1
|
Salomon R, Razavi Bazaz S, Mutafopulos K, Gallego-Ortega D, Warkiani M, Weitz D, Jin D. Challenges in blood fractionation for cancer liquid biopsy: how can microfluidics assist? LAB ON A CHIP 2025; 25:1097-1127. [PMID: 39775440 DOI: 10.1039/d4lc00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Liquid biopsy provides a minimally invasive approach to characterise the molecular and phenotypic characteristics of a patient's individual tumour by detecting evidence of cancerous change in readily available body fluids, usually the blood. When applied at multiple points during the disease journey, it can be used to monitor a patient's response to treatment and to personalise clinical management based on changes in disease burden and molecular findings. Traditional liquid biopsy approaches such as quantitative PCR, have tended to look at only a few biomarkers, and are aimed at early detection of disease or disease relapse using predefined markers. With advances in the next generation sequencing (NGS) and single-cell genomics, simultaneous analysis of both circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) is now a real possibility. To realise this, however, we need to overcome issues with current blood collection and fractionation processes. These include overcoming the need to add a preservative to the collection tube or the need to rapidly send blood tubes to a centralised processing lab with the infrastructure required to fractionate and process the blood samples. This review focuses on outlining the current state of liquid biopsy and how microfluidic blood fractionation tools can be used in cancer liquid biopsy. We describe microfluidic devices that can separate plasma for ctDNA analysis, and devices that are important in isolating the cellular component(s) in liquid biopsy, i.e., individual CTCs and CTC clusters. To facilitate a better understanding of these devices, we propose a new categorisation system based on how these devices operate. The three categories being 1) solid Interaction devices, 2) fluid Interaction devices and 3) external force/active devices. Finally, we conclude that whilst some assays and some cancers are well suited to current microfluidic techniques, new tools are necessary to support broader, clinically relevant multiomic workflows in cancer liquid biopsy.
Collapse
Affiliation(s)
- Robert Salomon
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
| | - Sajad Razavi Bazaz
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
| | - Kirk Mutafopulos
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - David Gallego-Ortega
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Majid Warkiani
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - David Weitz
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
| |
Collapse
|
2
|
Samad MIA, Ponnuthurai DR, Badrudin SI, Ali MAM, Razak MAA, Buyong MR, Latif R. Migration Study of Dielectrophoretically Manipulated Red Blood Cells in Tapered Aluminium Microelectrode Array: A Pilot Study. MICROMACHINES 2023; 14:1625. [PMID: 37630162 PMCID: PMC10457829 DOI: 10.3390/mi14081625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023]
Abstract
Dielectrophoresis (DEP) is one of the microfluid-based techniques that can manipulate the red blood cells (RBC) for blood plasma separation, which is used in many medical screening/diagnosis applications. The tapered aluminium microelectrode array (TAMA) is fabricated for potential sensitivity enhancement of RBC manipulation in lateral and vertical directions. In this paper, the migration properties of dielectrophoretically manipulated RBC in TAMA platform are studied at different peak-to-peak voltage (Vpp) and duration supplied onto the microelectrodes. Positive DEP manipulation is conducted at 440 kHz with the RBC of 4.00 ± 0.2 µm average radius attracted to the higher electric field intensity regions, which are the microelectrodes. High percentage of RBC migration occurred at longer manipulation time and high electrode voltage. During DEP manipulation, the RBC are postulated to levitate upwards, experience the electro-orientation mechanism and form the pearl chains before migrating to the electrodes. The presence of external forces other than the dielectrophoretic force may also affect the migration response of RBC. The safe operating limit of 10 Vpp and manipulation duration of ≤50 s prevent RBC rupture while providing high migration percentage. It is crucial to define the safe working region for TAMA devices that manipulate small RBC volume (~10 µL).
