1
|
Hoppe H, Manthe U. Accurate Quantum Dynamics Calculations for the Cl + CH 4/CHD 3/CD 4 Reaction Rates. J Phys Chem A 2024; 128:4014-4019. [PMID: 38743263 DOI: 10.1021/acs.jpca.4c01952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Full-dimensional quantum dynamics simulations of the reaction of Cl with methane and its isotopomers are reported. Thermal rate constants are computed for the Cl + CH4 → HCl + CH3, Cl + CHD3 → HCl + CD3, and Cl + CD4 → DCl + CD3 reactions. Temperatures between 200 and 500 K are considered. In this temperature range, excellent agreement with the experiment is obtained. A detailed analysis of the kinetic isotope effect reveals the crucial importance of the CH3/CD3 umbrella motion. Comparison with approximate ring-polymer molecular dynamics simulations shows significant differences depending on the isotope studied.
Collapse
Affiliation(s)
- Hannes Hoppe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
2
|
Szabó P, Lendvay G. Theoretical dynamics studies of the CH 3 + HBr → CH 4 + Br reaction: effects of isotope substitution and vibrational excitation of CH 3. Phys Chem Chem Phys 2024; 26:10530-10537. [PMID: 38512242 DOI: 10.1039/d3cp05610d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The rate coefficient for two deuterium substituted isotopologues of reaction CH3 + HBr → CH4 + Br has been determined using the quasiclassical trajectory (QCT) method. We used the analytical potential energy surface (PES) fitted to high-level ab initio points in earlier work. The PES exhibits a pre-reaction van der Waals complex and a submerged potential barrier. The rate coefficients of the deuterated isotopologue reactions, similarly to the pure-protium isotopologue, show significant deviation from the Arrhenius law, namely, the activation energy is negative below about 600 K and positive above it: k[CH3 + DBr] = 1.35 × 10-11 exp(- 2472/T) + 5.85 × 10-13 exp(335/T) and k[CD3 + HBr] = 2.73 × 10-11 exp(- 2739/T) + 1.46 × 10-12 exp(363/T). The CH3 + DBr reaction is slower by a factor of 1.8, whereas CD3 + HBr isotopologue is faster by a factor of 1.4 compared to the HBr + CH3 system across a wide temperature range. The isotope effects are interpreted in terms of the properties of various regions of the PES. Quantum state-resolved simulations revealed that the reaction of CH3 with HBr becomes slower when any of the vibrational modes of the methyl radical is excited. This contradicts the assumption that vibrational excitation of methyl radicals enhances its reactivity, which is of historical importance: this assumption was used as an argument against the existence of negative activation energy in a decade-long controversy in the 1980s and 1990s.
Collapse
Affiliation(s)
- Péter Szabó
- Department of Chemistry, KU Leuven, Celestijnenlaan, 200F, Leuven, 3001, Belgium.
- Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Avenue Circulaire 3, Brussels, 1180, Belgium
| | - György Lendvay
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary.
- Center for Natural Sciences, Faculty of Engineering, University of Pannonia, Egyetem u. 10, Veszprém, 8200, Hungary
| |
Collapse
|
3
|
Gruber B, Tajti V, Czako G. Full-dimensional automated potential energy surface development and dynamics for the OH + C 2H 6 reaction. J Chem Phys 2022; 157:074307. [DOI: 10.1063/5.0104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We develop a full-dimensional analytical potential energy surface (PES) for the OH + C2H6 reaction using the Robosurfer program system, which automatically (1) selects geometries from quasi-classical trajectories, (2) performs ab initio computations using a CCSD(T)-F12/triple-zeta-quality composite method, (3) fits the energies utilizing the permutationally-invariant monomial symmetrization approach, and iteratively improves the PES via steps (1)−(3). Quasi-classical trajectory simulations on the new PES reveal that hydrogen abstraction leading to H2O + C2H5 dominates in the collision energy range of 10−50 kcal/mol. The abstraction cross sections increase and the dominant mechanism shifts from rebound (small impact parameters and backward scattering) to stripping (larger impact parameters and forward scattering) with increasing collision energy as opacity functions and scattering angle distributions indicate. The abstraction reaction clearly favors side-on OH attack over O-side and the least-preferred H-side approach, whereas C2H6 behaves like a spherical object with only slight C−C-perpendicular side-on preference. Collision energy efficiently flows into the relative translation of the products, whereas product internal energy distributions show only little collision energy dependence. H2O/C2H5 vibrational distributions slightly/significantly violate zero-point energy and are nearly independent of collision energy, whereas the rotational distributions clearly blue-shift as collision energy increases.
