1
|
Neufeld VA, Berkelbach TC. Highly Accurate Electronic Structure of Metallic Solids from Coupled-Cluster Theory with Nonperturbative Triple Excitations. PHYSICAL REVIEW LETTERS 2023; 131:186402. [PMID: 37977636 DOI: 10.1103/physrevlett.131.186402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023]
Abstract
Coupled-cluster theory with single, double, and perturbative triple excitations (CCSD(T))-often considered the "gold standard" of main-group quantum chemistry-is inapplicable to three-dimensional metals due to an infrared divergence, preventing its application to many important problems in materials science. We study the full, nonperturbative inclusion of triple excitations (CCSDT) and propose a new, iterative method, which we call ring-CCSDT, that resums the essential triple excitations with the same N^{7} run-time scaling as CCSD(T). CCSDT and ring-CCSDT are used to calculate the correlation energy of the uniform electron gas at metallic densities and the structural properties of solid lithium. Inclusion of connected triple excitations is shown to be essential to achieving high accuracy. We also investigate semiempirical CC methods based on spin-component scaling and the distinguishable cluster approximation and find that they enhance the accuracy of their parent ab initio methods.
Collapse
Affiliation(s)
- Verena A Neufeld
- 1Department of Chemistry, Columbia University, New York, New York 10027, USA
- 2Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
2
|
Masios N, Irmler A, Schäfer T, Grüneis A. Averting the Infrared Catastrophe in the Gold Standard of Quantum Chemistry. PHYSICAL REVIEW LETTERS 2023; 131:186401. [PMID: 37977639 DOI: 10.1103/physrevlett.131.186401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/27/2023] [Indexed: 11/19/2023]
Abstract
Coupled-cluster theories can be used to compute ab initio electronic correlation energies of real materials with systematically improvable accuracy. However, the widely used coupled cluster singles and doubles plus perturbative triples [CCSD(T)] method is only applicable to insulating materials. For zero-gap materials the truncation of the underlying many-body perturbation expansion leads to an infrared catastrophe. Here, we present a novel perturbative triples formalism denoted as (cT) that yields convergent correlation energies in metallic systems. Furthermore, the computed correlation energies for the three-dimensional uniform electron gas at metallic densities are in good agreement with quantum Monte Carlo results. At the same time the newly proposed method retains all desirable properties of CCSD(T) such as its accuracy for insulating systems as well as its low computational cost compared to a full inclusion of the triples. This paves the way for ab initio calculations of real metals with chemical accuracy.
Collapse
Affiliation(s)
- Nikolaos Masios
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Andreas Irmler
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Tobias Schäfer
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Andreas Grüneis
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| |
Collapse
|
3
|
Goldzak T, Wang X, Ye HZ, Berkelbach TC. Accurate thermochemistry of covalent and ionic solids from spin-component-scaled MP2. J Chem Phys 2022; 157:174112. [PMID: 36347707 PMCID: PMC9637026 DOI: 10.1063/5.0119633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/11/2022] [Indexed: 11/14/2022] Open
Abstract
We study the performance of spin-component-scaled second-order Møller-Plesset perturbation theory (SCS-MP2) for the prediction of the lattice constant, bulk modulus, and cohesive energy of 12 simple, three-dimensional covalent and ionic semiconductors and insulators. We find that SCS-MP2 and the simpler scaled opposite-spin MP2 (SOS-MP2) yield predictions that are significantly improved over the already good performance of MP2. Specifically, when compared to experimental values with zero-point vibrational corrections, SCS-MP2 (SOS-MP2) yields mean absolute errors of 0.015 (0.017) Å for the lattice constant, 3.8 (3.7) GPa for the bulk modulus, and 0.06 (0.08) eV for the cohesive energy, which are smaller than those of leading density functionals by about a factor of two or more. We consider a reparameterization of the spin-scaling parameters and find that the optimal parameters for these solids are very similar to those already in common use in molecular quantum chemistry, suggesting good transferability and reliable future applications to surface chemistry on insulators.
