1
|
Pederson JP, McDaniel JG. PyDFT-QMMM: A modular, extensible software framework for DFT-based QM/MM molecular dynamics. J Chem Phys 2024; 161:034103. [PMID: 39007371 DOI: 10.1063/5.0219851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
PyDFT-QMMM is a Python-based package for performing hybrid quantum mechanics/molecular mechanics (QM/MM) simulations at the density functional level of theory. The program is designed to treat short-range and long-range interactions through user-specified combinations of electrostatic and mechanical embedding procedures within periodic simulation domains, providing necessary interfaces to external quantum chemistry and molecular dynamics software. To enable direct embedding of long-range electrostatics in periodic systems, we have derived and implemented force terms for our previously described QM/MM/PME approach [Pederson and McDaniel, J. Chem. Phys. 156, 174105 (2022)]. Communication with external software packages Psi4 and OpenMM is facilitated through Python application programming interfaces (APIs). The core library contains basic utilities for running QM/MM molecular dynamics simulations, and plug-in entry-points are provided for users to implement custom energy/force calculation and integration routines, within an extensible architecture. The user interacts with PyDFT-QMMM primarily through its Python API, allowing for complex workflow development with Python scripting, for example, interfacing with PLUMED for free energy simulations. We provide benchmarks of forces and energy conservation for the QM/MM/PME and alternative QM/MM electrostatic embedding approaches. We further demonstrate a simple example use case for water solute in a water solvent system, for which radial distribution functions are computed from 100 ps QM/MM simulations; in this example, we highlight how the solvation structure is sensitive to different basis-set choices due to under- or over-polarization of the QM water molecule's electron density.
Collapse
Affiliation(s)
- John P Pederson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Jesse G McDaniel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
2
|
Chatterjee S, Nochebuena J, Cisneros GA. Impact of an Ionic Liquid Solution on Horseradish Peroxidase Activity. J Am Chem Soc 2024; 146:13247-13257. [PMID: 38701006 DOI: 10.1021/jacs.4c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Horseradish peroxidase (HRP) is an enzyme that oxidizes pollutants from wastewater. A previous report indicated that peroxidases can have an enhancement in initial enzymatic activity in an aqueous solution of 0.26 M 1-ethyl-3-methylimidazolium ethyl sulfate ([EMIm][EtSO4]) at neutral pH. However, the atomistic details remain elusive. In the enzymatic landscape of HRP, compound II (Cpd II) plays a key role and involves a histidine (H42) residue. Cpd II exists as oxoferryl (2a) or hydroxoferryl (2b(FeIV)) forms, where 2a is the predominantly observed form in experimental studies. Intriguingly, the ferric 2b(FeIII) form seen in synthetic complexes has not been observed in HRP. Here, we have investigated the structure and dynamics of HRP in pure water and aqueous [EMIm][EtSO4] (0.26 M), as well as the reaction mechanism of 2a to 2b conversion using polarizable molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations. When HRP is solvated in aq [EMIm][EtSO4], the catalytic water displaces, and H42 directly orients over the ferryl moiety, allowing a direct proton transfer (PT) with a significant energy barrier reduction. Conversely, in neat water, the reaction of 2a to 2b follows the previously reported mechanism. We further investigated the deprotonated form of H42. Analysis of the electric fields at the active site indicates that the aq [EMIm][EtSO4] medium facilitates the reaction by providing a more favorable environment compared with the system solvated in neat water. Overall, the atomic level supports the previous experimental observations and underscores the importance of favorable electric fields in the active site to promote catalysis.
Collapse
Affiliation(s)
- Shubham Chatterjee
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jorge Nochebuena
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
3
|
Nochebuena J, Simmonett AC, Cisneros GA. Seamless integration of GEM, a density based-force field, for QM/MM simulations via LICHEM, Psi4, and Tinker-HP. J Chem Phys 2024; 160:174103. [PMID: 38747990 PMCID: PMC11223170 DOI: 10.1063/5.0200722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/14/2024] [Indexed: 07/06/2024] Open
Abstract
Hybrid quantum mechanics/molecular mechanics (QM/MM) simulations have become an essential tool in computational chemistry, particularly for analyzing complex biological and condensed phase systems. Building on this foundation, our work presents a novel implementation of the Gaussian Electrostatic Model (GEM), a polarizable density-based force field, within the QM/MM framework. This advancement provides seamless integration, enabling efficient and optimized QM/GEM calculations in a single step using the LICHEM Code. We have successfully applied our implementation to water dimers and hexamers, demonstrating the ability to handle water systems with varying numbers of water molecules. Moreover, we have extended the application to describe the double proton transfer of the aspartic acid dimer in a box of water, which highlights the method's proficiency in investigating heterogeneous systems. Our implementation offers the flexibility to perform on-the-fly density fitting or to utilize pre-fitted coefficients to estimate exchange and Coulomb contributions. This flexibility enhances efficiency and accuracy in modeling molecular interactions, especially in systems where polarization effects are significant.
