1
|
Guo S, Yang L, Hou C, Jiang S, Ma X, Shi L, Zheng B, Ye L, He X. The low-entropy hydration shell mediated ice-binding mechanism of antifreeze proteins. Int J Biol Macromol 2024; 277:134562. [PMID: 39116982 DOI: 10.1016/j.ijbiomac.2024.134562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Antifreeze proteins (AFPs) can inhibit ice crystal growth. The ice-binding mechanism of AFPs remains unclear, yet the hydration shells of AFPs are thought to play an important role in modulating the binding of AFPs and ice. Here, we performed all-atom molecular dynamics simulations of an AFP from Choristoneura fumiferana (CfAFP) at four different temperatures, with a focus on analysis at 240 and 300 K, to investigate the dynamic and thermodynamic characteristics of hydration shells around ice-binding surfaces (IBS) and non-ice-binding surfaces (NIBS). Our results revealed that the dynamics of CfAFP hydration shells were highly heterogeneous, with its IBS favoring a less dense and more tetrahedral solvation shell, and NIBS hydration shells having opposite features to those of the IBS. The IBS of nine typical hyperactive AFPs were found to be in pure low-entropy hydration shell region, indicating that low-entropy hydration shell region of IBS and the tetrahedral arrangements of water molecules around them mediate the ice-binding mechanism of AFPs. It is because the entropy increase of the low-entropy hydration shell around IBS, while the higher entropy water molecules at NIBS most likely prevent ice crystal growth. These findings provide new mechanistic insights into the ice-binding of AFPs.
Collapse
Affiliation(s)
- Shuai Guo
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia.
| | - Chengyu Hou
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Shenda Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Xiaoliang Ma
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Liping Shi
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Bing Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150001, China
| | - Lin Ye
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; Shenzhen STRONG Advanced Materials Research Institute Co. Ltd., Shenzhen 518035, China.
| |
Collapse
|
2
|
Cui S, Zhang W, Shao X, Cai W. Hyperactive Antifreeze Proteins Promote Ice Growth before Binding to It. J Chem Inf Model 2021; 62:5165-5174. [PMID: 34711054 DOI: 10.1021/acs.jcim.1c00915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The antifreeze mechanism of antifreeze proteins (AFPs) evolved by organisms has been widely studied. However, detailed knowledge of the synergy between AFPs and ice crystals still remains fragmentary. In the present contribution, the cooperative effect of the hyperactive insect antifreeze protein TmAFP and ice crystals on the interfacial water during the entire process of inhibiting ice growth is systematically investigated at the atomic level and compared with its low activity mutant and a nonantifreeze protein. The results indicate a significant synergy between TmAFP and ice crystals, which enables the TmAFP to promote the ice growth before adsorbing on the surfaces of the ice crystals, while the mutant and the nonantifreeze protein cannot promote the ice growth due to the lack of this synergy. When TmAFP approaches the ice surface, the interfacial water is induced by both the AFP and the ice crystals to form the anchored clathrate motif, which binds TmAFP to the ice surface, resulting in a local increase in the curvature of the ice surface, thereby inhibiting the growth of ice. In this study, three stages, namely, promotion, adsorption, and inhibition, are observed in the complete process of TmAFP inhibiting ice growth, and the synergistic mechanism between protein and ice crystals is revealed. The results are helpful for the design of antifreeze proteins and bioinspired antifreeze materials with superior performance.
Collapse
Affiliation(s)
- Shaoli Cui
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| | - Weijia Zhang
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
| |
Collapse
|
3
|
Bianco V, Espinosa JR, Vega C. Antifreeze proteins and homogeneous nucleation: On the physical determinants impeding ice crystal growth. J Chem Phys 2020; 153:091102. [PMID: 32891082 DOI: 10.1063/5.0023211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Antifreeze proteins (AFPs) are biopolymers capable of interfering with ice growth. Their antifreeze action is commonly understood considering that the AFPs, by pinning the ice surface, force the crystal-liquid interface to bend forming an ice meniscus, causing an increase in the surface free energy and resulting in a decrease in the freezing point ΔTmax. Here, we present an extensive computational study for a model protein adsorbed on a TIP4P/Ice crystal, computing ΔTmax as a function of the average distance d between AFPs, with simulations spanning over 1 µs. First, we show that the lower the d, the larger the ΔTmax. Then, we find that the water-ice-protein contact angle along the line ΔTmax(d) is always larger than 0°, and we provide a theoretical interpretation. We compute the curvature radius of the stable solid-liquid interface at a given supercooling ΔT ≤ ΔTmax, connecting it with the critical ice nucleus at ΔT. Finally, we discuss the antifreeze capability of AFPs in terms of the protein-water and protein-ice interactions. Our findings establish a unified description of the AFPs in the contest of homogeneous ice nucleation, elucidating key aspects of the antifreeze mechanisms and paving the way for the design of novel ice-controlling materials.