Collapse
Affiliation(s)
- Tamar Goldzak
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Xiao Wang
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Hong-Zhou Ye
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
4
|
Christlmaier EM, Kats D, Alavi A, Usvyat D. Full Configuration Interaction Quantum Monte Carlo treatment of fragments embedded in a periodic mean field. J Chem Phys 2022; 156:154107. [DOI: 10.1063/5.0084040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an embedded fragment approach for high-level quantum chemical calculations on local features in periodic systems. The fragment is defined as a set of localized orbitals (occupied and virtual) corresponding to a converged periodic Hartree-Fock solution. These orbitals serve as the basis for the in-fragment post-Hartree Fock treatment. The embedding field for the fragment, consisting of the Coulomb and exchange potential from the rest of the crystal, is included in the fragment's one-electron Hamiltonian. As an application of the embedded fragment approach we investigate the performanceof full configuration interaction quantum Monte Carlo (FCIQMC) with the adaptive shift. As the orbital choice we use the natural orbitals from the distinguishable cluster method with singles and doubles. FCIQMC is a stochastic approximation to the full CI method and can be routinely applied to much larger active spaces than the latter. This makes this method especially attractive in the context of open shell defects in crystals, where fragments of adequate size can be ratherlarge. As a test case we consider dissociation of a fluorine atom from a fluorographane surface. This process poses a challenge for high-level electronic structure models as both the static and dynamic correlations are essential here. Furthermore the active space for an adequate fragment (32 electrons in 173 orbitals) is already quite large even for FCIQMC. Despite this, FCIQMC delivers accurate dissociation and total energies.
Collapse
Affiliation(s)
| | - Daniel Kats
- Max-Planck-Institute for Solid State Research, Germany
| | - Ali Alavi
- Max-Planck-Institute for Solid State Research, Germany
| | - Denis Usvyat
- Institute of Chemistry, Humboldt University of Berlin, Germany
| |
Collapse
|
5
|
Ye HZ, Berkelbach TC. Fast periodic Gaussian density fitting by range separation. J Chem Phys 2021; 154:131104. [PMID: 33832275 DOI: 10.1063/5.0046617] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present an efficient implementation of periodic Gaussian density fitting (GDF) using the Coulomb metric. The three-center integrals are divided into two parts by range-separating the Coulomb kernel, with the short-range part evaluated in real space and the long-range part in reciprocal space. With a few algorithmic optimizations, we show that this new method-which we call range-separated GDF (RSGDF)-scales sublinearly to linearly with the number of k-points for small to medium-sized k-point meshes that are commonly used in periodic calculations with electron correlation. Numerical results on a few three-dimensional solids show about ten-fold speedups over the previously developed GDF with little precision loss. The error introduced by RSGDF is about 10-5Eh in the converged Hartree-Fock energy with default auxiliary basis sets and can be systematically reduced by increasing the size of the auxiliary basis with little extra work.
Collapse
Affiliation(s)
- Hong-Zhou Ye
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
6
|
Sajid A, Ford MJ, Reimers JR. Single-photon emitters in hexagonal boron nitride: a review of progress. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:044501. [PMID: 31846956 DOI: 10.1088/1361-6633/ab6310] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This report summarizes progress made in understanding properties such as zero-phonon-line energies, emission and absorption polarizations, electron-phonon couplings, strain tuning and hyperfine coupling of single photon emitters in hexagonal boron nitride. The primary aims of this research are to discover the chemical nature of the emitting centres and to facilitate deployment in device applications. Critical analyses of the experimental literature and data interpretation, as well as theoretical approaches used to predict properties, are made. In particular, computational and theoretical limitations and challenges are discussed, with a range of suggestions made to overcome these limitations, striving to achieve realistic predictions concerning the nature of emitting centers. A symbiotic relationship is required in which calculations focus on properties that can easily be measured, whilst experiments deliver results in a form facilitating mass-produced calculations.
