1
|
Zeng Y, Ma G, Li H, Cheng X, Miao X. Significant Power Consumption Reduction and Speed Boosting in Phase Change Memory with Nanocurrent Channels. NANO LETTERS 2024; 24:12658-12665. [PMID: 39316704 DOI: 10.1021/acs.nanolett.4c03900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The excessive power consumption is challenging for phase change memory (PCM) on its way to becoming universal memory in complex hierarchies of memory systems. Here, from the perspective of device structure, by adding a nanocurrent-channel (NCC) layer between the electrode layer and phase change layer, a RESET power consumption reduction by more than 95% and 10 times faster SET speed were realized simultaneously. Through the first principle calculations, Au and SiO2 were screened as the metal and insulating matrix material of NCC layer, respectively. Our PCM device with a Au-SiO2 NCC layer shows an ultralow RESET power consumption, down to 381 fJ, and an ultrafast SET speed (8 ns). Much higher current density near NCC in the phase change layer and thermal barrier effect of insulating matrix material were confirmed by finite element analysis (FEA), and the role of Au nanochannels was revealed by transmission electron microscopy (TEM). Our NCC layer structure provides a simple and practicable method to significantly decrease PCM power consumption.
Collapse
Affiliation(s)
- Yuntao Zeng
- School of Integrated Circuits, Hubei Key Laboratory for Advanced Memories, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ge Ma
- School of Integrated Circuits, Hubei Key Laboratory for Advanced Memories, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Han Li
- School of Integrated Circuits, Hubei Key Laboratory for Advanced Memories, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaomin Cheng
- School of Integrated Circuits, Hubei Key Laboratory for Advanced Memories, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangshui Miao
- School of Integrated Circuits, Hubei Key Laboratory for Advanced Memories, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Gao R, Ye X, Hu C, Zhang Z, Ji X, Zhang Y, Meng X, Yang H, Zhu X, Li RW. Nanoionics enabled atomic point contact construction and quantum conductance effects. MATERIALS HORIZONS 2024. [PMID: 39359178 DOI: 10.1039/d4mh00916a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The miniaturization of electronic devices is important for the development of high-density and function-integrated information devices. Atomic-point-contact (APC) structures refer to narrow contact areas formed by one or more atoms between two conductive electrodes that produce quantum conductance effects when the electrons pass through the APC channel, providing a new development path for the miniaturization of information devices. Recently, nanoionics has enabled the electric field reconfiguration of APC structures in solid-state electrolytes, offering new approaches to controlling the quantum conductance states, which may lead to the development of emerging information technologies with low power consumption, high speed, and high density. This review provides an overview of APC structures with a focus on the fabrication methods enabled by nanoionics technology. In particular, the advantages of electric field-driven nanoionics in the construction of APC structures are summarized, and the influence of external fields on quantum conductance effects is discussed. Recent studies on electric field regulation of APC structures to achieve precise control of quantum conductance states are also reviewed. The potential applications of quantum conductance effects in memory, computing, and encryption-related information technologies are further explored. Finally, the challenges and future prospects of quantum conductance effects in APC structures are discussed.
Collapse
Affiliation(s)
- Runsheng Gao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaoyu Ye
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Cong Hu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Ziyi Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhui Ji
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyu Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Meng
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojian Zhu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Zhu Z, Ewen JP, Kritikos EM, Giusti A, Dini D. Effect of Electric Fields on the Decomposition of Phosphate Esters. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:15959-15973. [PMID: 39355011 PMCID: PMC11440609 DOI: 10.1021/acs.jpcc.4c04412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Phosphate esters decompose on metal surfaces and form protective polyphosphate films. For many applications, such as in lubricants for electric vehicles and wind turbines, an understanding of the effect of electric fields on molecular decomposition is urgently required. Experimental investigations have yielded contradictory results, with some suggesting that electric fields improve tribological performance, while others have reported the opposite effect. Here, we use nonequilibrium molecular dynamics (NEMD) simulations to study the decomposition of tri-n-butyl phosphate (TNBP) molecules nanoconfined between ferrous surfaces (iron and iron oxide) under electrostatic fields. The reactive force field (ReaxFF) method is used to model the effects of chemical bonding and molecular dissociation. We show that the charge transfer with the polarization current equalization (QTPIE) method gives more realistic behavior compared to the standard charge equilibration (QEq) method under applied electrostatic fields. The rate of TNBP decomposition via carbon-oxygen bond dissociation is faster in the nanoconfined systems than that in the bulk due to the catalytic action of the surfaces. In all cases, the application of an electric field accelerates TNBP decomposition. When electric fields are applied to the confined systems, the phosphate anions are pulled toward the surface with high electric potential, while the alkyl cations are pulled to the surface with lower potential, leading to asymmetric film growth. Analysis of the temperature- and electric field strength-dependent dissociation rate constants using the Arrhenius equation suggests that, on reactive iron surfaces, the increased reactivity under an applied electric field is driven mostly by an increase in the pre-exponential factor, which is linked to the number of molecule-surface collisions. Conversely, the accelerated decomposition of TNBP on iron oxide surfaces can be attributed to a reduction in the activation energy with increasing electric field strength. Single-molecule nudged-elastic band (NEB) calculations also show a linear reduction in the energy barrier for carbon-oxygen bond breaking with electric field strength, due to stabilization of the charged transition state. The simulation results are consistent with experimental observations of enhanced and asymmetric tribofilm growth under electrostatic fields.
Collapse
Affiliation(s)
- Zhaoran Zhu
- Department
of Mechanical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - James P. Ewen
- Department
of Mechanical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Efstratios M. Kritikos
- Department
of Mechanical Engineering, Imperial College
London, London SW7 2AZ, U.K.