Collapse
Affiliation(s)
- Jorge Nochebuena
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Andrew C. Simmonett
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
4
|
Kvedaravičiūtė S, Carrasco-Busturia D, Møller KB, Olsen JMH. Polarizable Embedding without Artificial Boundary Polarization. J Chem Theory Comput 2023; 19:5122-5141. [PMID: 37458793 DOI: 10.1021/acs.jctc.3c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
We present a fully self-consistent polarizable embedding (PE) model that does not suffer from unphysical boundary polarization. This is achieved through the use of the minimum-image convention (MIC) in the induced electrostatics. It is a simple yet effective approach that includes a more physically accurate description of the polarization throughout the molecular system. Using PE with MIC (PE-MIC), we shed new light on the limitations of commonly employed cutoff models, such as the droplet model, when used in PE calculations. Specifically, we investigate the effects of the unphysical polarization at the outer boundary by comparing induced dipoles and the associated electrostatic potentials, as well as some optical properties of solute-solvent and biomolecular systems. We show that the magnitude of the inaccuracies caused by the unphysical polarization depends on multiple parameters: the nature of the quantum subsystem and of the environment, the cutoff model and distance, and the calculated property.
Collapse
Affiliation(s)
| | | | - Klaus B Møller
- DTU Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | |
Collapse
|
5
|
Berger MB, Cisneros GA. Distal Mutations in the β-Clamp of DNA Polymerase III* Disrupt DNA Orientation and Affect Exonuclease Activity. J Am Chem Soc 2023; 145:3478-3490. [PMID: 36745735 PMCID: PMC10237177 DOI: 10.1021/jacs.2c11713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA polymerases are responsible for the replication and repair of DNA found in all DNA-based organisms. DNA Polymerase III is the main replicative polymerase of E. coli and is composed of over 10 proteins. A subset of these proteins (Pol III*) includes the polymerase (α), exonuclease (ϵ), clamp (β), and accessory protein (θ). Mutations of residues in, or around the active site of the catalytic subunits (α and ϵ), can have a significant impact on catalysis. However, the effects of distal mutations in noncatalytic subunits on the activity of catalytic subunits are less well-characterized. Here, we investigate the effects of two Pol III* variants, β-L82E/L82'E and β-L82D/L82'D, on the proofreading reaction catalyzed by ϵ. MD simulations reveal major changes in the dynamics of Pol III*, which extend throughout the complex. These changes are mostly induced by a shift in the position of the DNA substrate inside the β-clamp, although no major structural changes are observed in the protein complex. Quantum mechanics/molecular mechanics (QM/MM) calculations indicate that the β-L82D/L82'D variant has reduced catalytic proficiency due to highly endoergic reaction energies resulting from structural changes in the active site and differences in the electric field at the active site arising from the protein and substrate. Conversely, the β-L82E/L82'E variant is predicted to maintain proofreading activity, exhibiting a similar reaction barrier for nucleotide excision compared with the WT system. However, significant differences in the reaction mechanism are obtained due to the changes induced by the mutations on the β-clamp.