Collapse
Affiliation(s)
- A Sajid
- University of Technology Sydney, School of Mathematical and Physical Sciences, Ultimo, New South Wales 2007, Australia. CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark. Department of Physics, GC University Faisalabad, Allama Iqbal Road, 38000 Faisalabad, Pakistan. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
7
|
Lewis AM, Berkelbach TC. Ab Initio Linear and Pump-Probe Spectroscopy of Excitons in Molecular Crystals. J Phys Chem Lett 2020; 11:2241-2246. [PMID: 32109074 DOI: 10.1021/acs.jpclett.0c00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Linear and nonlinear spectroscopies are powerful tools used to investigate the energetics and dynamics of electronic excited states of both molecules and crystals. While highly accurate ab initio calculations of molecular spectra can be performed relatively routinely, extending these calculations to periodic systems is challenging. Here, we present calculations of the linear absorption spectrum and pump-probe two-photon photoemission spectra of the naphthalene crystal using equation-of-motion coupled-cluster theory with single and double excitations (EOM-CCSD). Molecular acene crystals are of interest due to the low-energy multiexciton singlet states they exhibit, which have been studied extensively as intermediates involved in singlet fission. Our linear absorption spectrum is in good agreement with experiment, predicting a first exciton absorption peak at 4.4 eV, and our two-photon photoemission spectra capture the qualitative behavior of multiexciton states, whose double-excitation character cannot be captured by current methods. The simulated pump-probe spectra provide support for existing interpretations of two-photon photoemission experiments in closely related acene crystals such as tetracene and pentacene.
Collapse
Affiliation(s)
- Alan M Lewis
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Timothy C Berkelbach
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| |
Collapse
|
8
|
Mattsson S, Paulus B, Redeker FA, Beckers H, Riedel S, Müller C. The Crystal Structure of α‐F
2
: Solving a 50 Year Old Puzzle Computationally. Chemistry 2019; 25:3318-3324. [DOI: 10.1002/chem.201805300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Stefan Mattsson
- Institut für Chemie und BiochemieFreie Universitat Berlin Takustraße 3 14195 Berlin Germany
| | - Beate Paulus
- Institut für Chemie und BiochemieFreie Universitat Berlin Takustraße 3 14195 Berlin Germany
| | - Frenio A. Redeker
- Institut für Chemie und BiochemieFreie Universität Berlin Fabeckstr. 34–36 14195 Berlin Germany
| | - Helmut Beckers
- Institut für Chemie und BiochemieFreie Universität Berlin Fabeckstr. 34–36 14195 Berlin Germany
| | - Sebastian Riedel
- Institut für Chemie und BiochemieFreie Universität Berlin Fabeckstr. 34–36 14195 Berlin Germany
| | - Carsten Müller
- Institut für Chemie und BiochemieFreie Universitat Berlin Takustraße 3 14195 Berlin Germany
| |
Collapse
|
9
|
Al-Hamdani YS, Tkatchenko A. Understanding non-covalent interactions in larger molecular complexes from first principles. J Chem Phys 2019; 150:010901. [PMID: 30621423 PMCID: PMC6910608 DOI: 10.1063/1.5075487] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023] Open
Abstract
Non-covalent interactions pervade all matter and play a fundamental role in layered materials, biological systems, and large molecular complexes. Despite this, our accumulated understanding of non-covalent interactions to date has been mainly developed in the tens-of-atoms molecular regime. This falls considerably short of the scales at which we would like to understand energy trends, structural properties, and temperature dependencies in materials where non-covalent interactions have an appreciable role. However, as more reference information is obtained beyond moderately sized molecular systems, our understanding is improving and we stand to gain pertinent insights by tackling more complex systems, such as supramolecular complexes, molecular crystals, and other soft materials. In addition, accurate reference information is needed to provide the drive for extending the predictive power of more efficient workhorse methods, such as density functional approximations that also approximate van der Waals dispersion interactions. In this perspective, we discuss the first-principles approaches that have been used to obtain reference interaction energies for beyond modestly sized molecular complexes. The methods include quantum Monte Carlo, symmetry-adapted perturbation theory, non-canonical coupled cluster theory, and approaches based on the random-phase approximation. By considering the approximations that underpin each method, the most accurate theoretical references for supramolecular complexes and molecular crystals to date are ascertained. With these, we also assess a handful of widely used exchange-correlation functionals in density functional theory. The discussion culminates in a framework for putting into perspective the accuracy of high-level wavefunction-based methods and identifying future challenges.