Collapse
Affiliation(s)
- Balázs Gruber
- University of Szeged Faculty of Science and Informatics, Hungary
| | - Viktor Tajti
- Chemistry, University of Szeged Faculty of Science and Informatics, Hungary
| | - Gabor Czako
- Chemistry, University of Szeged Faculty of Science and Informatics, Hungary
| |
Collapse
|
4
|
Ellerbrock R, Zhao B, Manthe U. Vibrational control of the reaction pathway in the H + CHD 3 → H 2 + CD 3 reaction. SCIENCE ADVANCES 2022; 8:eabm9820. [PMID: 35353570 PMCID: PMC8967217 DOI: 10.1126/sciadv.abm9820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
An accurate full-dimensional quantum state-to-state simulation of the six-atom title reaction based on first-principles theory is reported. Counterintuitive effects are found: Increasing the energy in the reactant's CD3 umbrella vibration reduces the energy in the corresponding product vibration. An in-depth analysis reveals the crucial role of the effective dynamical transition state: Its geometry is controlled by the vibrational states of the reactants and subsequently controls the quantum state distribution of the products. This finding enables generalizing the concept of transition state control of chemical reactions to the quantum state-specific level.
Collapse
Affiliation(s)
- Roman Ellerbrock
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, CA 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Bin Zhao
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
5
|
Hoppe H, Manthe U. First-Principles Theory for the Reaction of Chlorine with Methane. J Phys Chem Lett 2022; 13:2563-2566. [PMID: 35285640 DOI: 10.1021/acs.jpclett.2c00407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A full-dimensional quantum dynamics simulation of the Cl + CH4 → HCl + CH3 reaction based on first-principles theory is reported. Accurate thermal rate constants are calculated, and perfect agreement with experiment is obtained. Despite the heavy atoms present in both reactants, the passage of the reaction barrier is found to occur within only a few tens of femtoseconds. This surprisingly short time scale results from correlated motion of the transferring hydrogen atom and the hydrogen atoms in the methyl fragment which facilitates irreversible barrier passage without relevant participation of heavy atoms. Resonance effects resulting from the heavy-light-heavy characteristics of the reaction system, which were observed in reactive scattering studies, do not affect the thermal rate constant.
Collapse
Affiliation(s)
- Hannes Hoppe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
6
|
A Ten-Dimensional Quantum Dynamics Study of the H+CH 3D→H 2+CH 2D Reaction. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2112284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
7
|
Papp D, Czakó G. Vibrational mode-specific dynamics of the F( 2P 3/2) + C 2H 6 → HF + C 2H 5 reaction. J Chem Phys 2021; 155:154302. [PMID: 34686045 DOI: 10.1063/5.0069658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the competing effect of vibrational and translational excitation and the validity of the Polanyi rules in the early- and negative-barrier F(2P3/2) + C2H6 → HF + C2H5 reaction by performing quasi-classical dynamics simulations on a recently developed full-dimensional multi-reference analytical potential energy surface. The effect of five normal-mode excitations of ethane on the reactivity, the mechanism, and the post-reaction energy flow is followed through a wide range of collision energies. Promoting effects of vibrational excitations and interaction time, related to the slightly submerged barrier, are found to be suppressed by the early-barrier-induced translational enhancement, in contrast to the slightly late-barrier Cl + C2H6 reaction. The excess vibrational energy mostly converts into ethyl internal excitation while collision energy is transformed into product separation. The substantial reaction energy excites the HF vibration, which tends to show mode-specificity and translational energy dependence as well. With increasing collision energy, direct stripping becomes dominant over the direct rebound and indirect mechanisms, being basically independent of reactant excitation.