- Department
of Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Andrea Giusti
- Department
of Mechanical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Daniele Dini
- Department
of Mechanical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| |
Collapse
|
4
|
Tian Z, Yao G, Ren Z, Yu D, Tian J, Li M, Peng P, Ren L, Liu F, Fu Y. Metal Nanogap Memory: Performances and Switching Mechanism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26360-26373. [PMID: 38741057 DOI: 10.1021/acsami.4c01597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The nanogap memory (NGM) device, emerging as a promising nonvolatile memory candidate, has attracted increasing attention for its simple structure, nano/atomic scale size, elevated operating speed, and robustness to high temperatures. In this study, nanogap memories based on Pd, Au, and Pt were fabricated by combining nanofabrication with electromigration technology. Subsequent evaluations of the electrical characteristics were conducted under ambient air or vacuum conditions at room temperature. The investigation unveiled persistent challenges associated with metal NGM devices, including (1) prolonged SET operation time in comparison to RESET, (2) the potential generation of error bits when enhancing switching speeds, and (3) susceptibility to degradation during program/erase cycles. While these issues have been encountered by predecessors in NGM device development, the underlying causes have remained elusive. Employing molecular dynamics (MD) simulation, we have, for the first time, unveiled the dynamic processes of NGM devices during both SET and RESET operations. The MD simulation highlights that the adjustment of the tunneling gap spacing in nanogap memory primarily occurs through atomic migration or field evaporation. This dynamic process enables the device to transition between the high-resistance state (HRS) and the low-resistance state (LRS). The identified mechanism provides insight into the origins of the aforementioned challenges. Furthermore, the study proposes an effective method to enhance the endurance of NGM devices based on the elucidated mechanism.
Collapse
Affiliation(s)
- Zhongzheng Tian
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Guanwen Yao
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Zhongyang Ren
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Dacheng Yu
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Jiaojiao Tian
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Muchan Li
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Pei Peng
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Liming Ren
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Fei Liu
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| | - Yunyi Fu
- School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
5
|
Mohandas N, Bawari S, Shibuya JJT, Ghosh S, Mondal J, Narayanan TN, Cuesta A. Understanding electrochemical interfaces through comparing experimental and computational charge density-potential curves. Chem Sci 2024; 15:6643-6660. [PMID: 38725490 PMCID: PMC11077530 DOI: 10.1039/d4sc00746h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024] Open
Abstract
Electrode-electrolyte interfaces play a decisive role in electrochemical charge accumulation and transfer processes. Theoretical modelling of these interfaces is critical to decipher the microscopic details of such phenomena. Different force field-based molecular dynamics protocols are compared here in a view to connect calculated and experimental charge density-potential relationships. Platinum-aqueous electrolyte interfaces are taken as a model. The potential of using experimental charge density-potential curves to transform cell voltage into electrode potential in force-field molecular dynamics simulations, and the need for that purpose of developing simulation protocols that can accurately calculate the double-layer capacitance, are discussed.
Collapse
Affiliation(s)
- Nandita Mohandas
- Tata Institute of Fundamental Research-Hyderabad Hyderabad 500046 India
- Advanced Centre for Energy and Sustainability (ACES), School of Natural and Computing Sciences, University of Aberdeen AB24 3UE Aberdeen Scotland UK
| | - Sumit Bawari
- Tata Institute of Fundamental Research-Hyderabad Hyderabad 500046 India
| | - Jani J T Shibuya
- Advanced Centre for Energy and Sustainability (ACES), School of Natural and Computing Sciences, University of Aberdeen AB24 3UE Aberdeen Scotland UK
| | - Soumya Ghosh
- Tata Institute of Fundamental Research-Hyderabad Hyderabad 500046 India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research-Hyderabad Hyderabad 500046 India
| | | | - Angel Cuesta
- Advanced Centre for Energy and Sustainability (ACES), School of Natural and Computing Sciences, University of Aberdeen AB24 3UE Aberdeen Scotland UK
- Centre for Energy Transition, University of Aberdeen AB24 3FX Aberdeen Scotland UK
| |
Collapse
|
6
|
Milano G, Raffone F, Bejtka K, De Carlo I, Fretto M, Pirri FC, Cicero G, Ricciardi C, Valov I. Electrochemical rewiring through quantum conductance effects in single metallic memristive nanowires. NANOSCALE HORIZONS 2024; 9:416-426. [PMID: 38224292 DOI: 10.1039/d3nh00476g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Memristive devices have been demonstrated to exhibit quantum conductance effects at room temperature. In these devices, a detailed understanding of the relationship between electrochemical processes and ionic dynamic underlying the formation of atomic-sized conductive filaments and corresponding electronic transport properties in the quantum regime still represents a challenge. In this work, we report on quantum conductance effects in single memristive Ag nanowires (NWs) through a combined experimental and simulation approach that combines advanced classical molecular dynamics (MD) algorithms and quantum transport simulations (DFT). This approach provides new insights on quantum conductance effects in memristive devices by unravelling the intrinsic relationship between electronic transport and atomic dynamic reconfiguration of the nanofilment, by shedding light on deviations from integer multiples of the fundamental quantum of conductance depending on peculiar dynamic trajectories of nanofilament reconfiguration and on conductance fluctuations relying on atomic rearrangement due to thermal fluctuations.
Collapse
Affiliation(s)
- Gianluca Milano
- Advanced Materials Metrology and Life Sciences Division, INRiM (Istituto Nazionale di Ricerca Metrologica), Strada delle Cacce 91, 10135 Torino, Italy.
| | - Federico Raffone
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Katarzyna Bejtka
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
- Centre for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy
| | - Ivan De Carlo
- Advanced Materials Metrology and Life Sciences Division, INRiM (Istituto Nazionale di Ricerca Metrologica), Strada delle Cacce 91, 10135 Torino, Italy.