Collapse
Affiliation(s)
- Yasmine S Al-Hamdani
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Alexandre Tkatchenko
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
10
|
Spencer JS, Neufeld VA, Vigor WA, Franklin RST, Thom AJW. Large scale parallelization in stochastic coupled cluster. J Chem Phys 2018; 149:204103. [DOI: 10.1063/1.5047420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- J. S. Spencer
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - V. A. Neufeld
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - W. A. Vigor
- Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - R. S. T. Franklin
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - A. J. W. Thom
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
11
|
Irmler A, Burow AM, Pauly F. Robust Periodic Fock Exchange with Atom-Centered Gaussian Basis Sets. J Chem Theory Comput 2018; 14:4567-4580. [PMID: 30080979 DOI: 10.1021/acs.jctc.8b00122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we present a robust implementation of the periodic Fock exchange for atom-centered Gaussian-type orbitals (GTOs). We discuss the divergence, appearing in the formulation of the periodic Fock exchange in the case of a finite number of k-points, and compare two schemes that remove it. These are the minimum image convention (MIC) and the truncated Coulomb interaction (TCI) that we use here in combination with k-meshes. We observe artifacts in four-center integrals of GTOs, when evaluated in the TCI scheme. They carry over to the exchange and density matrices of Hartree-Fock calculations for TCI but are absent in MIC. At semiconducting and insulating systems, we show that both MIC and TCI yield the same energies for a sufficiently large supercell or k-mesh, but the self-consistent field algorithm is more stable for MIC. We therefore conclude that the MIC is superior to TCI and validate our implementation by comparing not only to other GTO-based calculations but also by demonstrating excellent agreement with results of plane-wave codes for sufficiently large Gaussian basis sets.
Collapse
Affiliation(s)
- Andreas Irmler
- Department of Physics , University of Konstanz , Universitätsstraße 10 , D-78464 Konstanz , Germany
| | - Asbjörn M Burow
- Department of Chemistry , Ludwig-Maximilians-Universität (LMU) Munich , Butenandtstraße 7 , D-81377 Munich , Germany
| | - Fabian Pauly
- Department of Physics , University of Konstanz , Universitätsstraße 10 , D-78464 Konstanz , Germany.,Okinawa Institute of Science and Technology Graduate University , Onna-son , Okinawa 904-0395 , Japan
| |
Collapse
|
12
|
Lange MF, Berkelbach TC. On the Relation between Equation-of-Motion Coupled-Cluster Theory and the GW Approximation. J Chem Theory Comput 2018; 14:4224-4236. [DOI: 10.1021/acs.jctc.8b00455] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Malte F. Lange
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Timothy C. Berkelbach
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
13
|
Reimers JR, Sajid A, Kobayashi R, Ford MJ. Understanding and Calibrating Density-Functional-Theory Calculations Describing the Energy and Spectroscopy of Defect Sites in Hexagonal Boron Nitride. J Chem Theory Comput 2018; 14:1602-1613. [DOI: 10.1021/acs.jctc.7b01072] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeffrey R. Reimers
- International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University, Shanghai 200444, China
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - A. Sajid
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- Department of Physics, GC University Faisalabad, Allama Iqbal Road, 38000 Faisalabad, Pakistan
| | - Rika Kobayashi
- National Computational Infrastructure, The Australian National University, Canberra, Austrailian Capital Territory 2600, Australia
| | - Michael J. Ford
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
14
|
Neufeld VA, Thom AJW. A study of the dense uniform electron gas with high orders of coupled cluster. J Chem Phys 2017; 147:194105. [DOI: 10.1063/1.5003794] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Verena A. Neufeld
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alex J. W. Thom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
15
|
Tsatsoulis T, Hummel F, Usvyat D, Schütz M, Booth GH, Binnie SS, Gillan MJ, Alfè D, Michaelides A, Grüneis A. A comparison between quantum chemistry and quantum Monte Carlo techniques for the adsorption of water on the (001) LiH surface. J Chem Phys 2017; 146:204108. [PMID: 28571392 PMCID: PMC5446292 DOI: 10.1063/1.4984048] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/11/2017] [Indexed: 12/03/2022] Open
Abstract
We present a comprehensive benchmark study of the adsorption energy of a single water molecule on the (001) LiH surface using periodic coupled cluster and quantum Monte Carlo theories. We benchmark and compare different implementations of quantum chemical wave function based theories in order to verify the reliability of the predicted adsorption energies and the employed approximations. Furthermore we compare the predicted adsorption energies to those obtained employing widely used van der Waals density-functionals. Our findings show that quantum chemical approaches are becoming a robust and reliable tool for condensed phase electronic structure calculations, providing an additional tool that can also help in potentially improving currently available van der Waals density-functionals.