Collapse
Affiliation(s)
- Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
8
|
Papp D, Li J, Guo H, Czakó G. Vibrational mode-specificity in the dynamics of the Cl + C 2H 6 → HCl + C 2H 5 reaction. J Chem Phys 2021; 155:114303. [PMID: 34551541 DOI: 10.1063/5.0062677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We report a detailed dynamics study on the mode-specificity of the Cl + C2H6 → HCl + C2H5 H-abstraction reaction. We perform quasi-classical trajectory simulations using a recently developed high-level ab initio full-dimensional potential energy surface by exciting five different vibrational modes of ethane at four collision energies. We find that all the studied vibrational excitations, except that of the CC-stretching mode, clearly promote the title reaction, and the vibrational enhancements are consistent with the predictions of the Sudden Vector Projection (SVP) model, with the largest effect caused by the CH-stretching excitations. Intramolecular vibrational redistribution is also monitored for the differently excited ethane molecule. Our results indicate that the mechanism of the reaction changes with increasing collision energy, with no mode-specificity at high energies. The initial translational energy mostly converts into product recoil, while a significant part of the excess vibrational energy remains in the ethyl radical. An interesting competition between translational and vibrational energies is observed for the HCl vibrational distribution: the effect of exciting the low-frequency ethane modes, having small SVP values, is suppressed by translational excitation, whereas a part of the excess vibrational energy pumped into the CH-stretching modes (larger SVP values) efficiently flows into the HCl vibration.
Collapse
Affiliation(s)
- Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Jun Li
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
9
|
Zhao B. The symmetric C-D stretching spectator mode in the H + CHD 3 → H 2 + CD 3 reaction and its effect on dynamical modeling. Phys Chem Chem Phys 2021; 23:12105-12114. [PMID: 34027536 DOI: 10.1039/d1cp01614h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The symmetric C-D stretching mode is a spectator mode in the H + CHD3 → H2 + CD3 reaction. Effects of multiple vibrational excitations of the CHD3 reactant are studied with the quantum transition-state (QTS) framework and an eight-dimensional (8D) model Hamiltonian developed by Palma and Clary. By including many thermal flux eigenstates, results have been obtained up to high energies, allowing the study of the symmetric C-D stretching spectator mode. A new concept of a state-specific thermal flux operator is proposed to analyze the C-D stretching spectator mode in detail, providing a new and insightful venue for studying transition-state control of chemical reactions. Furthermore, as a spectator mode, whether the C-D stretching motion can be excluded in a seven-dimensional (7D) model has not been fully interrogated, although the 7D model is a reasonable approximation and has provided accurate theoretical predictions. By comparing with available results of full-dimensional calculations, both the 7D and 8D models predict reasonably accurate results. However, the 7D model underestimates the mixing of two vibrational states that are in Fermi resonance. Despite its spectator nature, the C-D stretch is important in the dynamical modeling of chemical reaction systems affected by state mixing.
Collapse
Affiliation(s)
- Bin Zhao
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany.
| |
Collapse
|
10
|
Zhang X, Zhang Z, Gatti F, Zhang DH. Full-dimensional quantum dynamics study of isotope effects for the H 2 + NH 2/ND 2/NHD and H 2/D 2/HD + NH 2 reactions. J Chem Phys 2021; 154:074301. [PMID: 33607900 DOI: 10.1063/5.0040002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A full-dimensional quantum dynamical study for the bimolecular reactions of hydrogen molecules with amino radicals for different isotopologues is reported. The nonreactive amino radical is described by two Radau vectors that are very close to the valence bond coordinates. Potential-optimized discrete variable representation basis is used for the vibrational coordinates of the amino radical. Starting from the reaction H2 + NH2, we study the isotope effects for the two reagents separately, i.e., H2 + NH2/ND2/NHD and H2/D2/HD + NH2. The effects of different vibrational mode excitations of the reagents on the reactivities are studied. Physical explanations about the isotope effects are also provided thoroughly including the influence of vibrational energy differences between the different isotopologues and the impact of the tunneling effect.
