster method of second order (CC2) and the algebraic-diagrammatic-construction scheme of the polarization propagator of second and third orders (ADC(2) and ADC(3)). For the ADC(2) method, we considered both the strict and extended variants (ADC(2)-s and ADC(2)-x). For both CC2 and ADC methods, we also tested the spin-component-scaled (SCS) and spin-opposite-scaled (SOS) variants. We have explored several ground- and excited-state reaction paths, a circular path centered around the S1/S0 surface crossing, and a 2D scan of the potential-energy surfaces along the branching space. We find that the CC2 and ADC methods yield a different dimensionality of the intersection space. While the ADC methods yield a linear intersection topology, we find a conical intersection topology for the CC2 method. We present computational evidence showing that the linear-response CC2 method yields a surface crossing between the reference state and the first response state featuring characteristics that are expected for a true conical intersection. Finally, we test the performance of these methods for the approximate geometry optimization of the S1/S0 minimum-energy conical intersection and compare the geometries with available data from multireference methods. The present study provides new insight into the performance of linear-response CC2 and polarization-propagator ADC methods for molecular electronic spectroscopy and applications in computational photochemistry.
Collapse
Affiliation(s)
- Deniz Tuna
- Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr, Germany
| | - Daniel Lefrancois
- Interdisciplinary Center for Scientific Computing, University of Heidelberg , 69120 Heidelberg, Germany
| | - Łukasz Wolański
- Department of Chemistry, Wrocław University of Technology , 50370 Wrocław, Poland
| | - Samer Gozem
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Igor Schapiro
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504 , Strasbourg 67034, France
| | - Tadeusz Andruniów
- Department of Chemistry, Wrocław University of Technology , 50370 Wrocław, Poland
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, University of Heidelberg , 69120 Heidelberg, Germany
| | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43402, United States.,Dipartimento di Biotecnologie, Chimica e Farmacia, Universitá de Siena , 53100 Siena, Italy
| |
Collapse
|