- Department of Electronics and Telecommunications, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Matteo Fretto
- Advanced Materials Metrology and Life Sciences Division, INRiM (Istituto Nazionale di Ricerca Metrologica), Strada delle Cacce 91, 10135 Torino, Italy.
| | - Fabrizio Candido Pirri
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
- Centre for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy
| | - Giancarlo Cicero
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Carlo Ricciardi
- Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Ilia Valov
- Forschungszentrum Jülich, Institute of Electrochemistry and Energy System, WilhelmJohnen-Straße, 52428, Jülich, Germany
- "Acad. Evgeni Budevski" (IEE-BAS), Bulgarian Academy of Sciences (BAS), Acad. G. Bonchev Str., Block 10, 1113 Sofia, Bulgaria
| |
Collapse
|
7
|
Kritikos EM, Lele A, van Duin ACT, Giusti A. Atomistic insight into the effects of electrostatic fields on hydrocarbon reaction kinetics. J Chem Phys 2023; 158:054109. [PMID: 36754820 DOI: 10.1063/5.0134785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Reactive Molecular Dynamics (MD) and Density Functional Theory (DFT) computations are performed to provide insight into the effects of external electrostatic fields on hydrocarbon reaction kinetics. By comparing the results from MD and DFT, the suitability of the MD method in modeling electrodynamics is first assessed. Results show that the electric field-induced polarization predicted by the MD charge equilibration method is in good agreement with various DFT charge partitioning schemes. Then, the effects of oriented external electric fields on the transition pathways of non-redox reactions are investigated. Results on the minimum energy path suggest that electric fields can cause catalysis or inhibition of oxidation reactions, whereas pyrolysis reactions are not affected due to the weaker electronegativity of the hydrogen and carbon atoms. MD simulations of isolated reactions show that the reaction kinetics is also affected by applied external Lorentz forces and interatomic Coulomb forces since they can increase or decrease the energy of collision depending on the molecular conformation. In addition, electric fields can affect the kinetics of polar species and force them to align in the direction of field lines. These effects are attributed to energy transfer via intermolecular collisions and stabilization under the external Lorentz force. The kinetics of apolar species is not significantly affected mainly due to the weak induced dipole moment even under strong electric fields. The dynamics and reaction rates of species are studied by means of large-scale combustion simulations of n-dodecane and oxygen mixtures. Results show that under strong electric fields, the fuel, oxidizer, and most product molecules experience translational and rotational acceleration mainly due to close charge transfer along with a reduction in their vibrational energy due to stabilization. This study will serve as a basis to improve the current methods used in MD and to develop novel methodologies for the modeling of macroscale reacting flows under external electrostatic fields.
Collapse
Affiliation(s)
- Efstratios M Kritikos
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Aditya Lele
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Adri C T van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrea Giusti
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
8
|
Insights into the reaction pathways of platinum dissolution and oxidation during electrochemical processes. Electrochem commun 2023. [DOI: 10.1016/j.elecom.2023.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
9
|
Bi S, Salanne M. Co-Ion Desorption as the Main Charging Mechanism in Metallic 1T-MoS 2 Supercapacitors. ACS NANO 2022; 16:18658-18666. [PMID: 36269844 DOI: 10.1021/acsnano.2c07272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metallic 1T-MoS2 is a promising electrode material for supercapacitor applications. Its layered structure allows the efficient intercalation of ions, leading to experimental volumetric capacitance as high as 140 F/cm3. Molecular dynamics could in principle be used to characterize its charging mechanism; however, unlike conventional nanoporous carbon, 1T-MoS2 is a multicomponent electrode. The Mo and S atoms have very different electronegativities so that 1T-MoS2 cannot be simulated accurately using the conventional constant potential method. In this work, we show that controlling the electrochemical potential of the atoms allows one to recover average partial charges for the elements in agreement with electronic structure calculations for the material at rest, without compromising the ability to simulate systems under an applied voltage. The simulations yield volumetric capacitances in agreement with experiments. We show that due to the large electronegativity of S, the co-ion desorption is the main charging mechanism at play during the charging process. This contrasts drastically with carbon materials for which ion exchange and counterion adsorption usually dominate. In the future, our method can be extended to the study of a wide range of families of 2D layered materials such as MXenes.
Collapse
Affiliation(s)
- Sheng Bi
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005Paris, France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), FR CNRS 3459, 80039Amiens Cedex, France
| | - Mathieu Salanne
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005Paris, France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), FR CNRS 3459, 80039Amiens Cedex, France
- Institut Universitaire de France (IUF), 75231Paris Cedex 05, France
| |
Collapse
|
10
|
Ringe S, Hörmann NG, Oberhofer H, Reuter K. Implicit Solvation Methods for Catalysis at Electrified Interfaces. Chem Rev 2021; 122:10777-10820. [PMID: 34928131 PMCID: PMC9227731 DOI: 10.1021/acs.chemrev.1c00675] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Implicit solvation
is an effective, highly coarse-grained approach
in atomic-scale simulations to account for a surrounding liquid electrolyte
on the level of a continuous polarizable medium. Originating in molecular
chemistry with finite solutes, implicit solvation techniques are now
increasingly used in the context of first-principles modeling of electrochemistry
and electrocatalysis at extended (often metallic) electrodes. The
prevalent ansatz to model the latter electrodes and the reactive surface
chemistry at them through slabs in periodic boundary condition supercells
brings its specific challenges. Foremost this concerns the difficulty
of describing the entire double layer forming at the electrified solid–liquid
interface (SLI) within supercell sizes tractable by commonly employed
density functional theory (DFT). We review liquid solvation methodology
from this specific application angle, highlighting in particular its
use in the widespread ab initio thermodynamics approach
to surface catalysis. Notably, implicit solvation can be employed
to mimic a polarization of the electrode’s electronic density
under the applied potential and the concomitant capacitive charging
of the entire double layer beyond the limitations of the employed
DFT supercell. Most critical for continuing advances of this effective
methodology for the SLI context is the lack of pertinent (experimental
or high-level theoretical) reference data needed for parametrization.
