1
|
Liu X, Tian S, Guo W, Li H, Pang B, Wu Y. Competing C and N as Reactive Centers for Microsolvated Ambident Nucleophiles CN -(H 2O) n=0-3: A Theoretical Study of E2/S N2 Reactions with CH 3CH 2X (X = Cl, Br, I). J Phys Chem A 2024; 128:4651-4662. [PMID: 38819200 DOI: 10.1021/acs.jpca.4c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
As an ambident nucleophile, CN- has both C and N atoms that can act as the reactive center to facilitate substitution reactions. We investigate in detail the potential energy profiles of CN-(H2O)0-3 with CH3CH2X (X = Cl, Br, I) to explore the influence of solvent molecules on competition between the different nucleophilic atoms C and N involving the SN2 and E2 pathways. The energy barrier sequence for the transition states follows C@inv-SN2 < N@inv-SN2 < C@anti-E2 < N@anti-E2. When two different atoms act as nucleophilic atoms, the SN2 reaction is always preferred over the E2 reaction, and this preference increases with microsolvation. For the ambident nucleophiles CN-(H2O)0-3, C as the reactive center always has stronger nucleophilicity and basicity than N acting as the reactive center. Regarding the leaving group, the height of the energy barrier is positively correlated with the acidity of the CH3CH2X substrate for the E2 pathway and with X-heterolysis for the SN2 pathway. Furthermore, we found that in the gas phase, the energy barrier for different leaving group systems decreases gradually in the order Cl > Br > I, while in the SMD solution, the energy barrier and product energy increase slightly in the system from X = Cl to Br; this change may be due to the significantly weakened transition-state interaction for the X = Br system. Our activation strain, quantitative molecular orbital, and charge analyses reveal the physical mechanisms underlying the various computed trends. In addition, we also demonstrate the two points recently proposed by Vermeeren, P. . Chem. Eur. J. 2020, 26, 15538-15548.
Collapse
Affiliation(s)
- Xu Liu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Shiqi Tian
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Wenyu Guo
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Hui Li
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Boxue Pang
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yang Wu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
2
|
Feng H, Li R, Wu Y, Liu X. Computational Insights into S N 2 and Proton Transfer Reactions of CH 3 O - with NH 2 Y and CH 3 Y. Chemphyschem 2024; 25:e202300525. [PMID: 37905393 DOI: 10.1002/cphc.202300525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Bimolecular nucleophilic substitution (SN 2) reactions have been extensively studied in both theory and experiment. While research on C-centered SN 2 reactions (SN 2@C) has been ongoing, SN 2 reactions at neutral nitrogen (SN 2@N) have received increased attention in recent years. To recommend methods for dynamics simulations, the comparison for the properties of the geometries, vibrational frequencies, and energies is done between MP2 and six DFT functional calculations and experimental data as well as the high-level CCSD(T) method for CH3 O- +NH2 Cl/CH3 Cl reactions. The relative energy diagrams at the M06 method for CH3 O- with CH3 Y/NH2 Y reactions (Y=F, Cl, Br, I) in the gas and solution phase are explored to investigate the effects of the leaving groups, different reaction centers, and solvents. We mainly focus on the computational of inv-SN 2 and proton transfer (PT) pathways. The PT channel in the gas phase is more competitive than the SN 2 channel for N-center reactions, while the opposite is observed for C-centered reactions. Solvation completely inhibits the PT channel, making SN 2 the dominant pathway. Our study provides new insight into the SN 2 reaction mechanisms and rich the novel reaction model in gas-phase organic chemistry.