Collapse
Affiliation(s)
- Valentino Bianco
- Faculty of Chemistry, Chemical Physics Department, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0H3, United Kingdom
| | - Carlos Vega
- Faculty of Chemistry, Chemical Physics Department, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| |
Collapse
|
4
|
Pal P, Chakraborty S, Jana B. Deciphering the Role of the Non-ice-binding Surface in the Antifreeze Activity of Hyperactive Antifreeze Proteins. J Phys Chem B 2020; 124:4686-4696. [PMID: 32425044 DOI: 10.1021/acs.jpcb.0c01206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antifreeze proteins (AFPs) show thermal hysteresis through specific interaction with the ice crystal. Hyperactive AFPs interact with the ice surface through a threonine-rich motif present at their ice-binding surface (IBS). Ordering of water around the IBS was extensively investigated. However, the role of non-IBS in ice growth inhibition is yet to be understood completely. The present study explores the nature of hydration and its length-scale evaluation around the non-IBS for hyperactive AFPs. We observed that the hydration layer of non-IBS is liquid-like, even in highly supercooled conditions, and the nature of hydration is drastically different from the hydration pattern of non-AFP surfaces. In similar conditions, the hydration layer around the IBS is ice-like ordered. Non-IBS of the hyperactive AFP exposes toward the bulk and is able to maintain the liquid-like character of its hydration water up to 15 Å. We also find that the amino acid compositions and their spatial distribution on the non-IBS are markedly different from those of the IBS and non-AFP surfaces. These results elucidate the combined role of IBS and non-IBS in ice-growth inhibition. While IBS is required to adsorb on ice efficiently, the exposed non-IBS may prevent ice nucleation/growth on top of the bound AFPs.
Collapse
Affiliation(s)
- Prasun Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | | | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
Biswas AD, Barone V, Amadei A, Daidone I. Length-scale dependence of protein hydration-shell density. Phys Chem Chem Phys 2020; 22:7340-7347. [PMID: 32211621 DOI: 10.1039/c9cp06214a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Here we present a computational approach based on molecular dynamics (MD) simulation to study the dependence of the protein hydration-shell density on the size of the protein molecule. The hydration-shell density of eighteen different proteins, differing in size, shape and function (eight of them are antifreeze proteins), is calculated. The results obtained show that an increase in the hydration-shell density, relative to that of the bulk, is observed (in the range of 4-14%) for all studied proteins and that this increment strongly correlates with the protein size. In particular, a decrease in the density increment is observed for decreasing protein size. A simple model is proposed in which the basic idea is to approximate the protein molecule as an effective ellipsoid and to partition the relevant parameters, i.e. the solvent-accessible volume and the corresponding solvent density, into two regions: inside and outside the effective protein ellipsoid. It is found that, within the model developed here, almost all of the hydration-density increase is located inside the protein ellipsoid, basically corresponding to pockets within, or at the surface of the protein molecule. The observed decrease in the density increment is caused by the protein size only and no difference is found between antifreeze and non-antifreeze proteins.