Collapse
Affiliation(s)
- Madison B Berger
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
6
|
Csizi K, Reiher M. Universal
QM
/
MM
approaches for general nanoscale applications. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Markus Reiher
- Laboratorium für Physikalische Chemie ETH Zürich Zürich Switzerland
| |
Collapse
|
7
|
Neves RPP, Cunha AV, Fernandes PA, Ramos MJ. Towards the Accurate Thermodynamic Characterization of Enzyme Reaction Mechanisms. Chemphyschem 2022; 23:e202200159. [PMID: 35499146 DOI: 10.1002/cphc.202200159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/28/2022] [Indexed: 11/07/2022]
Abstract
We employed QM/MM molecular dynamics (MD) simulations to characterize the rate-limiting step of the glycosylation reaction of pancreatic α-amylase with combined DFT/molecular dynamics methods (PBE/def2-SVP:AMBER). Upon careful choice of four starting active site conformations based on thorough reactivity criteria, Gibbs energy profiles were calculated with umbrella sampling simulations within a statistical convergence of 1-2 kcal⋅mol -1 . Nevertheless, Gibbs activation barriers and reaction energies still varied from 11.0 to 16.8 kcal⋅mol -1 and -6.3 to +3.8 kcal⋅mol -1 depending on the starting conformations, showing that despite significant state-of-the-art QM/MM MD sampling (0.5 ns/profile) the result still depends on the starting structure. The results supported the one step dissociative mechanism of Asp197 glycosylation preceded by an acid-base reaction by the Glu233, which are qualitatively similar to those from multi-PES QM/MM studies, and thus support the use of the latter to determine enzyme reaction mechanisms.
Collapse
Affiliation(s)
- Rui P P Neves
- Universidade do Porto, Quimica e Bioquimica, PORTUGAL
| | - Ana V Cunha
- Vrije Universiteit Brussel - Campus Etterbeek: Vrije Universiteit Brussel, Chemistry, BELGIUM
| | | | - Maria Joao Ramos
- Faculty of Sciences, Dept. of Chemistry, Rua Campo Alegre, 687, 4169-007, Porto, PORTUGAL
| |
Collapse
|
8
|
Pederson JP, McDaniel J. DFT-based QM/MM with Particle-Mesh Ewald for Direct, Long-Range Electrostatic Embedding. J Chem Phys 2022; 156:174105. [DOI: 10.1063/5.0087386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a DFT-based, QM/MM implementation with long-range electrostatic embedding achieved by direct real-space integration of the particle mesh Ewald (PME) computed electrostatic potential. The key transformation is the interpolation of the electrostatic potential from the PME grid to the DFT quadrature grid, from which integrals are easily evaluated utilizing standard DFT machinery. We provide benchmarks of the numerical accuracy with choice of grid size and real-space corrections, and demonstrate that good convergence is achieved while introducing nominal computational overhead. Furthermore, the approach requires only small modification to existing software packages, as is demonstrated with our implementation in the OpenMM and Psi4 software. After presenting convergence benchmarks, we evaluate the importance of long-range electrostatic embedding in three solute/solvent systems modeled with QM/MM. Water and BMIM/BF4 ionic liquid were considered as ``simple' and ``complex' solvents respectively, with water and p-phenylenediamine (PPD) solute molecules treated at QM level of theory. While electrostatic embedding with standard real-space truncation may introduce negligible error for simple systems such as water solute in water solvent, errors become more significant when QM/MM is applied to complex solvents such as ionic liquids. An extreme example is the electrostatic embedding energy for oxidized PPD in BMIM/BF4 for which real-space truncation produces severe error even at 2-3 nm cutoff distances. This latter example illustrates that utilization of QM/MM to compute redox potentials within concentrated electrolytes/ionic media requires carefully chosen long-range electrostatic embedding algorithms, with our presented algorithm providing a general and robust approach.
Collapse
Affiliation(s)
| | - Jesse McDaniel
- Chemistry, Georgia Institute of Technology, United States of America
| |
Collapse
|
9
|
Nochebuena J, Naseem-Khan S, Cisneros GA. Development and application of quantum mechanics/molecular mechanics methods with advanced polarizable potentials. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2021; 11:e1515. [PMID: 34367343 PMCID: PMC8341087 DOI: 10.1002/wcms.1515] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/19/2020] [Indexed: 01/02/2023]
Abstract
Quantum mechanics/molecular mechanics (QM/MM) simulations are a popular approach to study various features of large systems. A common application of QM/MM calculations is in the investigation of reaction mechanisms in condensed-phase and biological systems. The combination of QM and MM methods to represent a system gives rise to several challenges that need to be addressed. The increase in computational speed has allowed the expanded use of more complicated and accurate methods for both QM and MM simulations. Here, we review some approaches that address several common challenges encountered in QM/MM simulations with advanced polarizable potentials, from methods to account for boundary across covalent bonds and long-range effects, to polarization and advanced embedding potentials.