Collapse
Affiliation(s)
- Huining Feng
- College of Chemistry, Liaoning University, 110036, Shenyang, China
| | - Rui Li
- College of Chemistry, Liaoning University, 110036, Shenyang, China
| | - Yang Wu
- College of Chemistry, Liaoning University, 110036, Shenyang, China
| | - Xu Liu
- College of Chemistry, Liaoning University, 110036, Shenyang, China
| |
Collapse
|
3
|
Liu X, Guo W, Feng H, Pang B, Wu Y. Competition between Elimination and Substitution for Ambident Nucleophiles CN - and Iodoethane Reactions in Gaseous and Aqueous Medium. J Phys Chem A 2023; 127:7373-7382. [PMID: 37639466 DOI: 10.1021/acs.jpca.3c04630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Nucleophilic substitution (SN2) and elimination (E2) reactions between ambident nucleophiles have long been considered as typical reactions in organic chemistry, and exploring the competition between the two reactions is of great importance in chemical synthesis. As a nucleophile, CN- can use its C and N atoms as the reactive centers to undergo E2 and SN2 reactions, but related research is currently limited. This study uses the CCSD(T)/pp/t//MP2/ECP/d electronic structure method to perform detailed investigations on the potential energy profiles for SN2 and E2 reactions between CN- and CH3CH2I in gaseous and aqueous media. The potential energy profiles reveal that the energy barriers for SN2 and E2 reactions with the C atom as the reactive center are consistently lower than those with the N atom, indicating that the C atom has a stronger nucleophilic ability and stronger basicity. Furthermore, the potential energy profiles in both gas and aqueous environments show that the barriers of SN2 reactions are lower than those for E2 reactions with both C and N as the attacking atom. By using the frontier molecular orbital and activation strain models to explain the interesting phenomenon, the transition from the gas phase to solution was investigated, specifically in the gas-microsolvation-water transition. The results show that water molecules reduce the nucleophilicity and basicity of CN-, while strain energy (ΔEstrain) causes a greater increase in the energy barrier for E2 reactions. This study provides new insights and perspectives on the understanding of CN- as a nucleophile in SN2 reactions and serves as theoretical guidance for organic synthesis.
Collapse
Affiliation(s)
- Xu Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Wenyu Guo
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Huining Feng
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Boxue Pang
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yang Wu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| |
Collapse
|
4
|
Valverde D, Georg HC, Canuto S. Free-Energy Landscape of the S N2 Reaction CH 3Br + Cl - → CH 3Cl + Br - in Different Liquid Environments. J Phys Chem B 2022; 126:3685-3692. [PMID: 35543431 DOI: 10.1021/acs.jpcb.1c10282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This work describes in detail the reaction path of the well-known SN2 reaction CH3Br + Cl- → CH3Cl + Br-, whose reaction rate has a huge variation with the solvent in the gas phase and in protic and aprotic liquid environments. We employed the ASEC-FEG method to optimize for minima (reactants and products) and saddle points (transition states) in the in-solution free-energy hypersurface. The method takes atomistic details of the solvent into account. A polarizable continuum model (PCM) has also been employed for comparison. The most perceptive structural changes are noted in aqueous solution by using the ASEC-FEG approach. The activation energies in all solvents, estimated by means of free-energy perturbation calculations, are in good agreement with the experimental data. The total solute-solvent hydrogen bonds play an important role in the increased barrier height observed in water and are therefore crucial to explain the huge decrease in the kinetic constant. It is also found that the hydration shell around the ions breaks itself spontaneously to accommodate the molecule, thus forming minimum energy complexes.
