1
|
Wodraszka R, Carrington T. Using a pruned basis and a sparse collocation grid with more points than basis functions to do efficient and accurate MCTDH calculations with general potential energy surfaces. J Chem Phys 2024; 160:214121. [PMID: 38836450 DOI: 10.1063/5.0214557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
We propose a new collocation multi-configuration time-dependent Hartree (MCTDH) method. It reduces point-set error by using more points than basis functions. Collocation makes it possible to use MCTDH with a general potential energy surface without computing any integrals. The collocation points are associated with a basis larger than the basis used to represent wavefunctions. Both bases are obtained from a direct product basis built from single-particle functions by imposing a pruning condition. The collocation points are those on a sparse grid. Heretofore, collocation MCTDH calculations with more points than basis functions have only been possible if both the collocation grid and the basis set are direct products. In this paper, we exploit a new pseudo-inverse to use both more points than basis functions and a pruned basis and grid. We demonstrate that, for a calculation of the lowest 50 vibrational states (energy levels and wavefunctions) of CH2NH, errors can be reduced by two orders of magnitude by increasing the number of points, without increasing the basis size. This is true also when unrefined time-independent points are used.
Collapse
Affiliation(s)
- Robert Wodraszka
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
2
|
Schneider M, Born D, Kästner J, Rauhut G. Positioning of grid points for spanning potential energy surfaces-How much effort is really needed? J Chem Phys 2023; 158:144118. [PMID: 37061506 DOI: 10.1063/5.0146020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
The positions of grid points for representing a multidimensional potential energy surface (PES) have a non-negligible impact on its accuracy and the associated computational effort for its generation. Six different positioning schemes were studied for PESs represented by n-mode expansions as needed for the accurate calculation of anharmonic vibrational frequencies by means of vibrational configuration interaction theory. A static approach, which has successfully been used in many applications, and five adaptive schemes based on Gaussian process regression have been investigated with respect to the number of necessary grid points and the accuracy of the fundamental modes for a small set of test molecules. A comparison with a related, more sophisticated, and consistent approach by Christiansen et al. is provided. The impact of the positions of the ab initio grid points is discussed for multilevel PESs, for which the computational effort of the individual electronic structure calculations decreases for increasing orders of the n-mode expansion. As a result of that, the ultimate goal is not the maximal reduction of grid points but rather the computational cost, which is not directly related.
Collapse
Affiliation(s)
- Moritz Schneider
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Daniel Born
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Johannes Kästner
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Guntram Rauhut
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
3
|
Panadés-Barrueta RL, Peláez D. Low-rank sum-of-products finite-basis-representation (SOP-FBR) of potential energy surfaces. J Chem Phys 2020; 153:234110. [PMID: 33353311 DOI: 10.1063/5.0027143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The sum-of-products finite-basis-representation (SOP-FBR) approach for the automated multidimensional fit of potential energy surfaces (PESs) is presented. In its current implementation, the method yields a PES in the so-called Tucker sum-of-products form, but it is not restricted to this specific ansatz. The novelty of our algorithm lies in the fact that the fit is performed in terms of a direct product of a Schmidt basis, also known as natural potentials. These encode in a non-trivial way all the physics of the problem and, hence, circumvent the usual extra ad hoc and a posteriori adjustments (e.g., damping functions) of the fitted PES. Moreover, we avoid the intermediate refitting stage common to other tensor-decomposition methods, typically used in the context of nuclear quantum dynamics. The resulting SOP-FBR PES is analytical and differentiable ad infinitum. Our ansatz is fully general and can be used in combination with most (molecular) dynamics codes. In particular, it has been interfaced and extensively tested with the Heidelberg implementation of the multiconfiguration time-dependent Hartree quantum dynamical software package.