Collapse
Affiliation(s)
- Xiaoren Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Fabien Gatti
- ISMO, Institut des Sciences Moléculaires d'Orsay, UMR 8214 CNRS/Université Paris-Saclay, F-91405 Orsay, France
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
11
|
Sathyamurthy N, Mahapatra S. Time-dependent quantum mechanical wave packet dynamics. Phys Chem Chem Phys 2020; 23:7586-7614. [PMID: 33306771 DOI: 10.1039/d0cp03929b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Starting from a model study of the collinear (H, H2) exchange reaction in 1959, the time-dependent quantum mechanical wave packet (TDQMWP) method has come a long way in dealing with systems as large as Cl + CH4. The fast Fourier transform method for evaluating the second order spatial derivative of the wave function and split-operator method or Chebyshev polynomial expansion for determining the time evolution of the wave function for the system have made the approach highly accurate from a practical point of view. The TDQMWP methodology has been able to predict state-to-state differential and integral reaction cross sections accurately, in agreement with available experimental results for three dimensional (H, H2) collisions, and identify reactive scattering resonances too. It has become a practical computational tool in predicting the observables for many A + BC exchange reactions in three dimensions and a number of larger systems. It is equally amenable to determining the bound and quasi-bound states for a variety of molecular systems. Just as it is able to deal with dissociative processes (without involving basis set expansion), it is able to deal with multi-mode nonadiabatic dynamics in multiple electronic states with equal ease. We present an overview of the method and its strength and limitations, citing examples largely from our own research groups.
Collapse
|
12
|
Zhao B, Manthe U. Eight-Dimensional Wave Packet Dynamics Within the Quantum Transition-State Framework: State-to-State Reactive Scattering for H2 + CH3 ⇆ H + CH4. J Phys Chem A 2020; 124:9400-9412. [DOI: 10.1021/acs.jpca.0c08461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Bin Zhao
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
13
|
|
14
|
Papp D, Czakó G. Full-dimensional MRCI-F12 potential energy surface and dynamics of the F(2P3/2) + C2H6 → HF + C2H5 reaction. J Chem Phys 2020; 153:064305. [DOI: 10.1063/5.0018894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H 6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H 6720, Hungary
| |
Collapse
|
15
|
Zhang Z, Gatti F, Zhang DH. Full-dimensional quantum mechanical calculations of the reaction probability of the H + CH 4 reaction based on a mixed Jacobi and Radau description. J Chem Phys 2020; 152:201101. [PMID: 32486690 DOI: 10.1063/5.0009721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A full-dimensional time-dependent wave packet study using mixed polyspherical Jacobi and Radau coordinates for the title reaction has been reported. The non-reactive moiety CH3 has been described using three Radau vectors, whereas two Jacobi vectors have been used for the bond breaking/formation process. A potential-optimized discrete variable representation basis has been employed to describe the vibrational coordinates of the reagent CH4. About one hundred billion basis functions have been necessary to achieve converged results. The reaction probabilities for some initial vibrational states are given. A comparison between the present approach and other methods, including reduced and full-dimensional ones, is also presented.
Collapse
Affiliation(s)
- Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Fabien Gatti
- ISMO, Institut des Sciences Moléculaires d'Orsay - UMR 8214 CNRS/Université Paris-Saclay, F-91405 Orsay, France
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
16
|
Abstract
It has long been predicted that oscillatory behavior exists in reactivity as a function of collision energy for heavy-light-heavy (HLH) chemical reactions in which a light atom is transferred between two heavy atoms or groups of atoms, but direct observation of such a behavior in bimolecular reactions remains a challenge. Here we report a joint theoretical and crossed-molecular-beam study on the Cl + CH4 → HCl + CH3 reaction. A distinctive peak at a collision energy of 0.15 eV for the CH3(v = 0) product was experimentally detected in the backward scattering direction. Detailed quantum-dynamics calculations on a highly accurate potential energy surface revealed that this feature originates from the reactivity oscillation in this HLH polyatomic reaction. We anticipate that such reactivity oscillations exist in many HLH reactions involving polyatomic reagents.