Collapse
Affiliation(s)
- Danillo Valverde
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371 Cidade Universitária, CEP 05508-090 São Paulo, São Paulo, Brazil
| | - Herbert C Georg
- Instituto de Física, Universidade Federal de Goiás, Avenida Esperança, Campus Samambaia, CEP 74690-900 Goiânia, Goiás, Brazil
| | - Sylvio Canuto
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371 Cidade Universitária, CEP 05508-090 São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Kerekes Z, Tasi DA, Czakó G. S N2 Reactions with an Ambident Nucleophile: A Benchmark Ab Initio Study of the CN - + CH 3Y [Y = F, Cl, Br, and I] Systems. J Phys Chem A 2022; 126:889-900. [PMID: 35107284 PMCID: PMC8859826 DOI: 10.1021/acs.jpca.1c10448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We characterize the
Walden-inversion, front-side attack, and double-inversion
SN2 pathways leading to Y– + CH3CN/CH3NC and the product channels of proton abstraction
(HCN/HNC + CH2Y–), hydride-ion substitution
(H– + YH2CCN/YH2CNC), halogen
abstraction (YCN–/YNC– + CH3 and YCN/YNC + CH3–), and YHCN–/YHNC– complex formation (YHCN–/YHNC– + 1CH2) of the CN– + CH3Y [Y = F, Cl, Br,
and I] reactions. Benchmark structures and frequencies are computed
at the CCSD(T)-F12b/aug-cc-pVTZ level of theory, and a composite approach
is employed to obtain relative energies with sub-chemical accuracy
considering (a) basis-set effects up to aug-cc-pVQZ, (b) post-CCSD(T)
correlation up to CCSDT(Q), (c) core correlation, (d) relativistic
effects, and (e) zero-point energy corrections. C–C bond formation
is both thermodynamically and kinetically more preferred than N–C
bond formation, though the kinetic preference is less significant.
Walden inversion proceeds via low or submerged barriers (12.1/17.9(F),
0.0/4.3(Cl), −3.9/0.1(Br), and −5.8/–1.8(I) kcal/mol
for C–C/N–C bond formation), front-side attack and double
inversion have high barriers (30–64 kcal/mol), the latter is
the lower-energy retention pathway, and the non-SN2 electronic
ground-state product channels are endothermic (ΔH0 = 31–92 kcal/mol).
Collapse
Affiliation(s)
- Zsolt Kerekes
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Domonkos A Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
6
|
Li C, Xin X, Wang D. Theoretical investigation of the S N2 mechanism of X - [X = SH, PH 2] + CH 3Y [Y = F, Cl, Br, I] reactions in water. Phys Chem Chem Phys 2021; 23:23267-23273. [PMID: 34632471 DOI: 10.1039/d1cp03048e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the SN2 Walden-inversion mechanism of X- (X = SH, PH2) + CH3Y (Y = F, Cl, Br, I) reactions in water using multi-level quantum mechanics (ML-QM) and molecular mechanics (MM) methods. The potentials of the mean force were mapped using not only the density functional theory (DFT)/MM method but also a high-level, accurate CCSD(T)/MM method using the aug-cc-pVTZ basis set. In particular, for the PH2- + CH3I reaction, although the backside attack Walden-inversion mechanics were not observed in the gas phase, we found that this mechanism takes place in water. The atomic-level dynamics of the concerted SN2 mechanism and the stationary points along the reaction paths were characterized. For these reactions in water, their Walden-inversion barriers are higher than their corresponding ones in the gas phase, indicating that the aqueous solution hinders their reactivity. For the reactions with the same nucleophile X- in water, the reaction barrier heights with different leaving groups are in the order of F > Cl > Br > I. For the same leaving group Y with different nucleophiles SH- and PH2-, the reaction barrier with SH- is greater than that of PH2- due to the former having higher electronegativity than the latter.
Collapse
Affiliation(s)
- Chen Li
- College of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, China.
| | - Xin Xin
- College of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, China.