Collapse
Affiliation(s)
- Muhammad Izzuddin Abd Samad
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (M.I.A.S.); (D.R.P.); (S.I.B.); (M.R.B.)
| | - Darven Raj Ponnuthurai
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (M.I.A.S.); (D.R.P.); (S.I.B.); (M.R.B.)
| | - Syazwani Izrah Badrudin
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (M.I.A.S.); (D.R.P.); (S.I.B.); (M.R.B.)
| | - Mohd Anuar Mohd Ali
- School of Electrical Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; (M.A.M.A.); (M.A.A.R.)
| | - Mohd Azhar Abdul Razak
- School of Electrical Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia; (M.A.M.A.); (M.A.A.R.)
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (M.I.A.S.); (D.R.P.); (S.I.B.); (M.R.B.)
| | - Rhonira Latif
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (M.I.A.S.); (D.R.P.); (S.I.B.); (M.R.B.)
| |
Collapse
|
3
|
Mumtaz Z, Rashid Z, Ali A, Arif A, Ameen F, AlTami MS, Yousaf MZ. Prospects of Microfluidic Technology in Nucleic Acid Detection Approaches. BIOSENSORS 2023; 13:584. [PMID: 37366949 DOI: 10.3390/bios13060584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 06/28/2023]
Abstract
Conventional diagnostic techniques are based on the utilization of analyte sampling, sensing and signaling on separate platforms for detection purposes, which must be integrated to a single step procedure in point of care (POC) testing devices. Due to the expeditious nature of microfluidic platforms, the trend has been shifted toward the implementation of these systems for the detection of analytes in biochemical, clinical and food technology. Microfluidic systems molded with substances such as polymers or glass offer the specific and sensitive detection of infectious and noninfectious diseases by providing innumerable benefits, including less cost, good biological affinity, strong capillary action and simple process of fabrication. In the case of nanosensors for nucleic acid detection, some challenges need to be addressed, such as cellular lysis, isolation and amplification of nucleic acid before its detection. To avoid the utilization of laborious steps for executing these processes, advances have been deployed in this perspective for on-chip sample preparation, amplification and detection by the introduction of an emerging field of modular microfluidics that has multiple advantages over integrated microfluidics. This review emphasizes the significance of microfluidic technology for the nucleic acid detection of infectious and non-infectious diseases. The implementation of isothermal amplification in conjunction with the lateral flow assay greatly increases the binding efficiency of nanoparticles and biomolecules and improves the limit of detection and sensitivity. Most importantly, the deployment of paper-based material made of cellulose reduces the overall cost. Microfluidic technology in nucleic acid testing has been discussed by explicating its applications in different fields. Next-generation diagnostic methods can be improved by using CRISPR/Cas technology in microfluidic systems. This review concludes with the comparison and future prospects of various microfluidic systems, detection methods and plasma separation techniques used in microfluidic devices.
Collapse
Affiliation(s)
- Zilwa Mumtaz
- KAM School of Life Sciences, Forman Christian College University, Ferozpur Road, Lahore 54600, Pakistan
| | - Zubia Rashid
- Pure Health Laboratory, Mafraq Hospital, Abu Dhabi 1227788, United Arab Emirates
| | - Ashaq Ali
- State Key Laboratory of Virology, Center for Biosafety MegaScience, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Afsheen Arif
- Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Suad University, Riyadh 11451, Saudi Arabia
| | - Mona S AlTami
- Biology Department, College of Science, Qassim University, Burydah 52571, Saudi Arabia
| | - Muhammad Zubair Yousaf
- KAM School of Life Sciences, Forman Christian College University, Ferozpur Road, Lahore 54600, Pakistan
| |
Collapse
|
4
|
Bakhtiaridoost S, Habibiyan H, Ghafoorifard H. A microfluidic device to separate high-quality plasma from undiluted whole blood sample using an enhanced gravitational sedimentation mechanism. Anal Chim Acta 2023; 1239:340641. [PMID: 36628743 DOI: 10.1016/j.aca.2022.340641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
The growing interest in lab-on-a-chip systems for plasma separation has led to the presentation of various devices. Trench-based devices benefiting from gravitational sedimentation are efficient structures with air-locking and low speed-drawbacks. The present study introduces a fast, hemolysis-free, highly efficient blood plasma separation microfluidic device. The proposed device is based on gravitational sedimentation combined with dielectrophoresis force to promote the purity of the separated plasma, reduce the separation process time, and overcome the air-locking problem. The effect of geometrical parameters on the separation process is investigated using finite element analysis to attain optimal design specifications. A drop of whole blood (10 μl) is injected into the fabricated chip at four flow rates of 70 nl/s to 100 nl/s. It takes less than 4 min to obtain 2.2 μl plasma from undiluted blood without losing plasma proteins. Additionally, a porous Melt-Blown Polypropylene (MBPP) layer is used to eliminate the air-locking problem, which in previous trench-based microsystems led to time-consuming device preparation steps. Blood samples with various hematocrits (15%-65%) are tested with the applied voltages of 0-20 Vpp through the optimized structure. A purity of 99.98% ± 0.02% (evaluated by hemocytometry) is achieved using optimized dielectrophoresis force by the applied voltage of 20 Vpp, which is more than the previous studies. The UV-Visible spectroscopy results confirm obtaining a non-hemolyzed sample at a flow rate of 70 nl/s. The proposed device achieves a relative increase in the flow rate compared to similar previous studies while maintaining the high quality of the separated plasma. This achievement lies in using the MBPP layer and combining two separation methods.