Collapse
Affiliation(s)
- Jorge Nochebuena
- Department of Chemistry, University of North Texas, Denton, Texas, USA
| | - Sehr Naseem-Khan
- Department of Chemistry, University of North Texas, Denton, Texas, USA
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas, USA
| |
Collapse
|
10
|
Pan X, Nam K, Epifanovsky E, Simmonett AC, Rosta E, Shao Y. A simplified charge projection scheme for long-range electrostatics in ab initio QM/MM calculations. J Chem Phys 2021; 154:024115. [PMID: 33445891 DOI: 10.1063/5.0038120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In a previous work [Pan et al., Molecules 23, 2500 (2018)], a charge projection scheme was reported, where outer molecular mechanical (MM) charges [>10 Å from the quantum mechanical (QM) region] were projected onto the electrostatic potential (ESP) grid of the QM region to accurately and efficiently capture long-range electrostatics in ab initio QM/MM calculations. Here, a further simplification to the model is proposed, where the outer MM charges are projected onto inner MM atom positions (instead of ESP grid positions). This enables a representation of the long-range MM electrostatic potential via augmentary charges (AC) on inner MM atoms. Combined with the long-range electrostatic correction function from Cisneros et al. [J. Chem. Phys. 143, 044103 (2015)] to smoothly switch between inner and outer MM regions, this new QM/MM-AC electrostatic model yields accurate and continuous ab initio QM/MM electrostatic energies with a 10 Å cutoff between inner and outer MM regions. This model enables efficient QM/MM cluster calculations with a large number of MM atoms as well as QM/MM calculations with periodic boundary conditions.
Collapse
Affiliation(s)
- Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, Oklahoma 73019, USA
| | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Evgeny Epifanovsky
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Andrew C Simmonett
- National Institutes of Health-National Heart, Lung and Blood Institute, Laboratory of Computational Biology, Bethesda, Maryland 20892, USA
| | - Edina Rosta
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, Oklahoma 73019, USA
| |
Collapse
|
11
|
Gökcan H, Vázquez-Montelongo EA, Cisneros GA. LICHEM 1.1: Recent Improvements and New Capabilities. J Chem Theory Comput 2019; 15:3056-3065. [PMID: 30908049 DOI: 10.1021/acs.jctc.9b00028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The QM/MM method has become a useful tool to investigate various properties of complex systems. We previously introduced the layered interacting chemical models (LICHEM) package to enable QM/MM simulations with advanced potentials by combining various (unmodified) QM and MM codes ( J. Comp. Chem., 2016, 37, 1019). LICHEM provides several capabilities such as the ability to use polarizable force fields, such as AMOEBA, for the MM environment. Here, we describe an updated version of LICHEM (v1.1), which includes several new functionalities including a new method to account for long-range electrostatic effects in QM/MM (QM/MM-LREC), a new implementation for QM/MM with the Gaussian electrostatic model (GEM), and new capabilities for path optimizations using the quadratic string model (QSM) coupled with restrained MM environment optimization.
Collapse
Affiliation(s)
- Hatice Gökcan
- Department of Chemistry , University of North Texas , Denton , Texas 76201 , United States
| | | | - G Andrés Cisneros
- Department of Chemistry , University of North Texas , Denton , Texas 76201 , United States
| |
Collapse
|
12
|
Kawashima Y, Ishimura K, Shiga M. Ab initio quantum mechanics/molecular mechanics method with periodic boundaries employing Ewald summation technique to electron-charge interaction: Treatment of the surface-dipole term. J Chem Phys 2019; 150:124103. [DOI: 10.1063/1.5048451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Y. Kawashima
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - K. Ishimura
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - M. Shiga
- CCSE, Japan Atomic Energy Agency (JAEA), 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan
| |
Collapse
|
13
|
Dziedzic J, Head-Gordon T, Head-Gordon M, Skylaris CK. Mutually polarizable QM/MM model with in situ optimized localized basis functions. J Chem Phys 2019; 150:074103. [PMID: 30795653 DOI: 10.1063/1.5080384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We extend our recently developed quantum-mechanical/molecular mechanics (QM/MM) approach [Dziedzic et al., J. Chem. Phys. 145, 124106 (2016)] to enable in situ optimization of the localized orbitals. The quantum subsystem is described with onetep linear-scaling density functional theory and the classical subsystem - with the AMOEBA polarizable force field. The two subsystems interact via multipolar electrostatics and are fully mutually polarizable. A total energy minimization scheme is employed for the Hamiltonian of the coupled QM/MM system. We demonstrate that, compared