1
|
Nguyen HL, Thai NQ, Li MS. Determination of Multidirectional Pathways for Ligand Release from the Receptor: A New Approach Based on Differential Evolution. J Chem Theory Comput 2022; 18:3860-3872. [PMID: 35512104 PMCID: PMC9202309 DOI: 10.1021/acs.jctc.1c01158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Steered molecular
dynamics (SMD) simulation is a powerful method
in computer-aided drug design as it can be used to access the relative
binding affinity with high precision but with low computational cost.
The success of SMD depends on the choice of the direction along which
the ligand is pulled from the receptor-binding site. In most simulations,
the unidirectional pathway was used, but in some cases, this choice
resulted in the ligand colliding with the complex surface of the exit
tunnel. To overcome this difficulty, several variants of SMD with
multidirectional pulling have been proposed, but they are not completely
devoid of disadvantages. Here, we have proposed to determine the direction
of pulling with a simple scoring function that minimizes the receptor–ligand
interaction, and an optimization algorithm called differential evolution
is used for energy minimization. The effectiveness of our protocol
was demonstrated by finding expulsion pathways of Huperzine A and
camphor from the binding site of Torpedo California acetylcholinesterase
and P450cam proteins, respectively, and comparing them with the previous
results obtained using memetic sampling and random acceleration molecular
dynamics. In addition, by applying this protocol to a set of ligands
bound with LSD1 (lysine specific demethylase 1), we obtained a much
higher correlation between the work of pulling force and experimental
data on the inhibition constant IC50 compared to that obtained using
the unidirectional approach based on minimal steric hindrance.
Collapse
Affiliation(s)
- Hoang Linh Nguyen
- Life Science Lab, Institute for Computational Science and Technology, QuangTrung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 729110, Vietnam.,Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 740500, Vietnam.,Vietnam National University, Ho Chi Minh City 71300, Vietnam
| | - Nguyen Quoc Thai
- Life Science Lab, Institute for Computational Science and Technology, QuangTrung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 729110, Vietnam.,Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap 81100, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw 02-668, Poland
| |
Collapse
|
2
|
Rydzewski J, Walczewska-Szewc K, Czach S, Nowak W, Kuczera K. Enhancing the Inhomogeneous Photodynamics of Canonical Bacteriophytochrome. J Phys Chem B 2022; 126:2647-2657. [PMID: 35357137 PMCID: PMC9014414 DOI: 10.1021/acs.jpcb.2c00131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The ability of phytochromes
to act as photoswitches in plants and
microorganisms depends on interactions between a bilin-like chromophore
and a host protein. The interconversion occurs between the spectrally
distinct red (Pr) and far-red (Pfr) conformers. This conformational
change is triggered by the photoisomerization of the chromophore D-ring
pyrrole. In this study, as a representative example of a phytochrome-bilin
system, we consider biliverdin IXα (BV) bound to bacteriophytochrome
(BphP) from Deinococcus radiodurans. In the absence
of light, we use an enhanced sampling molecular dynamics (MD) method
to overcome the photoisomerization energy barrier. We find that the
calculated free energy (FE) barriers between essential metastable
states agree with spectroscopic results. We show that the enhanced
dynamics of the BV chromophore in BphP contributes to triggering nanometer-scale
conformational movements that propagate by two experimentally determined
signal transduction pathways. Most importantly, we describe how the
metastable states enable a thermal transition known as the dark reversion
between Pfr and Pr, through a previously unknown intermediate state
of Pfr. We present the heterogeneity of temperature-dependent Pfr
states at the atomistic level. This work paves a way toward understanding
the complete mechanism of the photoisomerization of a bilin-like chromophore
in phytochromes.