Collapse
Affiliation(s)
- Akash Deep Biswas
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio (Coppito 1), 67010 L'Aquila, Italy.
| | | | | | | |
Collapse
|
6
|
Grabowska J, Kuffel A, Zielkiewicz J. Role of the Solvation Water in Remote Interactions of Hyperactive Antifreeze Proteins with the Surface of Ice. J Phys Chem B 2019; 123:8010-8018. [PMID: 31513398 DOI: 10.1021/acs.jpcb.9b05664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Most protein molecules do not adsorb onto ice, one of the exceptions being so-called antifreeze proteins. In this paper, we describe that there is a force pushing an antifreeze protein molecule away from the ice surface when it is not oriented with its ice-binding plane toward the ice and that this pushing force may be also present even when the protein is oriented with its ice-binding plane toward the ice. This force is absent only when certain specific distance criteria are met, regarding the surface of ice and the protein. It acts at early stages of adsorption, prior to the solidification of water between the ice and the protein molecule nearby. We propose the water-originating mechanism of the generation of this force and also the mechanism of remote attachment of an antifreeze molecule to the ice surface. In liquid water, there exist locally favored structures, ordered and of high specific volume. The presence of a protein molecule usually shifts the equilibrium that exists in liquid water toward increasing the number of high-density, disordered structures and diminishing the number of low-density structures. Creation of the locally favored structures may be hampered not only near the non-ice-binding surfaces but also between the ice surface and the protein surface, if the distance between these surfaces does not allow these structures to develop because the available space is not sufficient for their proper formation. This conclusion is supported by the analysis of the mean geometry of a single hydrogen bond, as well as of the hydrogen bond network in the solvation layer and a structural order parameter that characterizes the separation between the first and second solvation shells of a water molecule.
Collapse
Affiliation(s)
- Joanna Grabowska
- Faculty of Chemistry, Department of Physical Chemistry , Gdańsk University of Technology , Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Anna Kuffel
- Faculty of Chemistry, Department of Physical Chemistry , Gdańsk University of Technology , Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Jan Zielkiewicz
- Faculty of Chemistry, Department of Physical Chemistry , Gdańsk University of Technology , Narutowicza 11/12 , 80-233 Gdańsk , Poland
| |
Collapse
|
7
|
Zanetti-Polzi L, Biswas AD, Del Galdo S, Barone V, Daidone I. Hydration Shell of Antifreeze Proteins: Unveiling the Role of Non-Ice-Binding Surfaces. J Phys Chem B 2019; 123:6474-6480. [PMID: 31280567 DOI: 10.1021/acs.jpcb.9b06375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antifreeze proteins (AFPs) have the ability to inhibit ice growth by binding to ice nuclei. Their ice-binding mechanism is still unclear, yet the hydration layer is thought to play a fundamental role. Here, we use molecular dynamics simulations to characterize the hydration shell of two AFPs and two non-AFPs. The calculated shell thickness and density of the AFPs do not feature any relevant difference with respect to the non-AFPs. Moreover, the hydration shell density is always higher than the bulk density and, thus, no low-density, ice-like layer is detected at the ice-binding surface (IBS) of AFPs. Instead, we observe local water-density differences in AFPs between the IBS (lower density) and the non-IBS (higher density). The lower solvent density at the ice-binding site can pave the way to the protein binding to ice nuclei, while the higher solvent density at the non-ice-binding surfaces might provide protection against ice growth.