Collapse
Affiliation(s)
- Stefan Ringe
- Department of Energy Science and Engineering, Daegu Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.,Energy Science & Engineering Research Center, Daegu Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Nicolas G Hörmann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.,Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Harald Oberhofer
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany.,Chair for Theoretical Physics VII and Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| |
Collapse
|
11
|
Pireddu G, Scalfi L, Rotenberg B. A molecular perspective on induced charges on a metallic surface. J Chem Phys 2021; 155:204705. [PMID: 34852473 DOI: 10.1063/5.0076127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the response of the surface of metallic solids to external electric field sources is crucial to characterize electrode-electrolyte interfaces. Continuum electrostatics offer a simple description of the induced charge density at the electrode surface. However, such a simple description does not take into account features related to the atomic structure of the solid and to the molecular nature of the solvent and of the dissolved ions. In order to illustrate such effects and assess the ability of continuum electrostatics to describe the induced charge distribution, we investigate the behavior of a gold electrode interacting with sodium or chloride ions fixed at various positions, in a vacuum or in water, using all-atom constant-potential classical molecular dynamics simulations. Our analysis highlights important similarities between the two approaches, especially under vacuum conditions and when the ion is sufficiently far from the surface, as well as some limitations of the continuum description, namely, neglecting the charges induced by the adsorbed solvent molecules and the screening effect of the solvent when the ion is close to the surface. While the detailed features of the charge distribution are system-specific, we expect some of our generic conclusions on the induced charge density to hold for other ions, solvents, and electrode surfaces. Beyond this particular case, the present study also illustrates the relevance of such molecular simulations to serve as a reference for the design of improved implicit solvent models of electrode-electrolyte interfaces.
Collapse
Affiliation(s)
- Giovanni Pireddu
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Laura Scalfi
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| |
Collapse
|
12
|
Urquiza ML, Islam MM, van Duin ACT, Cartoixà X, Strachan A. Atomistic Insights on the Full Operation Cycle of a HfO 2-Based Resistive Random Access Memory Cell from Molecular Dynamics. ACS NANO 2021; 15:12945-12954. [PMID: 34329560 DOI: 10.1021/acsnano.1c01466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We characterize the atomic processes that underlie forming, reset, and set in HfO2-based resistive random access memory (RRAM) cells through molecular dynamics (MD) simulations, using an extended charge equilibration method to describe external electric fields. By tracking the migration of oxygen ions and the change in coordination of Hf atoms in the dielectric, we characterize the formation and dissolution of conductive filaments (CFs) during the operation of the device with atomic detail. Simulations of the forming process show that the CFs form through an oxygen exchange mechanism, induced by a cascade of oxygen displacements from the oxide to the active electrode, as opposed to aggregation of pre-existing oxygen vacancies. However, the filament breakup is dominated by lateral, rather than vertical (along the filament), motion of vacancies. In addition, depending on the temperature of the system, the reset can be achieved through a redox effect (bipolar switch), where oxygen diffusion is governed by the applied bias, or by a thermochemical process (unipolar switch), where the diffusion is driven by temperature. Unlike forming and similar to reset, the set process involves lateral oxygen atoms as well. This is driven by field localization associated with conductive paths.
Collapse
Affiliation(s)
- M Laura Urquiza
- Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Md Mahbubul Islam
- Department of Mechanical Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Adri C T van Duin
- Department of Mechanical Engineering, Pennsylvania State University, 240 Research East Building, University Park, Pennsylvania 16802, United States
| | - Xavier Cartoixà
- Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Alejandro Strachan
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Serva A, Scalfi L, Rotenberg B, Salanne M. Effect of the metallicity on the capacitance of gold-aqueous sodium chloride interfaces. J Chem Phys 2021; 155:044703. [PMID: 34340400 DOI: 10.1063/5.0060316] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electrochemistry experiments have established that the capacitance of electrode-electrolyte interfaces is much larger for good metals, such as gold and platinum, than for carbon-based materials. Despite the development of elaborate electrode interaction potentials, to date molecular dynamics simulations are not able to capture this effect. Here, we show that changing the width of the Gaussian charge distribution used to represent the atomic charges in gold is an effective way to tune its metallicity. Larger Gaussian widths lead to a capacitance of aqueous solutions (pure water and 1 M NaCl) in good agreement with recent ab initio molecular dynamics results. For pure water, the increase in the capacitance is not accompanied by structural changes, while in the presence of salt, the Na+ cations tend to adsorb significantly on the surface. For a strongly metallic gold electrode, these ions can even form inner sphere complexes on hollow sites of the surface.