Collapse
Affiliation(s)
- Jakub Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Sylwia Czach
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Wieslaw Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Krzysztof Kuczera
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, United States.,Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
3
|
Shao Q, Zhu W. Exploring the Ligand Binding/Unbinding Pathway by Selectively Enhanced Sampling of Ligand in a Protein-Ligand Complex. J Phys Chem B 2019; 123:7974-7983. [PMID: 31478672 DOI: 10.1021/acs.jpcb.9b05226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding the protein-ligand binding is of fundamental biological interest and is essential for structure-based drug design. The difficulty in capturing the dynamic process, however, poses a great challenge for current experimental and theoretical simulation techniques. A selective integrated-tempering-sampling molecular dynamics (SITSMD) method offering an option for selectively enhanced sampling of the ligand in a protein-ligand complex was utilized to quantitatively illuminate the binding of benzamidine to the wild-type trypsin protease and its two mutants (S214E and S214K). The SITSMD simulations could produce consistent results as the extensive conventional MD simulation and gave additional insights into the binding pathway for the test protein-ligand complex system using significantly saved computational resource and time, indicating the potential of such a method in investigating protein-ligand binding. Additionally, the simulations identified the different roles of trypsin-benzamidine van der Waals (vdW) and electrostatic interactions in the binding: the former interaction works as the driving force for dragging the benzamidine close to the native binding pocket, and the latter interaction mainly contributes to stabilizing the benzamidine inside the pocket. The S214E mutation introduces more favorable electrostatic interactions, and as a result, both vdW and electrostatic interactions drive the benzamidine binding, lowering the binding and unbinding free energy barrier. In contrast, the S214K mutation prohibits the binding of the benzamidine to the native ligand binding pocket by introducing disliked charge-charge interactions. In summary, these findings suggest that the change in specific residues could modify the protein druggability, including the binding kinetics and thermodynamics.
Collapse
Affiliation(s)
- Qiang Shao
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China.,Beijing National Laboratory for Molecular Sciences , 1st North Street , Zhongguancun, Beijing 100080 , China
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China.,Open Studio for Druggability Research of Marine Natural Products , Pilot National Laboratory for Marine Science and Technology , 1 Wenhai Road , Aoshanwei, Jimo, Qingdao 266237 , China
| |
Collapse
|
4
|
Rydzewski J, Valsson O. Finding multiple reaction pathways of ligand unbinding. J Chem Phys 2019; 150:221101. [DOI: 10.1063/1.5108638] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jakub Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87–100 Torun, Poland
| | - Omar Valsson
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| |
Collapse
|
5
|
Wang AH, Zhang ZC, Li GH. Advances in enhanced sampling molecular dynamics simulations for biomolecules. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1905091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- An-hui Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhi-chao Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Guo-hui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
6
|
Ribeiro JML, Tsai ST, Pramanik D, Wang Y, Tiwary P. Kinetics of Ligand-Protein Dissociation from All-Atom Simulations: Are We There Yet? Biochemistry 2018; 58:156-165. [PMID: 30547565 DOI: 10.1021/acs.biochem.8b00977] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Large parallel gains in the development of both computational resources and sampling methods have now made it possible to simulate dissociation events in ligand-protein complexes with all-atom resolution. Such encouraging progress, together with the inherent spatiotemporal resolution associated with molecular simulations, has left their use for investigating dissociation processes brimming with potential, both in rational drug design, where it can be an invaluable tool for determining the mechanistic driving forces behind dissociation rate constants, and in force-field development, where it can provide a catalog of transient molecular structures with which to refine force fields. Although much progress has been made in making force fields more accurate, reducing their error for transient structures along a transition path could yet prove to be a critical development helping to make kinetic predictions much more accurate. In what follows, we will provide a state-of-the-art compilation of the enhanced sampling methods based on molecular dynamics (MD) simulations used to investigate the kinetics and mechanisms of ligand-protein dissociation processes. Due to the time scales of such processes being slower than what is accessible using straightforward MD simulations, several ingenious schemes are being devised at a rapid rate to overcome this obstacle. Here we provide an up-to-date compendium of such methods and their achievements and shortcomings in extracting mechanistic insight into ligand-protein dissociation. We conclude with a critical and provocative appraisal attempting to answer the title of this Perspective.