Collapse
Affiliation(s)
- Laura Zanetti-Polzi
- Department of Physical and Chemical Sciences , University of L'Aquila , via Vetoio (Coppito 1) , 67010 L'Aquila , Italy
| | - Akash Deep Biswas
- Department of Physical and Chemical Sciences , University of L'Aquila , via Vetoio (Coppito 1) , 67010 L'Aquila , Italy.,Scuola Normale Superiore di Pisa , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| | - Sara Del Galdo
- Scuola Normale Superiore di Pisa , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy.,Institute for the Chemistry of Organometallic Compounds , Italian National Council for Research (ICCOMCNR) , Via G. Moruzzi 1 , I-6124 Pisa , Italy
| | - Vincenzo Barone
- Scuola Normale Superiore di Pisa , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy.,National Institute for Nuclear Physics (INFN) Pisa Section , Largo BrunoPontecorvo 3 , 56127 Pisa , Italy
| | - Isabella Daidone
- Department of Physical and Chemical Sciences , University of L'Aquila , via Vetoio (Coppito 1) , 67010 L'Aquila , Italy
| |
Collapse
|
8
|
Grabowska J, Kuffel A, Zielkiewicz J. Molecular dynamics study on the role of solvation water in the adsorption of hyperactive AFP to the ice surface. Phys Chem Chem Phys 2018; 20:25365-25376. [PMID: 30260360 DOI: 10.1039/c8cp05027a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using computer simulations, the early stages of the adsorption of the CfAFP molecule to the ice surface were analyzed. We found that the ice and the protein interact at least as early as when the protein is about 1 nm away from the ice surface. These interactions are mediated by interfacial solvation water and are possible thanks to the structural ordering of the solvent. This ordering leads to positional preference of the protein relative to the ice crystal before the final attachment to the ice surface takes place, accompanied by the solidification of the interfacial water. It is possible because the solvation water of the ice-binding plane of CfAFP is susceptible to the overlapping with the solvation water of ice and is mostly changeable into ice itself. These remote interactions significantly increase efficacy of the adsorption process by facilitating the geometric adjustment of the active region of the CfAFP molecule to the ice surface. Because of the ordered nature of the water molecules at the ice-binding plane, the energy of their interactions with the ice-binding surface of the protein does not change upon the ongoing solidification of solvation water. However, the structure of the solvation water is not strictly ice-like and the growth of ice in the interfacial water is not initiated at the side of the protein. On the contrary, we find that solvation water of CfAFP solidifies slower than solvation water of ice - the solidification of interfacial water starts at the surface of ice. Moreover, in the presence of the CfAFP molecule, also solvation water of ice solidifies slower compared to the situation when the protein is not present next to the ice surface. Additionally, the presence of the protein molecule shifts the ratio of cubic to hexagonal ice that spontaneously forms at the ice surface, by introducing another layer of ordered water molecules - opposite to the ice lattice, at the other side of the crystallizing layer of water.
Collapse
Affiliation(s)
- Joanna Grabowska
- Gdańsk University of Technology, Faculty of Chemistry, Department of Physical Chemistry, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | | | | |
Collapse
|
9
|
Abstract
Much of biology happens at the protein-water interface, so all dynamical processes in this region are of fundamental importance. Local structural fluctuations in the hydration layer can be probed by 17O magnetic relaxation dispersion (MRD), which, at high frequencies, measures the integral of a biaxial rotational time correlation function (TCF)-the integral rotational correlation time. Numerous 17O MRD studies have demonstrated that this correlation time, when averaged over the first hydration shell, is longer than in bulk water by a factor 3-5. This rotational perturbation factor (RPF) has been corroborated by molecular dynamics simulations, which can also reveal the underlying molecular mechanisms. Here, we address several outstanding problems in this area by analyzing an extensive set of molecular dynamics data, including four globular proteins and three water models. The vexed issue of polarity versus topography as the primary determinant of hydration water dynamics is resolved by establishing a protein-invariant exponential dependence of the RPF on a simple confinement index. We conclude that the previously observed correlation of the RPF with surface polarity is a secondary effect of the correlation between polarity and confinement. Water rotation interpolates between a perturbed but bulk-like collective mechanism at low confinement and an exchange-mediated orientational randomization (EMOR) mechanism at high confinement. The EMOR process, which accounts for about half of the RPF, was not recognized in previous simulation studies, where only the early part of the TCF was examined. Based on the analysis of the experimentally relevant TCF over its full time course, we compare simulated and measured RPFs, finding a 30% discrepancy attributable to force field imperfections. We also compute the full 17O MRD profile, including the low-frequency dispersion produced by buried water molecules. Computing a local RPF for each hydration shell, we find that the perturbation decays exponentially with a decay "length" of 0.3 shells and that the second and higher shells account for a mere 3% of the total perturbation measured by 17O MRD. The only long-range effect is a weak water alignment in the electric field produced by an electroneutral protein (not screened by counterions), but this effect is negligibly small for 17O MRD. By contrast, we find that the 17O TCF is significantly more sensitive to the important short-range perturbations than the other two TCFs examined here.
