1
|
Pireddu G, Fairchild CJ, Niblett SP, Cox SJ, Rotenberg B. Impedance of nanocapacitors from molecular simulations to understand the dynamics of confined electrolytes. Proc Natl Acad Sci U S A 2024; 121:e2318157121. [PMID: 38662549 PMCID: PMC11067016 DOI: 10.1073/pnas.2318157121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Nanoelectrochemical devices have become a promising candidate technology across various applications, including sensing and energy storage, and provide new platforms for studying fundamental properties of electrode/electrolyte interfaces. In this work, we employ constant-potential molecular dynamics simulations to investigate the impedance of gold-aqueous electrolyte nanocapacitors, exploiting a recently introduced fluctuation-dissipation relation. In particular, we relate the frequency-dependent impedance of these nanocapacitors to the complex conductivity of the bulk electrolyte in different regimes, and use this connection to design simple but accurate equivalent circuit models. We show that the electrode/electrolyte interfacial contribution is essentially capacitive and that the electrolyte response is bulk-like even when the interelectrode distance is only a few nanometers, provided that the latter is sufficiently large compared to the Debye screening length. We extensively compare our simulation results with spectroscopy experiments and predictions from analytical theories. In contrast to experiments, direct access in simulations to the ionic and solvent contributions to the polarization allows us to highlight their significant and persistent anticorrelation and to investigate the microscopic origin of the timescales observed in the impedance spectrum. This work opens avenues for the molecular interpretation of impedance measurements, and offers valuable contributions for future developments of accurate coarse-grained representations of confined electrolytes.
Collapse
Affiliation(s)
- Giovanni Pireddu
- Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS, Sorbonne Université, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), CNRS, Sorbonne Université, ParisF-75005, France
| | - Connie J. Fairchild
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Samuel P. Niblett
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Stephen J. Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Benjamin Rotenberg
- Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS, Sorbonne Université, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), CNRS, Sorbonne Université, ParisF-75005, France
- Réseau sur le Stockage Electrochimique de l’Energie, Fédération de Recherche CNRS 3459, Amiens Cedex80039, France
| |
Collapse
|
2
|
Hoang Ngoc Minh T, Kim J, Pireddu G, Chubak I, Nair S, Rotenberg B. Electrical noise in electrolytes: a theoretical perspective. Faraday Discuss 2023; 246:198-224. [PMID: 37409620 DOI: 10.1039/d3fd00026e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Seemingly unrelated experiments such as electrolyte transport through nanotubes, nano-scale electrochemistry, NMR relaxometry and surface force balance measurements, all probe electrical fluctuations: of the electric current, the charge and polarization, the field gradient (for quadrupolar nuclei) and the coupled mass/charge densities. The fluctuations of such various observables arise from the same underlying microscopic dynamics of the ions and solvent molecules. In principle, the relevant length and time scales of these dynamics are encoded in the dynamic structure factors. However, modelling the latter for frequencies and wavevectors spanning many orders of magnitude remains a great challenge to interpret the experiments in terms of physical processes such as solvation dynamics, diffusion, electrostatic and hydrodynamic interactions between ions, interactions with solid surfaces, etc. Here, we highlight the central role of the charge-charge dynamic structure factor in the fluctuations of electrical observables in electrolytes and offer a unifying perspective over a variety of complementary experiments. We further analyze this quantity in the special case of an aqueous NaCl electrolyte, using simulations with explicit ions and an explicit or implicit solvent. We discuss the ability of the standard Poisson-Nernst-Planck theory to capture the simulation results, and how the predictions can be improved. We finally discuss the contributions of ions and water to the total charge fluctuations. This work illustrates an ongoing effort towards a comprehensive understanding of electrical fluctuations in bulk and confined electrolytes, in order to enable experimentalists to decipher the microscopic properties encoded in the measured electrical noise.