Collapse
Affiliation(s)
- João Marcelo Lamim Ribeiro
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States.,Institute for Physical Science and Technology , University of Maryland , College Park , Maryland 20742 , United States
| | - Sun-Ting Tsai
- Institute for Physical Science and Technology , University of Maryland , College Park , Maryland 20742 , United States.,Department of Physics , University of Maryland , College Park , Maryland 20742 , United States
| | - Debabrata Pramanik
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States.,Institute for Physical Science and Technology , University of Maryland , College Park , Maryland 20742 , United States
| | - Yihang Wang
- Institute for Physical Science and Technology , University of Maryland , College Park , Maryland 20742 , United States.,Biophysics Program , University of Maryland , College Park , Maryland 20742 , United States
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States.,Institute for Physical Science and Technology , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
7
|
Wells G, Yuan H, McDaniel MJ, Kusumoto H, Snyder JP, Liotta DC, Traynelis SF. The GluN2B-Glu413Gly NMDA receptor variant arising from a de novo GRIN2B mutation promotes ligand-unbinding and domain opening. Proteins 2018; 86:1265-1276. [PMID: 30168177 PMCID: PMC6774441 DOI: 10.1002/prot.25595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/17/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors are transmembrane glutamate-binding ion channels that mediate neurotransmission in mammals. NMDA receptor subunits are tetrameric complexes of GluN1 and GluN2A-D subunits, encoded by the GRIN gene family. Of these subunits, GluN2B is suggested to be required for normal development of the central nervous system. A mutation identified in a patient with developmental delay, E413G, resides in the GluN2B ligand-binding domain and substantially reduces glutamate potency by an unknown mechanism. GluN2B Gly413, though near the agonist, is not in van der Waals contact with glutamate. Visual analysis of the GluN2B structure with the E413G mutation modeled suggests that replacement of Glu with Gly at this position increases solvent access to the ligand-binding domain. This was confirmed by molecular modeling, which showed that the ligand is more mobile in GluN2B-E413G than WT GluN2B. Evaluation of agonist occupancy using random accelerated molecular dynamics (RAMD) simulations predicts that the glutamate exits the binding-site more rapidly for GluN2B-E413G than WT receptors. This analysis was extended to other binding-site mutations, which produced qualitative agreement between experimentally determined EC50 values, deactivation time constants, and ligand motion within the binding-site. Furthermore, long sub-microsecond molecular dynamics simulations of the bi-lobed ligand-binding domain revealed that it adopted a cleft-open ligand-free state more often for GluN2B-E413G than wild-type GluN2B. This is consistent with the idea that L-glutamate binding is altered such that the ligand-binding domain occupies the open-cleft conformation associated with the closed channel.
Collapse
Affiliation(s)
- Gordon Wells
- African Health Research Institute, Steyn Lab, K-RITH Tower, Nelson R. Mandela Medical School, Durban, South Africa
- Department of Chemistry, Emory University, Atlanta, Georgia
| | - Hongjie Yuan
- Department of Pharmacology, Emory University, Atlanta, Georgia
| | | | | | - James P Snyder
- Department of Chemistry, Emory University, Atlanta, Georgia
| | | | | |
Collapse
|
8
|
Ligand Access Channels in Cytochrome P450 Enzymes: A Review. Int J Mol Sci 2018; 19:ijms19061617. [PMID: 29848998 PMCID: PMC6032366 DOI: 10.3390/ijms19061617] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022] Open
Abstract
Quantitative structure-activity relationships may bring invaluable information on structural elements of both enzymes and substrates that, together, govern substrate specificity. Buried active sites in cytochrome P450 enzymes are connected to the solvent by a network of channels exiting at the distal surface of the protein. This review presents different in silico tools that were developed to uncover such channels in P450 crystal structures. It also lists some of the experimental evidence that actually suggest that these predicted channels might indeed play a critical role in modulating P450 functions. Amino acid residues at the entrance of the channels may participate to a first global ligand recognition of ligands by P450 enzymes before they reach the buried active site. Moreover, different P450 enzymes show different networks of predicted channels. The plasticity of P450 structures is also important to take into account when looking at how channels might play their role.