Collapse
Affiliation(s)
- Filip Persson
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Pär Söderhjelm
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Bertil Halle
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
10
|
Balance between hydration enthalpy and entropy is important for ice binding surfaces in Antifreeze Proteins. Sci Rep 2017; 7:11901. [PMID: 28928396 PMCID: PMC5605524 DOI: 10.1038/s41598-017-11982-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/29/2017] [Indexed: 11/21/2022] Open
Abstract
Antifreeze Proteins (AFPs) inhibit the growth of an ice crystal by binding to it. The detailed binding mechanism is, however, still not fully understood. We investigated three AFPs using Molecular Dynamics simulations in combination with Grid Inhomogeneous Solvation Theory, exploring their hydration thermodynamics. The observed enthalpic and entropic differences between the ice-binding sites and the inactive surface reveal key properties essential for proteins in order to bind ice: While entropic contributions are similar for all sites, the enthalpic gain for all ice-binding sites is lower than for the rest of the protein surface. In contrast to most of the recently published studies, our analyses show that enthalpic interactions are as important as an ice-like pre-ordering. Based on these observations, we propose a new, thermodynamically more refined mechanism of the ice recognition process showing that the appropriate balance between entropy and enthalpy facilitates ice-binding of proteins. Especially, high enthalpic interactions between the protein surface and water can hinder the ice-binding activity.
Collapse
|
11
|
Dong Z, Wang J, Zhou X. Effect of antifreeze protein on heterogeneous ice nucleation based on a two-dimensional random-field Ising model. Phys Rev E 2017; 95:052140. [PMID: 28618642 DOI: 10.1103/physreve.95.052140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Indexed: 11/07/2022]
Abstract
Antifreeze proteins (AFPs) are the key biomolecules that protect many species from suffering the extreme conditions. Their unique properties of antifreezing provide the potential of a wide range of applications. Inspired by the present experimental approaches of creating an antifreeze surface by coating AFPs, here we present a two-dimensional random-field lattice Ising model to study the effect of AFPs on heterogeneous ice nucleation. The model shows that both the size and the free-energy effect of individual AFPs and their surface coverage dominate the antifreeze capacity of an AFP-coated surface. The simulation results are consistent with the recent experiments qualitatively, revealing the origin of the surprisingly low antifreeze capacity of an AFP-coated surface when the coverage is not particularly high as shown in experiment. These results will hopefully deepen our understanding of the antifreeze effects and thus be potentially useful for designing novel antifreeze coating materials based on biomolecules.
Collapse
Affiliation(s)
- Zhen Dong
- School of Physical Sciences, University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Jianjun Wang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xin Zhou
- School of Physical Sciences, University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| |
Collapse
|
12
|
Pathak AK, Bandyopadhyay T. Water isotope effect on the thermostability of a polio viral RNA hairpin: A metadynamics study. J Chem Phys 2017; 146:165104. [DOI: 10.1063/1.4982049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Arup K. Pathak
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Tusar Bandyopadhyay
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
13
|
Grabowska J, Kuffel A, Zielkiewicz J. Structure of solvation water around the active and inactive regions of a type III antifreeze protein and its mutants of lowered activity. J Chem Phys 2017; 145:075101. [PMID: 27544127 DOI: 10.1063/1.4961094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Water molecules from the solvation shell of the ice-binding surface are considered important for the antifreeze proteins to perform their function properly. Herein, we discuss the problem whether the extent of changes of the mean properties of solvation water can be connected with the antifreeze activity of the protein. To this aim, the structure of solvation water of a type III antifreeze protein from Macrozoarces americanus (eel pout) is investigated. A wild type of the protein is used, along with its three mutants, with antifreeze activities equal to 54% or 10% of the activity of the native form. The solvation water of the ice-binding surface and the rest of the protein are analyzed separately. To characterize the structure of solvation shell, parameters describing radial and angular characteristics of the mutual arrangement of the molecules were employed. They take into account short-distance (first hydration shell) or long-distance (two solvation shells) effects. The obtained results and the comparison with the results obtained previously for a hyperactive antifreeze protein from Choristoneura fumiferana lead to the conclusion that the structure and amino acid composition of the active region of the protein evolved to achieve two goals. The first one is the modification of the properties of the solvation water. The second one is the geometrical adjustment of the protein surface to the specific crystallographic plane of ice. Both of these goals have to be achieved simultaneously in order for the protein to perform its function properly. However, they seem to be independent from one another in a sense that very small antifreeze activity does not imply that properties of water become different from the ones observed for the wild type. The proteins with significantly lower activity still modify the mean properties of solvation water in a right direction, in spite of the fact that the accuracy of the geometrical match with the ice lattice is lost because of the mutations. Therefore, we do not observe any correlation between the antifreeze activity and the extent of modification of the properties of solvation water.