Collapse
Affiliation(s)
- Alessandra Serva
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Laura Scalfi
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Mathieu Salanne
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| |
Collapse
|
14
|
Verduzco JC, Vergados JN, Strachan A, Marinero EE. Hybrid Polymer-Garnet Materials for All-Solid-State Energy Storage Devices. ACS OMEGA 2021; 6:15551-15558. [PMID: 34179598 PMCID: PMC8223208 DOI: 10.1021/acsomega.1c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Hybrid electrolyte materials comprising polymer-ionic salt matrixes embedded with garnet particles constitute a promising class of materials for the realization of all-solid-state batteries. In addition to providing solutions to the safety issues inherent to current liquid electrolytes, hybrid polymer electrolytes offer advantages over other solid-state electrolytes. This is because their functional properties such as ionic conductivity, electrochemical stability, and mechanical and thermal properties can be tailored to a particular application by independently optimizing the properties of the constituent materials. This independent optimization permits the rational design of solid-state electrolytes, thereby solving the current bottlenecks that prevent their practical implementation into battery devices. This Mini-Review starts with a survey of solid-state electrolytes, focusing on their materials and ion transport limitations. Next, we summarize the current understanding of transport mechanisms in composite polymer electrolytes (CPEs) with the purpose of identifying materials' solutions for further improving their properties. The overall goal of the Mini-Review is to foster heightened research interest in these hybrid structures to rapidly advance development of future all-solid-state battery devices.
Collapse
|
15
|
Abstract
Many key industrial processes, from electricity production, conversion, and storage to electrocatalysis or electrochemistry in general, rely on physical mechanisms occurring at the interface between a metallic electrode and an electrolyte solution, summarized by the concept of an electric double layer, with the accumulation/depletion of electrons on the metal side and of ions on the liquid side. While electrostatic interactions play an essential role in the structure, thermodynamics, dynamics, and reactivity of electrode-electrolyte interfaces, these properties also crucially depend on the nature of the ions and solvent, as well as that of the metal itself. Such interfaces pose many challenges for modeling because they are a place where quantum chemistry meets statistical physics. In the present review, we explore the recent advances in the description and understanding of electrode-electrolyte interfaces with classical molecular simulations, with a focus on planar interfaces and solvent-based liquids, from pure solvent to water-in-salt electrolytes.
Collapse
Affiliation(s)
- Laura Scalfi
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, F-75005 Paris, France
| | - Mathieu Salanne
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| | - Benjamin Rotenberg
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
16
|
Oshiki J, Nakano H, Sato H. Controlling potential difference between electrodes based on self-consistent-charge density functional tight binding. J Chem Phys 2021; 154:144107. [PMID: 33858148 DOI: 10.1063/5.0047992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A proper understanding and description of the electronic response of the electrode surfaces in electrochemical systems are quite important because the interactions between the electrode surface and electrolyte give rise to unique and useful interfacial properties. Atomistic modeling of the electrodes requires not only an accurate description of the electronic response under a constant-potential condition but also computational efficiency in order to deal with systems large enough to investigate the interfacial electrolyte structures. We thus develop a self-consistent-charge density functional tight binding based method to model a pair of electrodes in electrochemical cells under the constant-potential condition. The method is more efficient than the (ab initio) density functional theory calculations so that it can treat systems as large as those studied in classical atomistic simulations. It can also describe the electronic response of electrodes quantum mechanically and more accurately than the classical counterparts. The constant-potential condition is introduced through a Legendre transformation of the electronic energy with respect to the difference in the number of electrons in the two electrodes and their electrochemical potential difference, through which the Kohn-Sham equations for each electrode are variationally derived. The method is applied to platinum electrodes faced parallel to each other under an applied voltage. The electronic response to the voltage and a charged particle is compared with the result of a classical constant-potential method based on the chemical potential equalization principle.
Collapse
Affiliation(s)
- Jun Oshiki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroshi Nakano
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
17
|
Yang PY, Pao CW. Molecular Simulations of the Microstructure Evolution of Solid Electrolyte Interphase during Cyclic Charging/Discharging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5017-5027. [PMID: 33467849 DOI: 10.1021/acsami.0c18783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lithium (Li) metal is regarded as one of the most promising anode materials for use in next-generation high-energy-density rechargeable batteries because of its high volumetric and gravimetric specific capacity, as well as low reduction potential. Unfortunately, uncontrolled dendritic Li growth during cyclic charging/discharging leads to low columbic efficiency and critical safety issues. Hence, comprehensive understanding of the formation mechanism for Li-dendrite growth, particularly at the onset of dendrite formation, is essential for developing Li-metal anode batteries. In this study, reactive molecular dynamics (MD) simulations in combination with the electrochemical dynamics with implicit degrees of freedom (EChemDID) method were performed to investigate the formation and evolution of solid electrolyte interphase (SEI) films for a Li-metal anode under cyclic charging/discharging processes in two distinct dimensions, namely, electrolyte compositions and initial surface morphologies. Our simulations indicated that regardless of the electrolyte compositions and initial anode morphologies, inhomogeneous Li reduction, namely, the formation of Li-reduction "hotspots" during cyclic charging cycles, took place and could serve as the seed for subsequent dendrite growth. The fluorine-containing electrolyte additives could notably mitigate the Li-anode roughening processes by forming dense-SEI-layer products or suppressing electrolyte decomposition. A series of Li-ion-drifting simulations suggest that Li ions navigate through the SEI layer via pathways composed of low-density atoms and become reduced at these reduction hotspots, promoting inhomogeneous deposition and subsequent dendrite growth. The present study reveals atomistic details of the early stage of dendrite growth during cyclic loadings under different electrolyte compositions and anode morphologies, thereby providing insights for designing artificial SEI layers or electrolytes for long-life, high-capacity Li-ion batteries.