| | - Dunyou Wang
- College of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
7
|
Xin X, Li C, Gao D, Wang D. Catalytic Descriptors to Investigate Catalytic Power in the Reaction of Haloalkane Dehalogenase Enzyme with 1,2-Dichloroethane. Int J Mol Sci 2021; 22:ijms22115854. [PMID: 34072602 PMCID: PMC8197811 DOI: 10.3390/ijms22115854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Enzymes play a fundamental role in many biological processes. We present a theoretical approach to investigate the catalytic power of the haloalkane dehalogenase reaction with 1,2-dichloroethane. By removing the three main active-site residues one by one from haloalkane dehalogenase, we found two reactive descriptors: one descriptor is the distance difference between the breaking bond and the forming bond, and the other is the charge difference between the transition state and the reactant complex. Both descriptors scale linearly with the reactive barriers, with the three-residue case having the smallest barrier and the zero-residue case having the largest. The results demonstrate that, as the number of residues increases, the catalytic power increases. The predicted free energy barriers using the two descriptors of this reaction in water are 23.1 and 24.2 kcal/mol, both larger than the ones with any residues, indicating that the water solvent hinders the reactivity. Both predicted barrier heights agree well with the calculated one at 25.2 kcal/mol using a quantum mechanics and molecular dynamics approach, and also agree well with the experimental result at 26.0 kcal/mol. This study shows that reactive descriptors can also be used to describe and predict the catalytic performance for enzyme catalysis.
Collapse
|
8
|
Xin X, Niu X, Liu W, Wang D. Hybrid Solvation Model with First Solvation Shell for Calculation of Solvation Free Energy. Chemphyschem 2020; 21:762-769. [PMID: 32154979 DOI: 10.1002/cphc.202000039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/15/2020] [Indexed: 02/03/2023]
Abstract
We present a hybrid solvation model with first solvation shell to calculate solvation free energies. This hybrid model combines the quantum mechanics and molecular mechanics methods with the analytical expression based on the Born solvation model to calculate solvation free energies. Based on calculated free energies of solvation and reaction profiles in gas phase, we set up a unified scheme to predict reaction profiles in solution. The predicted solvation free energies and reaction barriers are compared with experimental results for twenty bimolecular nucleophilic substitution reactions. These comparisons show that our hybrid solvation model can predict reliable solvation free energies and reaction barriers for chemical reactions of small molecules in aqueous solution.
Collapse
Affiliation(s)
- Xin Xin
- College of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xiao Niu
- College of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Wanqi Liu
- College of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Dunyou Wang
- College of Physics and Electronics, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
9
|
Tang W, Zhao J, Jiang P, Xu X, Zhao S, Tong Z. Solvent Effects on the Symmetric and Asymmetric S N2 Reactions in the Acetonitrile Solution: A Reaction Density Functional Theory Study. J Phys Chem B 2020; 124:3114-3122. [PMID: 32208658 DOI: 10.1021/acs.jpcb.0c00607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bimolecular nucleophilic substitution (SN2) reactions are of great importance in chemistry and biochemistry due to their capability of constructing functional groups. In this work, we investigate the solvent effect on the free energy profiles of symmetric and asymmetric SN2 reactions in the acetonitrile solution using the proposed reaction density functional theory (RxDFT) method. This multiscale method utilizes quantum density functional theory for calculating intrinsic reaction free energy coupled with classical density functional theory for addressing solvation contribution. We find that the presence of acetonitrile brings both the polarization effect and solvation effect on the reaction pathways. For the eight selected symmetric SN2 reactions, the predicated reaction pathways agree well with the results from the direct and thermodynamic cycle (TC) methods with the SMD-M062X solvation model. In addition, the polarization effect reduces the free energy barriers by about 6 kcal/mol, while the solvation effect increases the barriers by about 18 kcal/mol. For the four selected asymmetric SN2 reactions, the predicted reaction pathways agree well with the results from the Monte Carlo simulations and experiments. The polarization effect and the solvation effect mutually reduce the free energy barriers, and the solvation effect plays a dominant role.
Collapse
Affiliation(s)
- Weiqiang Tang
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jihao Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peng Jiang
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.,Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Xiaofei Xu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.,Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhangfa Tong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
10
|
Effect of solvent polarity on the potential energy surface in the SN2 reaction of F− + CH3Cl. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Tasi DA, Fábián Z, Czakó G. Rethinking the X− + CH3Y [X = OH, SH, CN, NH2, PH2; Y = F, Cl, Br, I] SN2 reactions. Phys Chem Chem Phys 2019; 21:7924-7931. [DOI: 10.1039/c8cp07850e] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Explicitly-correlated ab initio computations reveal novel inversion and retention pathways for several SN2 reactions with different nucleophiles and leaving groups.