Collapse
Affiliation(s)
| | - Hamidreza Habibiyan
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran, Iran.
| | - Hassan Ghafoorifard
- Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
5
|
Zuo ZQ, Pan JZ, Fang Q. An integrated microfluidic system for multi-target biochemical analysis of a single drop of blood. Talanta 2022; 249:123585. [DOI: 10.1016/j.talanta.2022.123585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
|
6
|
Chavez‐Pineda OG, Rodriguez‐Moncayo R, Cedillo‐Alcantar DF, Guevara‐Pantoja PE, Amador‐Hernandez JU, Garcia‐Cordero JL. Microfluidic systems for the analysis of blood‐derived molecular biomarkers. Electrophoresis 2022; 43:1667-1700. [DOI: 10.1002/elps.202200067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Oriana G. Chavez‐Pineda
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Roberto Rodriguez‐Moncayo
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Diana F. Cedillo‐Alcantar
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Pablo E. Guevara‐Pantoja
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Josue U. Amador‐Hernandez
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
| | - Jose L. Garcia‐Cordero
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB) Centro de Investigación y de Estudios Avanzados (Cinvestav) Monterrey Nuevo León Mexico
- Roche Institute for Translational Bioengineering (ITB) Roche Pharma Research and Early Development, Roche Innovation Center Basel Basel Switzerland
| |
Collapse
|
7
|
Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2022; 51:329-375. [PMID: 34897302 PMCID: PMC9135580 DOI: 10.1039/c9cs00621d] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review article deals with the concepts, principles and applications of visible-light and near-infrared (NIR) fluorescence and surface-enhanced Raman scattering (SERS) in in vitro point-of-care testing (POCT) and in vivo bio-imaging. It has discussed how to utilize the biological transparency windows to improve the penetration depth and signal-to-noise ratio, and how to use surface plasmon resonance (SPR) to amplify fluorescence and SERS signals. This article has highlighted some plasmonic fluorescence and SERS probes. It has also reviewed the design strategies of fluorescent and SERS sensors in the detection of metal ions, small molecules, proteins and nucleic acids. Particularly, it has provided perspectives on the integration of fluorescent and SERS sensors into microfluidic chips as lab-on-chips to realize point-of-care testing. It has also discussed the design of active microfluidic devices and non-paper- or paper-based lateral flow assays for in vitro diagnostics. In addition, this article has discussed the strategies to design in vivo NIR fluorescence and SERS bio-imaging platforms for monitoring physiological processes and disease progression in live cells and tissues. Moreover, it has highlighted the applications of POCT and bio-imaging in testing toxins, heavy metals, illicit drugs, cancers, traumatic brain injuries, and infectious diseases such as COVID-19, influenza, HIV and sepsis.