Collapse
Affiliation(s)
- Joanna Grabowska
- Faculty of Chemistry, Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Anna Kuffel
- Faculty of Chemistry, Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Jan Zielkiewicz
- Faculty of Chemistry, Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
14
|
Chatterjee P, Sengupta N. Signatures of protein thermal denaturation and local hydrophobicity in domain specific hydration behavior: a comparative molecular dynamics study. MOLECULAR BIOSYSTEMS 2016; 12:1139-50. [PMID: 26876051 DOI: 10.1039/c6mb00017g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We investigate, using atomistic molecular dynamics simulations, the association of surface hydration accompanying local unfolding in the mesophilic protein Yfh1 under a series of thermal conditions spanning its cold and heat denaturation temperatures. The results are benchmarked against the thermally stable protein, Ubq, and behavior at the maximum stability temperature. Local unfolding in Yfh1, predominantly in the beta sheet regions, is in qualitative agreement with recent solution NMR studies; the corresponding Ubq unfolding is not observed. Interestingly, all domains, except for the beta sheet domains of Yfh1, show increased effective surface hydrophobicity with increase in temperature, as reflected by the density fluctuations of the hydration layer. Velocity autocorrelation functions (VACF) of oxygen atoms of water within the hydration layers and the corresponding vibrational density of states (VDOS) are used to characterize alteration in dynamical behavior accompanying the temperature dependent local unfolding. Enhanced caging effects accompanying transverse oscillations of the water molecules are found to occur with the increase in temperature preferentially for the beta sheet domains of Yfh1. Helical domains of both proteins exhibit similar trends in VDOS with changes in temperature. This work demonstrates the existence of key signatures of the local onset of protein thermal denaturation in solvent dynamical behavior.
Collapse
Affiliation(s)
- Prathit Chatterjee
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.
| | | |
Collapse
|
15
|
Kuffel A, Zielkiewicz J. Water-mediated influence of a crowded environment on internal vibrations of a protein molecule. Phys Chem Chem Phys 2016; 18:4881-90. [PMID: 26805932 DOI: 10.1039/c5cp07628e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of crowding on the protein inner dynamics is examined by putting a single protein molecule close to one or two neighboring protein molecules. The presence of additional molecules influences the amplitudes of protein fluctuations. Also, a weak dynamical coupling of collective velocities of surface atoms of proteins separated by a layer of water is detected. The possible mechanisms of these phenomena are described. The cross-correlation function of the collective velocities of surface atoms of two proteins was decomposed into the Fourier series. The amplitude spectrum displays a peak at low frequencies. Also, the results of principal component analysis suggest that the close presence of an additional protein molecule influences the high-amplitude, low-frequency modes in the most prominent way. This part of the spectrum covers biologically important protein motions. The neighbor-induced changes in the inner dynamics of the protein may be connected with the changes in the velocity power spectrum of interfacial water. The additional protein molecule changes the properties of solvation water and in this way it can influence the dynamics of the second protein. It is suggested that this phenomenon may be described, at first approximation, by a damped oscillator driven by an external random force. This model was successfully applied to conformationally rigid Choristoneura fumiferana antifreeze protein molecules.
Collapse
Affiliation(s)
- Anna Kuffel
- Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Jan Zielkiewicz
- Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
16
|
Kuffel A, Czapiewski D, Zielkiewicz J. Unusual dynamic properties of water near the ice-binding plane of hyperactive antifreeze protein. J Chem Phys 2015; 143:135102. [DOI: 10.1063/1.4931922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anna Kuffel
- Department of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80–233 Gdansk, Poland
| | - Dariusz Czapiewski
- Department of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80–233 Gdansk, Poland
| | - Jan Zielkiewicz
- Department of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80–233 Gdansk, Poland
| |
Collapse
|