Collapse
Affiliation(s)
- Domonkos A. Tasi
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
- Hungary
| | - Zita Fábián
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
- Hungary
| | - Gábor Czakó
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
- Hungary
| |
Collapse
|
12
|
Satpathy L, Sahu PK, Behera PK, Mishra BK. Solvent Effect on the Potential Energy Surfaces of the F - + CH 3CH 2Br Reaction. J Phys Chem A 2018; 122:5861-5869. [PMID: 29909618 DOI: 10.1021/acs.jpca.8b02687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although substantial work has been undertaken on reaction pathways involved in base-promoted elimination reactions and bimolecular nucleophilic substitution reaction of F- on CH3CH2X (X = Cl, Br, I), the effect of solvents with varying dielectric constants on the stereochemistry of each of the reaction species involved across the reaction profile have not yet been clearly understood. The present investigation reports the effect of solvents on the potential energy surfaces (PES) and structures of the species appearing in the reaction pathway of F- with bromoethane. The PESs in the gas phase have been computed at MP2 level and CCSD(T) level. The performance of several hybrid density functional, such as B3LYP, M06, M06L, BHandH, X3LYP, M05, M05-2X, and M06-2X have also been investigated toward describing the elimination and nucleophilic substitution reactions. With respect to MAE values and to make the computation cost-effective, we have explored the implicit continuum solvent model, CPCM in solvents like cyclohexane, methanol, acetonitrile, dimethyl sulfoxide and water. The reactant complexes proceed through the subsequent steps to produce fluoroethane as the substitution product and ethylene as one of the elimination products. For elimination reaction both syn and anti elimination have been explored. The calculated relatives energies values, which are negative in the gas phase, are found to be positive in polar solvents since the point charge in the separated reactants are more stabilized than the dispersed charge in the transient complex, which has also been analyzed through NBO analysis.
Collapse
Affiliation(s)
- Lopamudra Satpathy
- Centre of Studies in Surface Science and Technology, School of Chemistry , Sambalpur University , Jyoti Vihar 768 019 , India
| | - Prabhat K Sahu
- Computational Modeling Research Laboratory , School of Chemistry Sambalpur University , Jyoti Vihar 768 019 , India
| | - Pradipta K Behera
- Centre of Studies in Surface Science and Technology, School of Chemistry , Sambalpur University , Jyoti Vihar 768 019 , India
| | - Bijay K Mishra
- Centre of Studies in Surface Science and Technology, School of Chemistry , Sambalpur University , Jyoti Vihar 768 019 , India
| |
Collapse
|
13
|
Hamlin TA, Swart M, Bickelhaupt FM. Nucleophilic Substitution (S N 2): Dependence on Nucleophile, Leaving Group, Central Atom, Substituents, and Solvent. Chemphyschem 2018; 19:1315-1330. [PMID: 29542853 PMCID: PMC6001448 DOI: 10.1002/cphc.201701363] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 11/12/2022]
Abstract
The reaction potential energy surface (PES), and thus the mechanism of bimolecular nucleophilic substitution (SN 2), depends profoundly on the nature of the nucleophile and leaving group, but also on the central, electrophilic atom, its substituents, as well as on the medium in which the reaction takes place. Here, we provide an overview of recent studies and demonstrate how changes in any one of the aforementioned factors affect the SN 2 mechanism. One of the most striking effects is the transition from a double-well to a single-well PES when the central atom is changed from a second-period (e. g. carbon) to a higher-period element (e.g, silicon, germanium). Variations in nucleophilicity, leaving group ability, and bulky substituents around a second-row element central atom can then be exploited to change the single-well PES back into a double-well. Reversely, these variations can also be used to produce a single-well PES for second-period elements, for example, a stable pentavalent carbon species.