Collapse
Affiliation(s)
- Po-Yu Yang
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Wei Pao
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Department of Materials Science and Engineering, National Dong Hwa University, Hualien 974301, Taiwan
| |
Collapse
|
18
|
Kritikos E, Giusti A. Reactive Molecular Dynamics Investigation of Toluene Oxidation under Electrostatic Fields: Effect of the Modeling of Local Charge Distribution. J Phys Chem A 2020; 124:10705-10716. [DOI: 10.1021/acs.jpca.0c08040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Efstratios Kritikos
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Andrea Giusti
- Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
19
|
Wang X, Pawar G, Li Y, Ren X, Zhang M, Lu B, Banerjee A, Liu P, Dufek EJ, Zhang JG, Xiao J, Liu J, Meng YS, Liaw B. Glassy Li metal anode for high-performance rechargeable Li batteries. NATURE MATERIALS 2020; 19:1339-1345. [PMID: 32719511 DOI: 10.1038/s41563-020-0729-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Lithium metal has been considered an ideal anode for high-energy rechargeable Li batteries, although its nucleation and growth process remains mysterious, especially at the nanoscale. Here, cryogenic transmission electron microscopy was used to reveal the evolving nanostructure of Li metal deposits at various transient states in the nucleation and growth process, in which a disorder-order phase transition was observed as a function of current density and deposition time. The atomic interaction over wide spatial and temporal scales was depicted by reactive molecular dynamics simulations to assist in understanding the kinetics. Compared to crystalline Li, glassy Li outperforms in electrochemical reversibility, and it has a desired structure for high-energy rechargeable Li batteries. Our findings correlate the crystallinity of the nuclei with the subsequent growth of the nanostructure and morphology, and provide strategies to control and shape the mesostructure of Li metal to achieve high performance in rechargeable Li batteries.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Gorakh Pawar
- Department of Material Science and Engineering, Idaho National Laboratory, Idaho Falls, ID, USA
| | - Yejing Li
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Xiaodi Ren
- Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Minghao Zhang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Bingyu Lu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Abhik Banerjee
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Ping Liu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Eric J Dufek
- Department of Energy Storage and Advanced Transportation, Idaho National Laboratory, Idaho Falls, ID, USA
| | - Ji-Guang Zhang
- Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jie Xiao
- Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jun Liu
- Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ying Shirley Meng
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA.
| | - Boryann Liaw
- Department of Energy Storage and Advanced Transportation, Idaho National Laboratory, Idaho Falls, ID, USA.
| |
Collapse
|
20
|
Chan N, Vazirisereshk MR, Martini A, Egberts P. Insights into dynamic sliding contacts from conductive atomic force microscopy. NANOSCALE ADVANCES 2020; 2:4117-4124. [PMID: 36132756 PMCID: PMC9417200 DOI: 10.1039/d0na00414f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/12/2020] [Indexed: 06/16/2023]
Abstract
Friction in nanoscale contacts is determined by the size and structure of the interface that is hidden between the contacting bodies. One approach to investigating the origins of friction is to measure electrical conductivity as a proxy for contact size and structure. However, the relationships between contact, friction and conductivity are not fully understood, limiting the usefulness of such measurements for interpreting dynamic sliding properties. Here, atomic force microscopy (AFM) was used to simultaneously acquire lattice resolution images of the lateral force and current flow through the tip-sample contact formed between a highly oriented pyrolytic graphite (HOPG) sample and a conductive diamond AFM probe to explore the underlying mechanisms and correlations between friction and conductivity. Both current and lateral force exhibited fluctuations corresponding to the periodicity of the HOPG lattice. Unexpectedly, while lateral force increased during stick events of atomic stick-slip, the current decreased exponentially. Molecular dynamics (MD) simulations of a simple model system reproduced these trends and showed that the origin of the inverse correlation between current and lateral force during atomic stick-slip was atom-atom distance across the contact. The simulations further demonstrated transitions between crystallographic orientation during slip events were reflected in both lateral force and current. These results confirm that the correlation between conduction and atom-atom distance previously proposed for stationary contacts can be extended to sliding contacts in the stick-slip regime.
Collapse
Affiliation(s)
- Nicholas Chan
- Department of Mechanical and Manufacturing Engineering, University of Calgary 2500 Drive NW Calgary Alberta T2N 1N4 Canada
| | - Mohammad R Vazirisereshk
- School of Engineering, University of California Merced 5200N Lake Road Merced California 95343 USA
| | - Ashlie Martini
- School of Engineering, University of California Merced 5200N Lake Road Merced California 95343 USA
| | - Philip Egberts
- Department of Mechanical and Manufacturing Engineering, University of Calgary 2500 Drive NW Calgary Alberta T2N 1N4 Canada
| |
Collapse
|
21
|
Takahashi K, Nakano H, Sato H. A polarizable molecular dynamics method for electrode–electrolyte interfacial electron transfer under the constant chemical-potential-difference condition on the electrode electrons. J Chem Phys 2020; 153:054126. [DOI: 10.1063/5.0020619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ken Takahashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hiroshi Nakano
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
22
|
Scalfi L, Limmer DT, Coretti A, Bonella S, Madden PA, Salanne M, Rotenberg B. Charge fluctuations from molecular simulations in the constant-potential ensemble. Phys Chem Chem Phys 2020; 22:10480-10489. [DOI: 10.1039/c9cp06285h] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Statistical mechanics of constant-potential molecular simulations yields a new fluctuation–dissipation relation for the differential capacitance.