Collapse
|
9
|
Rydzewski J, Jakubowski R, Nowak W, Grubmüller H. Kinetics of Huperzine A Dissociation from Acetylcholinesterase via Multiple Unbinding Pathways. J Chem Theory Comput 2018; 14:2843-2851. [PMID: 29715428 DOI: 10.1021/acs.jctc.8b00173] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The dissociation of huperzine A (hupA) from Torpedo californica acetylcholinesterase ( TcAChE) was investigated by 4 μs unbiased and biased all-atom molecular dynamics (MD) simulations in explicit solvent. We performed our study using memetic sampling (MS) for the determination of reaction pathways (RPs), metadynamics to calculate free energy, and maximum-likelihood estimation (MLE) to recover kinetic rates from unbiased MD simulations. Our simulations suggest that the dissociation of hupA occurs mainly via two RPs: a front door along the axis of the active-site gorge (pwf) and through a new transient side door (pws), i.e., formed by the Ω-loop (residues 67-94 of TcAChE). An analysis of the inhibitor unbinding along the RPs suggests that pws is opened transiently after hupA and the Ω-loop reach a low free-energy transition state characterized by the orientation of the pyridone group of the inhibitor directed toward the Ω-loop plane. Unlike pws, pwf does not require large structural changes in TcAChE to be accessible. The estimated free energies and rates agree well with available experimental data. The dissociation rates along the unbinding pathways are similar, suggesting that the dissociation of hupA along pws is likely to be relevant. This indicates that perturbations to hupA- TcAChE interactions could potentially induce pathway hopping. In summary, our results characterize the slow-onset inhibition of TcAChE by hupA, which may provide the structural and energetic bases for the rational design of the next-generation slow-onset inhibitors with optimized pharmacokinetic properties for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- J Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University , Grudziadzka 5 , 87-100 Toruń , Poland
| | - R Jakubowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University , Grudziadzka 5 , 87-100 Toruń , Poland.,Centre of New Technologies, University of Warsaw , Banacha 2c , 02-097 Warsaw , Poland
| | - W Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University , Grudziadzka 5 , 87-100 Toruń , Poland
| | - H Grubmüller
- Max Planck Institute for Biophysical Chemistry , Am Faßberg 11 , 37077 Göttingen , Germany
| |
Collapse
|
10
|
Rydzewski J, Jakubowski R, Nicosia G, Nowak W. Conformational Sampling of a Biomolecular Rugged Energy Landscape. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:732-739. [PMID: 27913358 DOI: 10.1109/tcbb.2016.2634008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The protein structure refinement using conformational sampling is important in hitherto protein studies. In this paper, we examined the protein structure refinement by means of potential energy minimization using immune computing as a method of sampling conformations. The method was tested on the x-ray structure and 30 decoys of the mutant of [Leu]Enkephalin, a paradigmatic example of the biomolecular multiple-minima problem. In order to score the refined conformations, we used a standard potential energy function with the OPLSAA force field. The effectiveness of the search was assessed using a variety of methods. The robustness of sampling was checked by the energy yield function which measures quantitatively the number of the peptide decoys residing in an energetic funnel. Furthermore, the potential energy-dependent Pareto fronts were calculated to elucidate dissimilarities between peptide conformations and the native state as observed by x-ray crystallography. Our results showed that the probed potential energy landscape of [Leu]Enkephalin is self-similar on different metric scales and that the local potential energy minima of the peptide decoys are metastable, thus they can be refined to conformations whose potential energy is decreased by approximately 250 kJ/mol.
Collapse
|
11
|
Rare-event sampling in ligand diffusion. Phys Life Rev 2017; 22-23:85-87. [DOI: 10.1016/j.plrev.2017.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 08/27/2017] [Indexed: 01/06/2023]
|
12
|
Bruce NJ, Ganotra GK, Kokh DB, Sadiq SK, Wade RC. New approaches for computing ligand-receptor binding kinetics. Curr Opin Struct Biol 2017; 49:1-10. [PMID: 29132080 DOI: 10.1016/j.sbi.2017.10.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/22/2017] [Accepted: 10/01/2017] [Indexed: 02/08/2023]
Abstract
The recent and growing evidence that the efficacy of a drug can be correlated to target binding kinetics has seeded the development of a multitude of novel methods aimed at computing rate constants for receptor-ligand binding processes, as well as gaining an understanding of the binding and unbinding pathways and the determinants of structure-kinetic relationships. These new approaches include various types of enhanced sampling molecular dynamics simulations and the combination of energy-based models with chemometric analysis. We assess these approaches in the light of the varying levels of complexity of protein-ligand binding processes.