Collapse
Affiliation(s)
- Thê Hoang Ngoc Minh
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Jeongmin Kim
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Giovanni Pireddu
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Iurii Chubak
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Swetha Nair
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
3
|
Dipolar Noise in Fluorinated Molecular Wires. NANOMATERIALS 2022; 12:nano12081371. [PMID: 35458080 PMCID: PMC9031467 DOI: 10.3390/nano12081371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023]
Abstract
We demonstrate a strategy to directly map and quantify the effects of dipole formation on electrical transports and noises in the self-assembled monolayers (SAMs) of molecular wires. In this method, the SAM patterns of fluorinated molecules with dipole moments were prepared on conducting substrates, and a conducting probe in contact-mode atomic force microscopy was utilized to map currents and noises through the probe on the molecular patterns. The maps were analyzed to extract the characteristic parameters of dipolar noises in SAMs, and the results were compared with those of hydrogenated molecular patterns without dipole moments. At rather low bias conditions, the fluorinated molecular junctions exhibited a tunneling conduction and a resistance value comparable to that of the hydrogenated molecules with a six-times-longer length, which was attributed to stronger dipoles formation in fluorinated molecules. Interestingly, conductance (G) in different regions of fluorinated molecular patterns exhibited a strong correlation with a noise power spectral density of SI/I2 like SI/I2 ∝ G-2, which can be explained by enhanced barrier fluctuations produced by the dipoles of fluorinated molecules. Furthermore, we observed that the noise power spectral density of fluorinated molecules showed an anomalous frequency (f) dependence like SI/I2 ∝ 1/f1.7, possibly due to the slowing down of the tunneling of carriers from increased barrier fluctuations. In rather high bias conditions, conductions in both hydrogenated and fluorinated molecules showed a transition from tunneling to thermionic charge transports. Our results provide important insights into the effects of dipoles on mesoscopic transport and resistance-fluctuation in molecules and could have a significant impact on the fundamental understanding and applications in this area.
Collapse
|
4
|
Abstract
Many key industrial processes, from electricity production, conversion, and storage to electrocatalysis or electrochemistry in general, rely on physical mechanisms occurring at the interface between a metallic electrode and an electrolyte solution, summarized by the concept of an electric double layer, with the accumulation/depletion of electrons on the metal side and of ions on the liquid side. While electrostatic interactions play an essential role in the structure, thermodynamics, dynamics, and reactivity of electrode-electrolyte interfaces, these properties also crucially depend on the nature of the ions and solvent, as well as that of the metal itself. Such interfaces pose many challenges for modeling because they are a place where quantum chemistry meets statistical physics. In the present review, we explore the recent advances in the description and understanding of electrode-electrolyte interfaces with classical molecular simulations, with a focus on planar interfaces and solvent-based liquids, from pure solvent to water-in-salt electrolytes.
Collapse
Affiliation(s)
- Laura Scalfi
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, F-75005 Paris, France
| | - Mathieu Salanne
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| | - Benjamin Rotenberg
- Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS 8234, Sorbonne Université, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
5
|
Onuki A. Long-range correlations of polarization and number densities in dilute electrolytes. J Chem Phys 2020; 153:234501. [DOI: 10.1063/5.0030763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Akira Onuki
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Walker E, Akishige Y, Cai T, Roberts J, Shepherd N, Wu S, Wang Z, Neogi A. Maxwell-Wagner-Sillars Dynamics and Enhanced Radio-Frequency Elastomechanical Susceptibility in PNIPAm Hydrogel-KF-doped Barium Titanate Nanoparticle Composites. NANOSCALE RESEARCH LETTERS 2019; 14:385. [PMID: 31858312 PMCID: PMC6923305 DOI: 10.1186/s11671-019-3171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Maxwell-Wagner-Sillars (MWS) dynamics and electromagnetic radio-frequency (RF) actuation of the volumetric phase change are investigated in a hybrid polymer composite consisting of hydrogel suspended with high-k nanoparticles. Poly(N-isopropylacrylamide) (PNIPAm) hydrogels were combined with 10% KF-doped barium titanate (Ba0.9 K0.1 TiO2.9F0.1, KBT) nanoparticles with highly anisotropic dielectric properties using poly(vinyl alcohol) (PVA) to form a nanoparticle-hydrogel composite. Whereas the addition of PVA to the synthesis maintains a strong volumetric phase transition with polarization and relaxation features similar to standard bulk PNIPAm, the addition of KBT nanoparticles results in reduced volumetric phase transition and MWS polarization due to charge screening of intramolecular interactions. The added nanoparticles and modified synthesis process enhanced the dielectric permittivity of bulk PNIPAm, increased RF conductivity up to 7×, and decreased the specific heat while still maintaining a discontinuous volumetric phase transition. An RF antenna emitting at 544 kHz was only able to actuate a phase change in the composites with modified synthesis versus bulk PNIPAm. Measured heating rates were 3× greater than that of un-modified PNIPAm.