Collapse
Affiliation(s)
- Laura Scalfi
- Sorbonne Université
- CNRS
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux
- F-75005 Paris
- France
| | - David T. Limmer
- Department of Chemistry
- University of California
- Berkeley
- USA
- Kavli Energy NanoScience Institute
| | - Alessandro Coretti
- Department of Mathematical Sciences
- Politecnico di Torino
- I-10129 Torino
- Italy
- Centre Européen de Calcul Atomique et Moléculaire (CECAM)
| | - Sara Bonella
- Centre Européen de Calcul Atomique et Moléculaire (CECAM)
- Ecole Polytechnique Fédérale de Lausanne
- 1015 Lausanne
- Switzerland
| | | | - Mathieu Salanne
- Sorbonne Université
- CNRS
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux
- F-75005 Paris
- France
| | - Benjamin Rotenberg
- Sorbonne Université
- CNRS
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux
- F-75005 Paris
- France
| |
Collapse
|
23
|
Nakano H, Sato H. A chemical potential equalization approach to constant potential polarizable electrodes for electrochemical-cell simulations. J Chem Phys 2019; 151:164123. [DOI: 10.1063/1.5123365] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hiroshi Nakano
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
24
|
Chen R, Vishnubhotla SB, Jacobs TDB, Martini A. Simulations of the effect of an oxide on contact area measurements from conductive atomic force microscopy. NANOSCALE 2019; 11:1029-1036. [PMID: 30569937 DOI: 10.1039/c8nr08605b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoscale contact area in conductive atomic force microscopy can be determined by analyzing current flow using electron transport theories. However, it is recognized that native oxides on the conductive tip will reduce current flow, thus degrading the accuracy of the measured contact area. To quantify the adverse effect of an oxide on contact area measurements, we use molecular dynamics simulations of an oxide-coated platinum tip and a crystalline platinum substrate, where both the contact size and conductance can be inferred from the positions of atoms in the interface. We develop a method to approximate conductance based on the distance between atoms in platinum channels across the contact. Then, the contact area calculated from conductance using ballistic transport and tunneling theories is compared to that obtained using the known positions of atoms in the contact. The difference is small for very thin (<0.1 nm) or very thick (>1.0 nm) oxides, where ballistic transport and tunneling theories work well; however, the difference is significant for oxides between these limits, which is expected to be the case for platinum in many practical applications.
Collapse
Affiliation(s)
- Rimei Chen
- Department of Mechanical Engineering, University of California-Merced, Merced, CA 95343, USA.
| | | | | | | |
Collapse
|
25
|
NAKANOA H, SATO H. Classical Molecular Dynamics Simulation of Metal Electrodes-Electrolyte Interface. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2019. [DOI: 10.2477/jccj.2018-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hiroshi NAKANOA
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University
| | - Hirofumi SATO
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University
| |
Collapse
|
26
|
Xu K, Islam MM, Guzman D, Seabaugh AC, Strachan A, Fullerton-Shirey SK. Pulse Dynamics of Electric Double Layer Formation on All-Solid-State Graphene Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43166-43176. [PMID: 30422628 DOI: 10.1021/acsami.8b13649] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electric double layer (EDL) dynamics in graphene field-effect transistors (FETs) gated with polyethylene oxide (PEO)-based electrolytes are studied by molecular dynamics (MD) simulations from picoseconds to nanoseconds and experimentally from microseconds to milliseconds. Under an applied field of approximately mV/nm, EDL formation on graphene FETs gated with PEO:CsClO4 occurs on the timescale of microseconds at room temperature and strengthens within 1 ms to a sheet carrier density of nS ≈ 1013 cm-2. Stronger EDLs (i.e., larger nS) are induced experimentally by pulsing with applied voltages exceeding the electrochemical window of the electrolyte; electrochemistry is avoided using short pulses of a few milliseconds. Dynamics on picosecond to nanosecond timescales are accessed using MD simulations of PEO:LiClO4 between graphene electrodes with field strengths of hundreds of mV/nm which is 100× larger than experiment. At 100 mV/nm, EDL formation initiates in sub-nanoseconds achieving charge densities up to 6 × 1013 cm-2 within 3 nanoseconds. The modeling shows that under sufficiently high electric fields, EDLs with densities ∼1013 cm-2 can form within a nanosecond, which is a timescale relevant for high-performance electronics such as EDL transistors (EDLTs). Moreover, the combination of experiment and modeling shows that the timescale for EDL formation ( nS = 1013 to 1014 cm-2) can be tuned by 9 orders of magnitude by adjusting the field strength by only 3 orders of magnitude.
Collapse
Affiliation(s)
| | - Md Mahbubul Islam
- School of Materials Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - David Guzman
- School of Materials Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Alan C Seabaugh
- Department of Electrical Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Alejandro Strachan
- School of Materials Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | | |
Collapse
|
27
|
Geada IL, Ramezani-Dakhel H, Jamil T, Sulpizi M, Heinz H. Insight into induced charges at metal surfaces and biointerfaces using a polarizable Lennard-Jones potential. Nat Commun 2018; 9:716. [PMID: 29459638 PMCID: PMC5818522 DOI: 10.1038/s41467-018-03137-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
Metallic nanostructures have become popular for applications in therapeutics, catalysts, imaging, and gene delivery. Molecular dynamics simulations are gaining influence to predict nanostructure assembly and performance; however, instantaneous polarization effects due to induced charges in the free electron gas are not routinely included. Here we present a simple, compatible, and accurate polarizable potential for gold that consists of a Lennard–Jones potential and a harmonically coupled core-shell charge pair for every metal atom. The model reproduces the classical image potential of adsorbed ions as well as surface, bulk, and aqueous interfacial properties in excellent agreement with experiment. Induced charges affect the adsorption of ions onto gold surfaces in the gas phase at a strength similar to chemical bonds while ions and charged peptides in solution are influenced at a strength similar to intermolecular bonds. The proposed model can be applied to complex gold interfaces, electrode processes, and extended to other metals. Molecular dynamics models for predicting the behavior of metallic nanostructures typically do not take into account polarization effects in metals. Here, the authors introduce a polarizable Lennard–Jones potential that provides quantitative insight into the role of induced charges at metal surfaces and related complex material interfaces.