Collapse
Affiliation(s)
- Neil J Bruce
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Gaurav K Ganotra
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Daria B Kokh
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - S Kashif Sadiq
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany; Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Kuczera K. Finding optimal paths through biomolecular mazes: Comment on: "Ligand diffusion in proteins via enhanced sampling in molecular dynamics" by J. Rydzewski and W. Nowak. Phys Life Rev 2017; 22-23:77-78. [PMID: 28797667 DOI: 10.1016/j.plrev.2017.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Krzysztof Kuczera
- Department of Chemistry and Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, United States.
| |
Collapse
|
14
|
Thermodynamics of camphor migration in cytochrome P450cam by atomistic simulations. Sci Rep 2017; 7:7736. [PMID: 28798338 PMCID: PMC5552751 DOI: 10.1038/s41598-017-07993-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/05/2017] [Indexed: 01/12/2023] Open
Abstract
Understanding the mechanisms of ligand binding to enzymes is of paramount importance for the design of new drugs. Here, we report on the use of a novel biased molecular dynamics (MD) methodology to study the mechanism of camphor binding to cytochrome P450cam. Microsecond-long MD simulations allowed us to observe reaction coordinates characterizing ligand diffusion from the active site of cytochrome P450cam to solvent via three egress routes. These atomistic simulations were used to estimate thermodynamic quantities along the reaction coordinates and indicate diverse binding configurations. The results suggest that the diffusion of camphor along the pathway near the substrate recognition site (SRS) is thermodynamically preferred. In addition, we show that the diffusion near the SRS is triggered by a transition from a heterogeneous collection of closed ligand-bound conformers to the basin comprising the open conformations of cytochrome P450cam. The conformational change accompanying this switch is characterized by the retraction of the F and G helices and the disorder of the B' helix. These results are corroborated by experimental studies and provide detailed insight into ligand binding and conformational behavior of the cytochrome family. The presented methodology is general and can be applied to other ligand-protein systems.
Collapse
|
15
|
Li MS. Ligand migration and steered molecular dynamics in drug discovery: Comment on "Ligand diffusion in proteins via enhanced sampling in molecular dynamics" by Jakub Rydzewski and Wieslaw Nowak. Phys Life Rev 2017; 22-23:79-81. [PMID: 28807592 DOI: 10.1016/j.plrev.2017.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
16
|
Rydzewski J, Nowak W. Ligand diffusion in proteins via enhanced sampling in molecular dynamics. Phys Life Rev 2017; 22-23:58-74. [PMID: 28410930 DOI: 10.1016/j.plrev.2017.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/28/2016] [Accepted: 03/28/2017] [Indexed: 01/17/2023]
Abstract
Computational simulations in biophysics describe the dynamics and functions of biological macromolecules at the atomic level. Among motions particularly important for life are the transport processes in heterogeneous media. The process of ligand diffusion inside proteins is an example of a complex rare event that can be modeled using molecular dynamics simulations. The study of physical interactions between a ligand and its biological target is of paramount importance for the design of novel drugs and enzymes. Unfortunately, the process of ligand diffusion is difficult to study experimentally. The need for identifying the ligand egress pathways and understanding how ligands migrate through protein tunnels has spurred the development of several methodological approaches to this problem. The complex topology of protein channels and the transient nature of the ligand passage pose difficulties in the modeling of the ligand entry/escape pathways by canonical molecular dynamics simulations. In this review, we report a methodology involving a reconstruction of the ligand diffusion reaction coordinates and the free-energy profiles along these reaction coordinates using enhanced sampling of conformational space. We illustrate the above methods on several ligand-protein systems, including cytochromes and G-protein-coupled receptors. The methods are general and may be adopted to other transport processes in living matter.
Collapse
Affiliation(s)
- J Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland.
| | - W Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
17
|
Sieradzan AK, Jakubowski R. Introduction of steered molecular dynamics into UNRES coarse-grained simulations package. J Comput Chem 2017; 38:553-562. [DOI: 10.1002/jcc.24685] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Adam K. Sieradzan
- Faculty of Chemistry; University of Gdańsk; Wita Stwosza 63 Gdańsk 80-308 Poland
| | - Rafał Jakubowski
- Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University; Grudziadzka 5 Torun 87-100 Poland
| |
Collapse
|
18
|
Rydzewski J, Nowak W. Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam. J Chem Theory Comput 2016; 12:2110-20. [DOI: 10.1021/acs.jctc.6b00212] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Rydzewski
- Institute of Physics, Faculty
of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - W. Nowak
- Institute of Physics, Faculty
of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|