Collapse
Affiliation(s)
- Ezekiel Walker
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
- Department of Physics, University of North Texas, 210 Avenue A, Denton, USA
| | | | - Tong Cai
- Department of Physics, University of North Texas, 210 Avenue A, Denton, USA
| | - James Roberts
- Department of Physics, University of North Texas, 210 Avenue A, Denton, USA
| | - Nigel Shepherd
- Department of Materials Science and Engineering, University of North Texas, Discovery Park E118, Denton, USA
| | - Shijie Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 People’s Republic of China
| | - Arup Neogi
- Department of Physics, University of North Texas, 210 Avenue A, Denton, USA
| |
Collapse
|
7
|
Jones RE, Tucker WC, Mills MJL, Mukerjee S. Insight into hydrogen production through molecular simulation of an electrode-ionomer electrolyte system. J Chem Phys 2019; 151:034702. [PMID: 31325927 DOI: 10.1063/1.5097609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this work, we examine metal electrode-ionomer electrolyte systems at high voltage (negative surface charge) and at high pH to assess factors that influence hydrogen production efficiency. We simulate the hydrogen evolution electrode interface investigated experimentally in the work of Bates et al. [J. Phys. Chem. C 119, 5467 (2015)] using a combination of first principles calculations and classical molecular dynamics. With this detailed molecular information, we explore the hypotheses posed in the work of Bates et al. In particular, we examine the response of the system to increased bias voltage and oxide coverage in terms of the potential profile, changes in solvation and species concentrations away from the electrode, surface concentrations, and orientation of water at reactive surface sites. We discuss this response in the context of hydrogen production.
Collapse
Affiliation(s)
- R E Jones
- Sandia National Laboratories, Livermore, California 94551, USA
| | - W C Tucker
- Sandia National Laboratories, Livermore, California 94551, USA
| | - M J L Mills
- Sandia National Laboratories, Livermore, California 94551, USA
| | - S Mukerjee
- Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
8
|
Onuki A, Kawasaki T. Theory of applying shear strains from boundary walls: Linear response in glasses. J Chem Phys 2019; 150:124504. [PMID: 30927885 DOI: 10.1063/1.5082154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We construct a linear response theory of applying shear deformations from boundary walls in the film geometry in Kubo's theoretical scheme. Our method is applicable to any solids and fluids. For glasses, we assume quasi-equilibrium around a fixed inherent state. Then, we obtain linear-response expressions for any variables including the stress and the particle displacements, even though the glass interior is elastically inhomogeneous. In particular, the shear modulus can be expressed in terms of the correlations between the interior stress and the forces from the walls. It can also be expressed in terms of the inter-particle correlations, as has been shown in the previous literature. Our stress relaxation function includes the effect of the boundary walls and can be used for inhomogeneous flow response. We show the presence of long-ranged, long-lived correlations among the fluctuations of the forces from the walls and the displacements of all the particles in the cell. We confirm these theoretical results numerically in a two-dimensional model glass. As an application, we describe emission and propagation of transverse sounds after boundary wall motions using these time-correlation functions. We also find resonant sound amplification when the frequency of an oscillatory shear approaches that of the first transverse sound mode.
Collapse
Affiliation(s)
- Akira Onuki
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
9
|
Microscopic dynamics of charge separation at the aqueous electrochemical interface. Proc Natl Acad Sci U S A 2017; 114:13374-13379. [PMID: 28698368 DOI: 10.1073/pnas.1700093114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used molecular simulation and methods of importance sampling to study the thermodynamics and kinetics of ionic charge separation at a liquid water-metal interface. We have considered this process using canonical examples of two different classes of ions: a simple alkali-halide pair, Na+I-, or classical ions, and the products of water autoionization, H3O+OH-, or water ions. We find that for both ion classes, the microscopic mechanism of charge separation, including water's collective role in the process, is conserved between the bulk liquid and the electrode interface. However, the thermodynamic and kinetic details of the process differ between these two environments in a way that depends on ion type. In the case of the classical ion pairs, a higher free-energy barrier to charge separation and a smaller flux over that barrier at the interface result in a rate of dissociation that is 40 times slower relative to the bulk. For water ions, a slightly higher free-energy barrier is offset by a higher flux over the barrier from longer lived hydrogen-bonding patterns at the interface, resulting in a rate of association that is similar both at and away from the interface. We find that these differences in rates and stabilities of charge separation are due to the altered ability of water to solvate and reorganize in the vicinity of the metal interface.