to simpler models using fixed basis sets, the additional flexibility offered by in situ optimized basis functions improves the accuracy of the QM/MM interface, but also poses new challenges, making the QM subsystem more prone to overpolarization and unphysical charge transfer due to increased charge penetration. We show how these issues can be efficiently solved by replacing the classical repulsive van der Waals term for QM/MM interactions with an interaction of the electronic density with a fixed, repulsive MM potential that mimics Pauli repulsion, together with a modest increase in the damping of QM/MM polarization. We validate our method, with particular attention paid to the hydrogen bond, in tests on water-ion pairs, the water dimer, first solvation shells of neutral and charged species, and solute-solvent interaction energies. As a proof of principle, we determine suitable repulsive potential parameters for water, K+, and Cl-. The mechanisms we employed to counteract the unphysical overpolarization of the QM subsystem are demonstrated to be adequate, and our approach is robust. We find that the inclusion of explicit polarization in the MM part of QM/MM improves agreement with fully QM calculations. Our model permits the use of minimal size QM regions and, remarkably, yields good energetics across the well-balanced QM/MM interface.
Collapse
Affiliation(s)
- Jacek Dziedzic
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Teresa Head-Gordon
- Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Chris-Kriton Skylaris
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
14
|
Vázquez-Montelongo EA, Vázquez-Cervantes JE, Cisneros GA. Polarizable ab initio QM/MM Study of the Reaction Mechanism of N- tert-Butyloxycarbonylation of Aniline in [EMIm][BF₄]. Molecules 2018; 23:E2830. [PMID: 30384470 PMCID: PMC6278528 DOI: 10.3390/molecules23112830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
N-t e r t-butoxycarbonylation of amines in solution (water, organic solvents, or ionic liquids) is a common reaction for the preparation of drug molecules. To understand the reaction mechanism and the role of the solvent, quantum mechanical/molecular mechanical simulations using a polarizable multipolar force field with long⁻range electrostatic corrections were used to optimize the minimum energy paths (MEPs) associated with various possible reaction mechanisms employing the nudged elastic band (NEB) and the quadratic string method (QSM). The calculated reaction energies and energy barriers were compared with the corresponding gas-phase and dichloromethane results. Complementary Electron Localization Function (ELF)/NCI analyses provide insights on the critical structures along the MEP. The calculated results suggest the most likely path involves a sequential mechanism with the rate⁻limiting step corresponding to the nucleophilic attack of the aniline, followed by proton transfer and the release of CO 2 without the direct involvement of imidazolium cations as catalysts.
Collapse
Affiliation(s)
| | | | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, TX 76201, USA.
- The Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, TX 76201, USA.
| |
Collapse
|
15
|
Pan X, Rosta E, Shao Y. Representation of the QM Subsystem for Long-Range Electrostatic Interaction in Non-Periodic Ab Initio QM/MM Calculations. Molecules 2018; 23:E2500. [PMID: 30274290 PMCID: PMC6222767 DOI: 10.3390/molecules23102500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 11/16/2022] Open
Abstract
In QM/MM calculations, it is essential to handle electrostatic interactions between the QM and MM subsystems accurately and efficiently. To achieve maximal efficiency, it is convenient to adopt a hybrid scheme, where the QM electron density is used explicitly in the evaluation of short-range QM/MM electrostatic interactions, while a multipolar representation for the QM electron density is employed to account for the long-range QM/MM electrostatic interactions. In order to avoid energy discontinuity at the cutoffs, which separate the short- and long-range QM/MM electrostatic interactions, a switching function should be utilized to ensure a smooth potential energy surface. In this study, we benchmarked the accuracy of such hybrid embedding schemes for QM/MM electrostatic interactions using different multipolar representations, switching functions and cutoff distances. For test systems (neutral and anionic oxyluciferin in MM (aqueous and enzyme) environments), the best accuracy was acquired with a combination of QM electrostatic potential (ESP) charges and dipoles and two switching functions (long-range electrostatic corrections (LREC) and Switch) in the treatment of long-range QM/MM electrostatics. It allowed us to apply a 10Å distance cutoff and still obtain QM/MM electrostatics/polarization energies within 0.1 kcal/mol and time-dependent density functional theory (TDDFT)/MM vertical excitation energies within 10-3 eV from theoretical reference values.