Collapse
Affiliation(s)
- Theodoros Tsatsoulis
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - Felix Hummel
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - Denis Usvyat
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-St. 2, D-12489 Berlin, Germany
| | - Martin Schütz
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-St. 2, D-12489 Berlin, Germany
| | - George H Booth
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Simon S Binnie
- London Centre for Nanotechnology, University College London, Gordon St., London WC1H 0AH, United Kingdom
| | - Michael J Gillan
- London Centre for Nanotechnology, University College London, Gordon St., London WC1H 0AH, United Kingdom
| | - Dario Alfè
- London Centre for Nanotechnology, University College London, Gordon St., London WC1H 0AH, United Kingdom
| | - Angelos Michaelides
- London Centre for Nanotechnology, University College London, Gordon St., London WC1H 0AH, United Kingdom
| | - Andreas Grüneis
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| |
Collapse
|
16
|
Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0017] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Masur O, Schütz M, Maschio L, Usvyat D. Fragment-Based Direct-Local-Ring-Coupled-Cluster Doubles Treatment Embedded in the Periodic Hartree–Fock Solution. J Chem Theory Comput 2016; 12:5145-5156. [DOI: 10.1021/acs.jctc.6b00651] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oliver Masur
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, 93049 Regensburg, Germany
| | - Martin Schütz
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, 93049 Regensburg, Germany
| | - Lorenzo Maschio
- Dipartimento
di Chimica, and NIS (Nanostructured Interfaces and Surfaces) Centre, Università di Torino, via Giuria 5, I-10125 Torino, Italy
| | - Denis Usvyat
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, 93049 Regensburg, Germany
| |
Collapse
|
18
|
Paier J. Hybrid Density Functionals Applied to Complex Solid Catalysts: Successes, Limitations, and Prospects. Catal Letters 2016. [DOI: 10.1007/s10562-016-1735-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Abstract
Interest in molecular crystals has grown thanks to their relevance to pharmaceuticals, organic semiconductor materials, foods, and many other applications. Electronic structure methods have become an increasingly important tool for modeling molecular crystals and polymorphism. This article reviews electronic structure techniques used to model molecular crystals, including periodic density functional theory, periodic second-order Møller-Plesset perturbation theory, fragment-based electronic structure methods, and diffusion Monte Carlo. It also discusses the use of these models for predicting a variety of crystal properties that are relevant to the study of polymorphism, including lattice energies, structures, crystal structure prediction, polymorphism, phase diagrams, vibrational spectroscopies, and nuclear magnetic resonance spectroscopy. Finally, tools for analyzing crystal structures and intermolecular interactions are briefly discussed.