Collapse
|
17
|
Liu Y, Li J. An accurate potential energy surface and ring polymer molecular dynamics study of the Cl + CH4→ HCl + CH3reaction. Phys Chem Chem Phys 2020; 22:344-353. [DOI: 10.1039/c9cp05693a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermal rate coefficients for the Cl + CH4/CD4reactions were studied on a new full-dimensional accurate potential energy surface with the spin–orbit corrections considered in the entrance channel.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| | - Jun Li
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| |
Collapse
|
18
|
Ellerbrock R, Manthe U, Palma J. A Quasi-Classical Evaluation of the J-Shifting Approximation for the Reactive Cross Sections of F + CHD 3 and F + CH 4. J Phys Chem A 2019; 123:7237-7245. [PMID: 31361132 DOI: 10.1021/acs.jpca.9b06060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We evaluated the accuracy of the J-shifting approximation to estimate reactant state-selected cross sections for the F+CH4 → HF+CH3 and F+CHD3 → HF+CD3/DF+CHD2 reactions. In particular, we analyzed how the rotational state of methane influences the quality of the approximation. The systems were considered in full dimensionality. Since full-quantum scattering calculations are still unfeasible for these reactions, we employed quasi-classical trajectories (QCT) to calculate the cross sections. The characteristics of the Born-Oppenheimer potential energy surface of these reactions pose a great challenge to the assumptions of the J-shifting approach. In spite of this, we found that it performs well for both reactions if the methane molecule is in the rotational ground state. However, when methane is rotationally excited, the approach affords good results for the F+CH4 system but clearly fails for F+CHD3. The reasons for this failure will be discussed, and a simple procedure to recover good estimators for the cross sections from J = 0 calculations will be introduced.
Collapse
Affiliation(s)
- Roman Ellerbrock
- Theoretische Chemie, Fakultät für Chemie , Universität Bielefeld , Universitätsstr. 25 , D-33615 Bielefeld , Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie , Universität Bielefeld , Universitätsstr. 25 , D-33615 Bielefeld , Germany
| | - Juliana Palma
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Sáenz Peña 352, Bernal B1876BXD , Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires , Argentina
| |
Collapse
|
19
|
Lenzen T, Eisfeld W, Manthe U. Vibronically and spin-orbit coupled diabatic potentials for X(2P) + CH4→ HX + CH3reactions: Neural network potentials for X = Cl. J Chem Phys 2019; 150:244115. [DOI: 10.1063/1.5109877] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tim Lenzen
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Wolfgang Eisfeld
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
20
|
Zhao B, Manthe U. Counter-propagating wave packets in the quantum transition state approach to reactive scattering. J Chem Phys 2019; 150:184103. [DOI: 10.1063/1.5097997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bin Zhao
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
21
|
Lenzen T, Manthe U. Vibronically and spin-orbit coupled diabatic potentials for X(P) + CH4→ HX + CH3reactions: General theory and application for X(P) = F(2P). J Chem Phys 2019; 150:064102. [DOI: 10.1063/1.5063907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tim Lenzen
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
22
|
Song H, Yang M. Understanding mode-specific dynamics in the local mode representation. Phys Chem Chem Phys 2018; 20:19647-19655. [PMID: 30014087 DOI: 10.1039/c8cp03240h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mode specificity is a main characteristic of transition state control of reaction dynamics. The normal mode representation has been widely employed to describe the mode specificity in elementary chemical reactions. However, spectroscopists have demonstrated that the local mode representation has advantages in analyzing the overtone and combination band spectra. In this work, the mode-specific reaction dynamics between the hydrogen atom and the molecules H2S and H2O is studied using a full-dimensional quantum scattering model in the (2 + 1) Radau-Jacobi coordinates. The mode specificities in the reactions that violates our physical intuition in the normal mode representation are well rationalized in the local mode representation. The energy flow between different XH bonds resulting from the intramolecular interaction and/or intermolecular interaction is unveiled, together with its impacts on dynamics of the abstraction and exchange reactions.