Collapse
Affiliation(s)
- Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019⁻5251, USA.
| | - Edina Rosta
- Department of Chemistry, King's College London, London SE1 1DB, UK.
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019⁻5251, USA.
| |
Collapse
|
16
|
Giese TJ, York DM. Quantum mechanical force fields for condensed phase molecular simulations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:383002. [PMID: 28817382 PMCID: PMC5821073 DOI: 10.1088/1361-648x/aa7c5c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Molecular simulations are powerful tools for providing atomic-level details into complex chemical and physical processes that occur in the condensed phase. For strongly interacting systems where quantum many-body effects are known to play an important role, density-functional methods are often used to provide the model with the potential energy used to drive dynamics. These methods, however, suffer from two major drawbacks. First, they are often too computationally intensive to practically apply to large systems over long time scales, limiting their scope of application. Second, there remain challenges for these models to obtain the necessary level of accuracy for weak non-bonded interactions to obtain quantitative accuracy for a wide range of condensed phase properties. Quantum mechanical force fields (QMFFs) provide a potential solution to both of these limitations. In this review, we address recent advances in the development of QMFFs for condensed phase simulations. In particular, we examine the development of QMFF models using both approximate and ab initio density-functional models, the treatment of short-ranged non-bonded and long-ranged electrostatic interactions, and stability issues in molecular dynamics calculations. Example calculations are provided for crystalline systems, liquid water, and ionic liquids. We conclude with a perspective for emerging challenges and future research directions.
Collapse
|
17
|
Dziedzic J, Mao Y, Shao Y, Ponder J, Head-Gordon T, Head-Gordon M, Skylaris CK. TINKTEP: A fully self-consistent, mutually polarizable QM/MM approach based on the AMOEBA force field. J Chem Phys 2016; 145:124106. [DOI: 10.1063/1.4962909] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jacek Dziedzic
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - Yuezhi Mao
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Yihan Shao
- Q-Chem Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Jay Ponder
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Teresa Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
- Department of Bioengineering, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Chris-Kriton Skylaris
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
18
|
Kratz EG, Duke RE, Cisneros GA. Long-range electrostatic corrections in multipolar/polarizable QM/MM simulations. Theor Chem Acc 2016; 135:166. [PMID: 28367078 PMCID: PMC5373107 DOI: 10.1007/s00214-016-1923-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/04/2016] [Indexed: 10/21/2022]
Abstract
Taking long-range electrostatic effects into account in classical and hybrid quantum mechanics-molecular mechanics (QM/MM) simulations is necessary for an accurate description of the system under study. We have recently developed a method, termed long-range electrostatic corrections (LREC), for monopolar QM/MM calculations. Here, we present an extension of LREC for multipolar/polarizable QM/MM simulations within the LICHEM software package. Reaction barriers and QM-MM interaction energies converge with a LREC cutoff between 20 and 25 Å, in agreement with our previous results. Additionally, the LREC approach for the QM-MM interactions can be smoothly combined with standard shifting or Ewald summation methods in the MM calculations. We recommend the use of QM(LREC)/MM(PME), where the QM region is treated with LREC and the MM region is treated with particle mesh Ewald (PME) summation. This combination is an excellent compromise between simplicity, speed, and accuracy for large QM/MM simulations.