Collapse
Affiliation(s)
- Trevor A. Hamlin
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Marcel Swart
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institut de Química Computacional I Catàlisi and Department de QuímicaUniversitat de Girona17003GironaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institute of Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
14
|
Liu P, Li C, Wang S, Wang D. Catalytic Effect of Aqueous Solution in Water-Assisted Proton-Transfer Mechanism of 8-Hydroxy Guanine Radical. J Phys Chem B 2018. [PMID: 29518332 DOI: 10.1021/acs.jpcb.7b09965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water-assisted proton-transfer process is a key step in guanine damage reaction by hydroxyl radical in aqueous solution. In this article, we quantitatively determine the solvent effect in water-assisted proton-transfer mechanism of 8-hydroxy guanine radical using combined quantum mechanics and molecular mechanism with an explicit solvation model. Atomic-level reaction pathway was mapped, which shows a synchronized two-proton-transfer mechanism between the assistant water molecule and 8-hydroxy guanine radical. The transition-state dipole moment is the largest along the reaction pathway, which electrostatically stabilizes the proton-transfer transition-state complex. The free-energy reaction barrier for this water-assisted proton-transfer reaction was calculated at 19.2 kcal/mol with the density functional theory/M08-SO/cc-pVTZ+/molecular mechanics level of theory. The solvent effect not only has a big impact on geometries, but also dramatically changes the energetics along the reaction pathway. Among the solvent effect contributions to the transition state, the solvent energy contribution is -28.5 kcal/mol and the polarization effect contribution is 19.9 kcal/mol. In total, the solvent effect contributes -8.6 kcal/mol to the free-energy barrier height, which means that the presence of aqueous solution has a catalytic effect on the reaction mechanism and enhances the proton-transfer reactivity in aqueous solution.
Collapse
Affiliation(s)
- Peng Liu
- College of Physics and Electronics , Shandong Normal University , Jinan 250014 , China
| | - Chen Li
- College of Physics and Electronics , Shandong Normal University , Jinan 250014 , China
| | - Shengyu Wang
- College of Physics and Electronics , Shandong Normal University , Jinan 250014 , China
| | - Dunyou Wang
- College of Physics and Electronics , Shandong Normal University , Jinan 250014 , China
| |
Collapse
|
15
|
Liu P, Wang Q, Niu M, Wang D. Multi-level Quantum Mechanics and Molecular Mechanics Study of Ring Opening Process of Guanine Damage by Hydroxyl Radical in Aqueous Solution. Sci Rep 2017; 7:7798. [PMID: 28798372 PMCID: PMC5552687 DOI: 10.1038/s41598-017-08219-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/07/2017] [Indexed: 11/09/2022] Open
Abstract
Combining multi-level quantum mechanics theories and molecular mechanics with an explicit water model, we investigated the ring opening process of guanine damage by hydroxyl radical in aqueous solution. The detailed, atomic-level ring-opening mechanism along the reaction pathway was revealed in aqueous solution at the CCSD(T)/MM levels of theory. The potentials of mean force in aqueous solution were calculated at both the DFT/MM and CCSD(T)/MM levels of the theory. Our study found that the aqueous solution has a significant effect on this reaction in solution. In particular, by comparing the geometries of the stationary points between in gas phase and in aqueous solution, we found that the aqueous solution has a tremendous impact on the torsion angles much more than on the bond lengths and bending angles. Our calculated free-energy barrier height 31.6 kcal/mol at the CCSD(T)/MM level of theory agrees well with the one obtained based on gas-phase reaction profile and free energies of solvation. In addition, the reaction path in gas phase was also mapped using multi-level quantum mechanics theories, which shows a reaction barrier at 19.2 kcal/mol at the CCSD(T) level of theory, agreeing very well with a recent ab initio calculation result at 20.8 kcal/mol.
Collapse
Affiliation(s)
- Peng Liu
- College of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Qiong Wang
- College of Chemistry, Shandong Normal University, Jinan, 250014, China
| | - Meixing Niu
- College of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Dunyou Wang
- College of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|