Collapse
|
10
|
Takae K, Onuki A. Ferroelectric glass of spheroidal dipoles with impurities: polar nanoregions, response to applied electric field, and ergodicity breakdown. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:165401. [PMID: 28218895 DOI: 10.1088/1361-648x/aa6184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using molecular dynamics simulation, we study dipolar glass in crystals composed of slightly spheroidal, polar particles and spherical, apolar impurities between metal walls. We present physical pictures of ferroelectric glass, which have been observed in relaxors, mixed crystals (such as KCN x KBr1-x ), and polymers. Our systems undergo a diffuse transition in a wide temperature range, where we visualize polar nanoregions (PNRs) surrounded by impurities. In our simulation, the impurities form clusters and their space distribution is heterogeneous. The polarization fluctuations are enhanced at relatively high T depending on the size of the dipole moment. They then form frozen PNRs as T is further lowered into the nonergodic regime. As a result, the dielectric permittivity exhibits the characteristic features of relaxor ferroelectrics. We also examine nonlinear response to cyclic applied electric field and nonergodic response to cyclic temperature changes (ZFC/FC), where the polarization and the strain change collectively and heterogeneously. We also study antiferroelectric glass arising from molecular shape asymmetry. We use an Ewald scheme of calculating the dipolar interaction in applied electric field.
Collapse
Affiliation(s)
- Kyohei Takae
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | | |
Collapse
|
11
|
Uematsu Y, Netz RR, Bonthuis DJ. Power-law electrokinetic behavior as a direct probe of effective surface viscosity. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.12.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Okamoto R, Onuki A. Ionization at a solid-water interface in an applied electric field: Charge regulation. J Chem Phys 2016; 145:124706. [PMID: 27782653 DOI: 10.1063/1.4963100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate ionization at a solid-water interface in an applied electric field. We attach an electrode to a dielectric film bearing silanol or carboxyl groups with an areal density Γ0, where the degree of dissociation α is determined by the proton density in water close to the film. We show how α depends on the density n0 of NaOH in water and the surface charge density σm on the electrode. For σm > 0, the protons are expelled away from the film, leading to an increase in α. In particular, in the range 0 < σm < eΓ0, self-regulation occurs to realize α ≅ σm/eΓ0 for n0 ≪ nc, where nc is 0.01 mol/L for silica surfaces and is 2 × 10-5 mol/L for carboxyl-bearing surfaces. We also examine the charge regulation with decreasing the cell thickness H below the Debye length κ-1, where a crossover occurs at the Gouy-Chapman length. In particular, when σm ∼ eΓ0 and H ≪ κ-1, the surface charges remain only partially screened by ions, leading to a nonvanishing electric field in the interior.
Collapse
Affiliation(s)
- Ryuichi Okamoto
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Akira Onuki
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
13
|
Zhang C, Hutter J, Sprik M. Computing the Kirkwood g-Factor by Combining Constant Maxwell Electric Field and Electric Displacement Simulations: Application to the Dielectric Constant of Liquid Water. J Phys Chem Lett 2016; 7:2696-2701. [PMID: 27352038 DOI: 10.1021/acs.jpclett.6b01127] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In his classic 1939 paper, Kirkwood linked the macroscopic dielectric constant of polar liquids to the local orientational order as measured by the g-factor (later named after him) and suggested that the corresponding dielectric constant at short-range is effectively equal to the macroscopic value just after "a distance of molecular magnitude" [ Kirkwood, J. Chem. Phys., 1939, 7, 911 ]. Here, we show a simple approach to extract the short-ranged Kirkwood g-factor from molecular dynamics (MD) simulation by superposing the outcomes of constant electric field E and constant electric displacement D simulations [ Zhang and Sprik, Phys. Rev. B: Condens. Matter Mater. Phys., 2016, 93, 144201 ]. Rather than from the notoriously slow fluctuations of the dipole moment of the full MD cell, the dielectric constant can now be estimated from dipole fluctuations at short-range, accelerating the convergence. Exploiting this feature, we computed the bulk dielectric constant of liquid water modeled in the generalized gradient approximation (PBE) to density functional theory and found it to be at least 40% larger than the experimental value.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jürg Hutter
- Institut für Chemie, Universität Zürich , Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Michiel Sprik
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
14
|
Shi B, Agnihotri MV, Chen SH, Black R, Singer SJ. Polarization charge: Theory and applications to aqueous interfaces. J Chem Phys 2016; 144:164702. [DOI: 10.1063/1.4945760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|