Collapse
Affiliation(s)
- Eric G Kratz
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Robert E Duke
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - G Andrés Cisneros
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
19
|
Giese TJ, York DM. Ambient-Potential Composite Ewald Method for ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulation. J Chem Theory Comput 2016; 12:2611-32. [PMID: 27171914 DOI: 10.1021/acs.jctc.6b00198] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new approach for performing Particle Mesh Ewald in ab initio quantum mechanical/molecular mechanical (QM/MM) simulations with extended atomic orbital basis sets is presented. The new approach, the Ambient-Potential Composite Ewald (CEw) method, does not perform the QM/MM interaction with Mulliken charges nor electrostatically fit charges. Instead the nuclei and electron density interact directly with the MM environment, but in a manner that avoids the use of dense Fourier transform grids. By performing the electrostatics with the underlying QM density, the CEw method avoids self-consistent field instabilities that have been encountered with simple charge mapping procedures. Potential of mean force (PMF) profiles of the p-nitrophenyl phosphate dissociation reaction in explicit solvent are computed from PBE0/6-31G* QM/MM molecular dynamics simulations with various electrostatic protocols. The CEw profiles are shown to be stable with respect to real-space Ewald cutoff, whereas the PMFs computed from truncated and switched electrostatics produce artifacts. PBE0/6-311G**, AM1/d-PhoT, and DFTB2 QM/MM simulations are performed to generate two-dimensional PMF profiles of the phosphoryl transesterification reactions with ethoxide and phenoxide leaving groups. The semiempirical models incorrectly produce a concerted ethoxide mechanism, whereas PBE0 correctly produces a stepwise mechanism. The ab initio reaction barriers agree more closely to experiment than the semiempirical models. The failure of Mulliken-charge QM/MM-Ewald is analyzed.
Collapse
Affiliation(s)
- Timothy J Giese
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey 08854-8087, United States
| | - Darrin M York
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
20
|
Kratz EG, Walker AR, Lagardère L, Lipparini F, Piquemal JP, Cisneros GA. LICHEM: A QM/MM program for simulations with multipolar and polarizable force fields. J Comput Chem 2016; 37:1019-29. [PMID: 26781073 PMCID: PMC4808410 DOI: 10.1002/jcc.24295] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/21/2015] [Accepted: 12/17/2015] [Indexed: 12/23/2022]
Abstract
We introduce an initial implementation of the LICHEM software package. LICHEM can interface with Gaussian, PSI4, NWChem, TINKER, and TINKER-HP to enable QM/MM calculations using multipolar/polarizable force fields. LICHEM extracts forces and energies from unmodified QM and MM software packages to perform geometry optimizations, single-point energy calculations, or Monte Carlo simulations. When the QM and MM regions are connected by covalent bonds, the pseudo-bond approach is employed to smoothly transition between the QM region and the polarizable force field. A series of water clusters and small peptides have been employed to test our initial implementation. The results obtained from these test systems show the capabilities of the new software and highlight the importance of including explicit polarization. © 2016 Wiley Periodicals, Inc.
Collapse
|
21
|
Khan FI, Wei DQ, Gu KR, Hassan MI, Tabrez S. Current updates on computer aided protein modeling and designing. Int J Biol Macromol 2016; 85:48-62. [DOI: 10.1016/j.ijbiomac.2015.12.072] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022]
|
22
|
Ojeda-May P, Pu J. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations. J Chem Phys 2015; 143:174111. [PMID: 26547162 PMCID: PMC4636498 DOI: 10.1063/1.4934880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 10/19/2015] [Indexed: 11/14/2022] Open
Abstract
The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential energy function into the conventional Coulomb r(-1) term and a term that contains the DSF contribution. The former is handled by the standard machinery of cutoff-based QM/MM simulations whereas the latter is incorporated into the QM/MM interaction Hamiltonian as a Fock matrix correction. We tested the resulting QM/MM-DSF method for two solution-phase reactions, i.e., the association of ammonium and chloride ions and a symmetric SN2 reaction in which a methyl group is exchanged between two chloride ions. The performance of the QM/MM-DSF method was assessed by comparing the potential of mean force (PMF) profiles with those from the QM/MM-Ewald and QM/MM-isotropic periodic sum (IPS) methods, both of which include long-range electrostatics explicitly. For ion association, the QM/MM-DSF method successfully eliminates the artificial free energy drift observed in the QM/MM-Cutoff simulations, in a remarkable agreement with the two long-range-containing methods. For the SN2 reaction, the free energy of activation obtained by the QM/MM-DSF method agrees well with both the QM/MM-Ewald and QM/MM-IPS results. The latter, however, requires a greater cutoff distance than QM/MM-DSF for a proper convergence of the PMF. Avoiding time-consuming lattice summation, the QM/MM-DSF method yields a 55% reduction in computational cost compared with the QM/MM-Ewald method. These results suggest that, in addition to QM/MM-IPS, the QM/MM-DSF method may serve as another efficient and accurate alternative to QM/MM-Ewald for treating electrostatics in condensed-phase simulations of chemical reactions.
Collapse
Affiliation(s)
- Pedro Ojeda-May
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, USA
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, USA
| |
Collapse
|