Collapse
Affiliation(s)
- Isidro Lorenzo Geada
- Department of Physics, University of Mainz, Staudingerweg 7, D-55128, Mainz, Germany
| | - Hadi Ramezani-Dakhel
- Department of Polymer Engineering, University of Akron, 250S Forge St, Akron, OH, 44325, USA.,Institute for Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Tariq Jamil
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Ave, Boulder, CO, 80309, USA
| | - Marialore Sulpizi
- Department of Physics, University of Mainz, Staudingerweg 7, D-55128, Mainz, Germany.
| | - Hendrik Heinz
- Department of Polymer Engineering, University of Akron, 250S Forge St, Akron, OH, 44325, USA. .,Department of Chemical and Biological Engineering, University of Colorado-Boulder, 3415 Colorado Ave, Boulder, CO, 80309, USA.
| |
Collapse
|
28
|
Liang T, Antony AC, Akhade SA, Janik MJ, Sinnott SB. Applied Potentials in Variable-Charge Reactive Force Fields for Electrochemical Systems. J Phys Chem A 2018; 122:631-638. [DOI: 10.1021/acs.jpca.7b06064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Andrew C. Antony
- Department
of Materials Science and Engineering, The University of Florida, Gainesville, Florida 32611, United States
| | - Sneha A. Akhade
- Institute
for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | | | | |
Collapse
|
29
|
Hu X, Martini A. Atomistic simulations of contact area and conductance at nanoscale interfaces. NANOSCALE 2017; 9:16852-16857. [PMID: 29075737 DOI: 10.1039/c7nr05326f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Atomistic simulations were used to study conductance across the interface between a nanoscale gold probe and a graphite surface with a step edge. Conductance on the graphite terrace was observed to increase with load and be approximately proportional to contact area calculated from the positions of atoms in the interface. The relationship between area and conductance was further explored by varying the position of the contact relative to the location of the graphite step edge. These simulations reproduced a previously-reported current dip at step edges measured experimentally and the trend was explained by changes in both contact area and the distribution of distances between atoms in the interface. The novel approach reported here provides a foundation for future studies of the fundamental relationships between conductance, load and surface topography at the atomic scale.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Mechanical Engineering, University of California, Merced, CA 95343, USA.
| | | |
Collapse
|
30
|
Onofrio N, Guzman D, Strachan A. Atomistic simulations of electrochemical metallization cells: mechanisms of ultra-fast resistance switching in nanoscale devices. NANOSCALE 2016; 8:14037-14047. [PMID: 27218609 DOI: 10.1039/c6nr01335j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We describe a new method that enables reactive molecular dynamics (MD) simulations of electrochemical processes and apply it to study electrochemical metallization cells (ECMs). The model, called EChemDID, extends the charge equilibration method to capture the effect of external electrochemical potential on partial atomic charges and describes its equilibration over connected metallic structures, on-the-fly, during the MD simulation. We use EChemDID to simulate resistance switching in nanoscale ECMs; these devices consist of an electroactive metal separated from an inactive electrode by an insulator and can be reversibly switched to a low-resistance state by the electrochemical formation of a conducting filament between electrodes. Our structures use Cu as the active electrode and SiO2 as the dielectric and have dimensions at the foreseen limit of scalability of the technology, with a dielectric thickness of approximately 1 nm. We explore the effect of device geometry on switching timescales and find that nanowires with an electroactive shell, where ions migrate towards a smaller inactive electrode core, result in faster switching than planar devices. We observe significant device-to-device variability in switching timescales and intermittent switching for these nanoscale devices. To characterize the evolution in the electronic structure of the dielectric as dissolved metallic ions switch the device, we perform density functional theory calculations on structures obtained from an EChemDID MD simulation. These results confirm the appearance of states around the Fermi energy as the metallic filament bridges the electrodes and show that the metallic ions and not defects in the dielectric contribute to the majority of those states.
Collapse
Affiliation(s)
- Nicolas Onofrio
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47906, USA.
| | | | | |
Collapse
|
31
|
Sukhomlinov SV, Müser MH. Charge-transfer potentials for ionic crystals: Cauchy violation, LO-TO splitting, and the necessity of an ionic reference state. J Chem Phys 2015; 143:224101. [PMID: 26671352 DOI: 10.1063/1.4936575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this work, we study how including charge transfer into force fields affects the predicted elastic and vibrational Γ-point properties of ionic crystals, in particular those of rock salt. In both analytical and numerical calculations, we find that charge transfer generally leads to a negative contribution to the Cauchy pressure, P(C) ≡ C12 - C66, where C12 and C66 are elements of the elastic tensor. This contribution increases in magnitude with pressure for different charge-transfer approaches in agreement with results obtained with density functional theory (DFT). However, details of the charge-transfer models determine the pressure dependence of the longitudinal optical-transverse optical splitting and that for partial charges. These last two quantities increase with density as long as the chemical hardness depends at most weakly on the environment while experiments and DFT find a decrease. In order to reflect the correct trends, the charge-transfer expansion has to be made around ions and the chemical (bond) hardness has to increase roughly exponentially with inverse density or bond lengths. Finally, the adjustable force-field parameters only turn out meaningful, when the expansion is made around ions.
Collapse
Affiliation(s)
- Sergey V Sukhomlinov
- Jülich Supercomputer Centre, Institute for Advanced Simulations, FZ Jülich, Jülich, Germany
| | - Martin H Müser
- Jülich Supercomputer Centre, Institute for Advanced Simulations, FZ Jülich, Jülich, Germany
| |
Collapse
|