Collapse
Affiliation(s)
- Ramón L Panadés-Barrueta
- Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), Université Lille 1, Villeneuve d'Ascq Cedex, France
| | - Daniel Peláez
- Institut des Sciences Moléculaires d'Orsay (ISMO) - UMR 8214, Bât. 520, Université Paris-Saclay, 91405 Orsay Cedex, France
| |
Collapse
|
4
|
Manzhos S, Carrington T. Neural Network Potential Energy Surfaces for Small Molecules and Reactions. Chem Rev 2020; 121:10187-10217. [PMID: 33021368 DOI: 10.1021/acs.chemrev.0c00665] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We review progress in neural network (NN)-based methods for the construction of interatomic potentials from discrete samples (such as ab initio energies) for applications in classical and quantum dynamics including reaction dynamics and computational spectroscopy. The main focus is on methods for building molecular potential energy surfaces (PES) in internal coordinates that explicitly include all many-body contributions, even though some of the methods we review limit the degree of coupling, due either to a desire to limit computational cost or to limited data. Explicit and direct treatment of all many-body contributions is only practical for sufficiently small molecules, which are therefore our primary focus. This includes small molecules on surfaces. We consider direct, single NN PES fitting as well as more complex methods that impose structure (such as a multibody representation) on the PES function, either through the architecture of one NN or by using multiple NNs. We show how NNs are effective in building representations with low-dimensional functions including dimensionality reduction. We consider NN-based approaches to build PESs in the sums-of-product form important for quantum dynamics, ways to treat symmetry, and issues related to sampling data distributions and the relation between PES errors and errors in observables. We highlight combinations of NNs with other ideas such as permutationally invariant polynomials or sums of environment-dependent atomic contributions, which have recently emerged as powerful tools for building highly accurate PESs for relatively large molecular and reactive systems.
Collapse
Affiliation(s)
- Sergei Manzhos
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Boulevard Lionel-Boulet, Varennes, Québec City, Québec J3X 1S2, Canada
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston Ontario K7L 3N6, Canada
| |
Collapse
|
5
|
Wodraszka R, Carrington T. A pruned collocation-based multiconfiguration time-dependent Hartree approach using a Smolyak grid for solving the Schrödinger equation with a general potential energy surface. J Chem Phys 2019; 150:154108. [DOI: 10.1063/1.5093317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Robert Wodraszka
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
6
|
Ziegler B, Rauhut G. Rigorous use of symmetry within the construction of multidimensional potential energy surfaces. J Chem Phys 2018; 149:164110. [DOI: 10.1063/1.5047912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Benjamin Ziegler
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Guntram Rauhut
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
7
|
Breaking the curse of dimension for the electronic Schrödinger equation with functional analysis. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Brown A, Pradhan E. Fitting potential energy surfaces to sum-of-products form with neural networks using exponential neurons. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617300014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, the use of the neural network (NN) method with exponential neurons for directly fitting ab initio data to generate potential energy surfaces (PESs) in sum-of-product form will be discussed. The utility of the approach will be highlighted using fits of CS2, HFCO, and HONO ground state PESs based upon high-level ab initio data. Using a generic interface between the neural network PES fitting, which is performed in MATLAB, and the Heidelberg multi-configuration time-dependent Hartree (MCTDH) software package, the PESs have been tested via comparison of vibrational energies to experimental measurements. The review demonstrates the potential of the PES fitting method, combined with MCTDH, to tackle high-dimensional quantum dynamics problems.