Collapse
Affiliation(s)
- Hongwei Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | | |
Collapse
|
23
|
Ellerbrock R, Manthe U. Full-dimensional quantum dynamics calculations for H + CHD3 → H2 + CD3: The effect of multiple vibrational excitations. J Chem Phys 2018; 148:224303. [DOI: 10.1063/1.5037797] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Roman Ellerbrock
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
24
|
Coordinate systems and kinetic energy operators for multi-configurational time-dependent Hartree calculations studying reactions of methane. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Ellerbrock R, Mantheuwe U. Natural reaction channels in H + CHD3 → H2 + CD3. Faraday Discuss 2018; 212:217-235. [DOI: 10.1039/c8fd00081f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural reaction channels control the mode-specific chemistry of methane and its isotopomeres.
Collapse
Affiliation(s)
- Roman Ellerbrock
- Theoretische Chemie
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| | - Uwe Mantheuwe
- Theoretische Chemie
- Fakultät für Chemie
- Universität Bielefeld
- D-33615 Bielefeld
- Germany
| |
Collapse
|
26
|
Ellerbrock R, Manthe U. Communication: Reactivity borrowing in the mode selective chemistry of H + CHD3 → H2 + CD3. J Chem Phys 2017; 147:241104. [DOI: 10.1063/1.5018254] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Roman Ellerbrock
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
27
|
Zhao B, Manthe U. A transition-state based rotational sudden (TSRS) approximation for polyatomic reactive scattering. J Chem Phys 2017; 147:144104. [DOI: 10.1063/1.5003226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Bin Zhao
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld,
Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld,
Germany
| |
Collapse
|
28
|
Fu B, Shan X, Zhang DH, Clary DC. Recent advances in quantum scattering calculations on polyatomic bimolecular reactions. Chem Soc Rev 2017; 46:7625-7649. [DOI: 10.1039/c7cs00526a] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review surveys quantum scattering calculations on chemical reactions of polyatomic molecules in the gas phase published in the last ten years.
Collapse
Affiliation(s)
- Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xiao Shan
- Physical and Theoretical Chemistry Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - David C. Clary
- Physical and Theoretical Chemistry Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| |
Collapse
|
29
|
Ellerbrock R, Manthe U. H+CH4→ H2+ CH3 initial state-selected reaction probabilities on different potential energy surfaces. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.08.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Song H, Yang M, Guo H. Communication: Equivalence between symmetric and antisymmetric stretching modes of NH3 in promoting H + NH3 → H2 + NH2 reaction. J Chem Phys 2016; 145:131101. [DOI: 10.1063/1.4963286] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hongwei Song
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
31
|
Wang Y, Song H, Szabó I, Czakó G, Guo H, Yang M. Mode-Specific SN2 Reaction Dynamics. J Phys Chem Lett 2016; 7:3322-3327. [PMID: 27505286 DOI: 10.1021/acs.jpclett.6b01457] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Despite its importance in chemistry, the microscopic dynamics of bimolecular nucleophilic substitution (SN2) reactions is still not completely elucidated. In this publication, the dynamics of a prototypical SN2 reaction (F(-) + CH3Cl → CH3F + Cl(-)) is investigated using a high-dimensional quantum mechanical model on an accurate potential energy surface (PES) and further analyzed by quasi-classical trajectories on the same PES. While the indirect mechanism dominates at low collision energies, the direct mechanism makes a significant contribution. The reactivity is found to depend on the specific reactant vibrational mode excitation. The mode specificity, which is more prevalent in the direct reaction, is rationalized by a transition-state-based model.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, China
- School of Chemical and Environmental Engineering, Hubei University for Nationalities , Enshi 445000, China
| | - Hongwei Song
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, China
| | - István Szabó
- Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged , Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged , Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, China
| |
Collapse
|
32
|