Collapse
Affiliation(s)
- Gregory J O Beran
- Department of Chemistry, University of California , Riverside, California 92521, United States
| |
Collapse
|
20
|
Spencer JS, Thom AJW. Developments in stochastic coupled cluster theory: The initiator approximation and application to the uniform electron gas. J Chem Phys 2016; 144:084108. [DOI: 10.1063/1.4942173] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- James S. Spencer
- Department of Physics and Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Alex J. W. Thom
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom and Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
21
|
Rusakov AA, Zgid D. Self-consistent second-order Green’s function perturbation theory for periodic systems. J Chem Phys 2016; 144:054106. [DOI: 10.1063/1.4940900] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
22
|
Franklin RST, Spencer JS, Zoccante A, Thom AJW. Linked coupled cluster Monte Carlo. J Chem Phys 2016; 144:044111. [DOI: 10.1063/1.4940317] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- R. S. T. Franklin
- University Chemical Laboratory, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - J. S. Spencer
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - A. Zoccante
- University Chemical Laboratory, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - A. J. W. Thom
- University Chemical Laboratory, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
23
|
Sansone G, Maschio L, Usvyat D, Schütz M, Karttunen A. Toward an Accurate Estimate of the Exfoliation Energy of Black Phosphorus: A Periodic Quantum Chemical Approach. J Phys Chem Lett 2016; 7:131-136. [PMID: 26651397 DOI: 10.1021/acs.jpclett.5b02174] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The black phosphorus (black-P) crystal is formed of covalently bound layers of phosphorene stacked together by weak van der Waals interactions. An experimental measurement of the exfoliation energy of black-P is not available presently, making theoretical studies the most important source of information for the optimization of phosphorene production. Here, we provide an accurate estimate of the exfoliation energy of black-P on the basis of multilevel quantum chemical calculations, which include the periodic local Møller-Plesset perturbation theory of second order, augmented by higher-order corrections, which are evaluated with finite clusters mimicking the crystal. Very similar results are also obtained by density functional theory with the D3-version of Grimme's empirical dispersion correction. Our estimate of the exfoliation energy for black-P of -151 meV/atom is substantially larger than that of graphite, suggesting the need for different strategies to generate isolated layers for these two systems.
Collapse
Affiliation(s)
- Giuseppe Sansone
- Dipartimento di Chimica and NIS (Nanostructured Interfaces and Surfaces) Centre, Università di Torino , via Giuria 5, I-10125 Torino, Italy
| | - Lorenzo Maschio
- Dipartimento di Chimica and NIS (Nanostructured Interfaces and Surfaces) Centre, Università di Torino , via Giuria 5, I-10125 Torino, Italy
| | - Denis Usvyat
- Institute for Physical and Theoretical Chemistry, University of Regensburg , Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Martin Schütz
- Institute for Physical and Theoretical Chemistry, University of Regensburg , Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Antti Karttunen
- Department of Chemistry, Aalto University , Kemistintie 1, FI-02150 Espoo, Finland
| |
Collapse
|
24
|
Abstract
David Craig (1919–2015) left us with a lasting legacy concerning basic understanding of chemical spectroscopy and bonding. This is expressed in terms of some of the recent achievements of my own research career, with a focus on integration of Craig’s theories with those of Noel Hush to solve fundamental problems in photosynthesis, molecular electronics (particularly in regard to the molecules synthesized by Maxwell Crossley), and self-assembled monolayer structure and function. Reviewed in particular is the relation of Craig’s legacy to: the 50-year struggle to assign the visible absorption spectrum of arguably the world’s most significant chromophore, chlorophyll; general theories for chemical bonding and structure extending Hush’s adiabatic theory of electron-transfer processes; inelastic electron-tunnelling spectroscopy (IETS); chemical quantum entanglement and the Penrose–Hameroff model for quantum consciousness; synthetic design strategies for NMR quantum computing; Gibbs free-energy measurements and calculations for formation and polymorphism of organic self-assembled monolayers on graphite surfaces from organic solution; and understanding the basic chemical processes involved in the formation of gold surfaces and nanoparticles protected by sulfur-bound ligands, ligands whose form is that of Au0-thiyl rather than its commonly believed AuI-thiolate tautomer.
Collapse
|
25
|
Michaelides A, Martinez TJ, Alavi A, Kresse G, Manby FR. Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces. J Chem Phys 2015; 143:102601. [DOI: 10.1063/1.4930182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|