Collapse
Affiliation(s)
- Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - E. Pradhan
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| |
Collapse
|
9
|
Larsson HR, Tannor DJ. Dynamical pruning of the multiconfiguration time-dependent Hartree (DP-MCTDH) method: An efficient approach for multidimensional quantum dynamics. J Chem Phys 2017; 147:044103. [DOI: 10.1063/1.4993219] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- H. R. Larsson
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - D. J. Tannor
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
10
|
Yu HG, Song H, Yang M. A rigorous full-dimensional quantum dynamics study of tunneling splitting of rovibrational states of vinyl radical C2H3. J Chem Phys 2017; 146:224307. [DOI: 10.1063/1.4985183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hua-Gen Yu
- Division of Chemistry, Department of Energy and Photon Sciences, Brookhaven National Laboratory, Upton, New York 11793-5000, USA
| | - Hongwei Song
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
11
|
Thomas PS, Carrington T. An intertwined method for making low-rank, sum-of-product basis functions that makes it possible to compute vibrational spectra of molecules with more than 10 atoms. J Chem Phys 2017; 146:204110. [PMID: 28571348 PMCID: PMC5451316 DOI: 10.1063/1.4983695] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/05/2017] [Indexed: 11/14/2022] Open
Abstract
We propose a method for solving the vibrational Schrödinger equation with which one can compute spectra for molecules with more than ten atoms. It uses sum-of-product (SOP) basis functions stored in a canonical polyadic tensor format and generated by evaluating matrix-vector products. By doing a sequence of partial optimizations, in each of which the factors in a SOP basis function for a single coordinate are optimized, the rank of the basis functions is reduced as matrix-vector products are computed. This is better than using an alternating least squares method to reduce the rank, as is done in the reduced-rank block power method. Partial optimization is better because it speeds up the calculation by about an order of magnitude and allows one to significantly reduce the memory cost. We demonstrate the effectiveness of the new method by computing vibrational spectra of two molecules, ethylene oxide (C2H4O) and cyclopentadiene (C5H6), with 7 and 11 atoms, respectively.
Collapse
Affiliation(s)
- Phillip S Thomas
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
12
|
Carrington T. Perspective: Computing (ro-)vibrational spectra of molecules with more than four atoms. J Chem Phys 2017; 146:120902. [DOI: 10.1063/1.4979117] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario
K7L 3N6, Canada
| |
Collapse
|
13
|
Rai P, Sargsyan K, Najm H, Hermes MR, Hirata S. Low-rank canonical-tensor decomposition of potential energy surfaces: application to grid-based diagrammatic vibrational Green's function theory. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1288937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Prashant Rai
- Sandia National Laboratories, Livermore, CA, USA
| | | | - Habib Najm
- Sandia National Laboratories, Livermore, CA, USA
| | - Matthew R. Hermes
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
14
|
Larsson HR, Hartke B, Tannor DJ. Efficient molecular quantum dynamics in coordinate and phase space using pruned bases. J Chem Phys 2016; 145:204108. [DOI: 10.1063/1.4967432] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- H. R. Larsson
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - B. Hartke
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - D. J. Tannor
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
15
|
Brown J, Carrington T. Using an expanding nondirect product harmonic basis with an iterative eigensolver to compute vibrational energy levels with as many as seven atoms. J Chem Phys 2016; 145:144104. [DOI: 10.1063/1.4963916] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- James Brown
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
16
|
Wodraszka R, Carrington T. Using a pruned, nondirect product basis in conjunction with the multi-configuration time-dependent Hartree (MCTDH) method. J Chem Phys 2016; 145:044110. [DOI: 10.1063/1.4959228] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Robert Wodraszka
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
17
|
Ziegler B, Rauhut G. Efficient generation of sum-of-products representations of high-dimensional potential energy surfaces based on multimode expansions. J Chem Phys 2016; 144:114114. [DOI: 10.1063/1.4943985] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Benjamin Ziegler
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Guntram Rauhut
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
18
|
Ndengué S, Dawes R, Wang XG, Carrington T, Sun Z, Guo H. Calculated vibrational states of ozone up to dissociation. J Chem Phys 2016; 144:074302. [DOI: 10.1063/1.4941559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Steve Ndengué
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Xiao-Gang Wang
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and Center for Advanced Chemical Physics and 2011 Frontier Center for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
19
|
Thomas PS, Carrington T. Using Nested Contractions and a Hierarchical Tensor Format To Compute Vibrational Spectra of Molecules with Seven Atoms. J Phys Chem A 2015; 119:13074-91. [DOI: 10.1021/acs.jpca.5b10015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Phillip S. Thomas
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
20
|
Avila G, Carrington T. A multi-dimensional Smolyak collocation method in curvilinear coordinates for computing vibrational spectra. J Chem Phys 2015; 143:214108. [DOI: 10.1063/1.4936294] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gustavo Avila
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|