Vikár A, Nagy T, Lendvay G. Testing the Palma-Clary Reduced Dimensionality Model Using Classical Mechanics on the CH4 + H → CH3 + H2 Reaction. J Phys Chem A 2016; 120:5083-93. [PMID: 26918703 DOI: 10.1021/acs.jpca.6b00346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Application of exact quantum scattering methods in theoretical reaction dynamics of bimolecular reactions is limited by the complexity of the equations of nuclear motion to be solved. Simplification is often achieved by reducing the number of degrees of freedom to be explicitly handled by freezing the less important spectator modes. The reaction cross sections obtained in reduced-dimensionality (RD) quantum scattering methods can be used in the calculation of rate coefficients, but their physical meaning is limited. The accurate test of the performance of a reduced-dimensionality method would be a comparison of the RD cross sections with those obtained in accurate full-dimensional (FD) calculations, which is not feasible because of the lack of complete full-dimensional results. However, classical mechanics allows one to perform reaction dynamics calculations using both the RD and the FD model. In this paper, an RD versus FD comparison is made for the 8-dimensional Palma-Clary model on the example of four isotopologs of the CH4 + H → CH3 + H2 reaction, which has 12 internal dimensions. In the Palma-Clary model, the only restriction is that the methyl group is confined to maintain C3v symmetry. Both RD and FD opacity and excitation functions as well as differential cross sections were calculated using the quasiclassical trajectory method. The initial reactant separation has been handled according to our one-period averaging method [ Nagy et al. J. Chem. Phys. 2016, 144, 014104 ]. The RD and FD excitation functions were found to be close to each other for some isotopologs, but in general, the RD reactivity parameters are lower than the FD reactivity parameters beyond statistical error, and for one of the isotopologs, the deviation is significant. This indicates that the goodness of RD cross sections cannot be taken for granted.
Collapse
Affiliation(s)
- Anna Vikár
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Tibor Nagy
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - György Lendvay
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
33
|
Qi J, Song H, Yang M, Palma J, Manthe U, Guo H. Communication: Mode specific quantum dynamics of the F + CHD3 → HF + CD3 reaction. J Chem Phys 2016; 144:171101. [DOI: 10.1063/1.4948547] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ji Qi
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hongwei Song
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Juliana Palma
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Sáenz Peña 352, Bernal B1876BXD, Argentina
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
34
|
Totenhofer AJ, Connor JNL, Nyman G. Angular Scattering Dynamics of the CH4 + Cl → CH3 + HCl Reaction Using Nearside-Farside, Local Angular Momentum, and Resummation Theories. J Phys Chem B 2016; 120:2020-32. [PMID: 26625096 DOI: 10.1021/acs.jpcb.5b10189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The differential cross section (DCS) for the CH4 + Cl → CH3 + HCl reaction is studied at six total energies where all of the species are in their ground states. The scattering (S) matrix elements have been calculated by the rotating line umbrella method for a dual-level ab initio analytic potential energy surface. We make the first application to this reaction of nearside-farside (NF) and local angular momentum (LAM) techniques, including resummation orders (r) of 0, 1, 2, and 3 for the partial-wave series representation of the full scattering amplitude. We find that resummation usually cleans the NF r = 0 DCSs of unphysical oscillations, especially at small angles. This cleaning effect is typically most pronounced when changing from no resummation (r = 0) to r = 1; further resummations from r = 1 to r = 2 and from r = 2 to r = 3 have smaller effects. The NF DCS analyses show that the reaction is N-dominated at sideward and large angles, whereas at small angles there are oscillations caused by NF interference. The NF LAM analysis provides consistent and complementary information, in particular for the total angular momenta that contribute to the reaction at different scattering angles. The NF analyses also provide justification for simpler N-dominant dynamical theories such as the semiclassical optical model, which provides an explanation for the distorted mirror image effect for the moduli of the S matrix elements and the DCSs, as well as the use of a hard-sphere DCS over limited angular ranges.
Collapse
Affiliation(s)
- A J Totenhofer
- School of Chemistry, The University of Manchester , Manchester M13 9PL, United Kingdom
| | - J N L Connor
- School of Chemistry, The University of Manchester , Manchester M13 9PL, United Kingdom
| | - Gunnar Nyman
- Department of Chemistry and Molecular Biology, University of Gothenburg , 41296 Gothenburg, Sweden
| |
Collapse
|
35
|
Liu N, Yang M. An eight-dimensional quantum dynamics study of the Cl + CH4→ HCl + CH3 reaction. J Chem Phys 2015; 143:134305. [DOI: 10.1063/1.4931833] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Na Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Minghui Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|