Collapse
Affiliation(s)
- Yingjie Hang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Jennifer Boryczka
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
8
|
Krishnamurthy A, Anand RK. Recent advances in microscale extraction driven by ion concentration polarization. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Wang Y, Nunna BB, Talukder N, Etienne EE, Lee ES. Blood Plasma Self-Separation Technologies during the Self-Driven Flow in Microfluidic Platforms. Bioengineering (Basel) 2021; 8:94. [PMID: 34356201 PMCID: PMC8301051 DOI: 10.3390/bioengineering8070094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Blood plasma is the most commonly used biofluid in disease diagnostic and biomedical analysis due to it contains various biomarkers. The majority of the blood plasma separation is still handled with centrifugation, which is off-chip and time-consuming. Therefore, in the Lab-on-a-chip (LOC) field, an effective microfluidic blood plasma separation platform attracts researchers' attention globally. Blood plasma self-separation technologies are usually divided into two categories: active self-separation and passive self-separation. Passive self-separation technologies, in contrast with active self-separation, only rely on microchannel geometry, microfluidic phenomena and hydrodynamic forces. Passive self-separation devices are driven by the capillary flow, which is generated due to the characteristics of the surface of the channel and its interaction with the fluid. Comparing to the active plasma separation techniques, passive plasma separation methods are more considered in the microfluidic platform, owing to their ease of fabrication, portable, user-friendly features. We propose an extensive review of mechanisms of passive self-separation technologies and enumerate some experimental details and devices to exploit these effects. The performances, limitations and challenges of these technologies and devices are also compared and discussed.
Collapse
Affiliation(s)
- Yudong Wang
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| | - Bharath Babu Nunna
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Cambridge, MA 02139, USA
| | - Niladri Talukder
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| | - Ernst Emmanuel Etienne
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| | - Eon Soo Lee
- Advanced Energy Systems and Microdevices Laboratory, Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (Y.W.); (B.B.N.); (N.T.); (E.E.E.)
| |
Collapse
|
10
|
Ramirez-Murillo CJ, de Los Santos-Ramirez JM, Perez-Gonzalez VH. Toward low-voltage dielectrophoresis-based microfluidic systems: A review. Electrophoresis 2020; 42:565-587. [PMID: 33166414 DOI: 10.1002/elps.202000213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Dielectrophoretically driven microfluidic devices have demonstrated great applicability in biomedical engineering, diagnostic medicine, and biological research. One of the potential fields of application for this technology is in point-of-care (POC) devices, ideally allowing for portable, fully integrated, easy to use, low-cost diagnostic platforms. Two main approaches exist to induce dielectrophoresis (DEP) on suspended particles, that is, electrode-based DEP and insulator-based DEP, each featuring different advantages and disadvantages. However, a shared concern lies in the input voltage used to generate the electric field necessary for DEP to take place. Therefore, input voltage can determine portability of a microfluidic device. This review outlines the recent advances in reducing stimulation voltage requirements in DEP-driven microfluidics.
Collapse
|
11
|
Çağlayan Z, Demircan Yalçın Y, Külah H. A Prominent Cell Manipulation Technique in BioMEMS: Dielectrophoresis. MICROMACHINES 2020; 11:E990. [PMID: 33153069 PMCID: PMC7693018 DOI: 10.3390/mi11110990] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
BioMEMS, the biological and biomedical applications of micro-electro-mechanical systems (MEMS), has attracted considerable attention in recent years and has found widespread applications in disease detection, advanced diagnosis, therapy, drug delivery, implantable devices, and tissue engineering. One of the most essential and leading goals of the BioMEMS and biosensor technologies is to develop point-of-care (POC) testing systems to perform rapid prognostic or diagnostic tests at a patient site with high accuracy. Manipulation of particles in the analyte of interest is a vital task for POC and biosensor platforms. Dielectrophoresis (DEP), the induced movement of particles in a non-uniform electrical field due to polarization effects, is an accurate, fast, low-cost, and marker-free manipulation technique. It has been indicated as a promising method to characterize, isolate, transport, and trap various particles. The aim of this review is to provide fundamental theory and principles of DEP technique, to explain its importance for the BioMEMS and biosensor fields with detailed references to readers, and to identify and exemplify the application areas in biosensors and POC devices. Finally, the challenges faced in DEP-based systems and the future prospects are discussed.
Collapse
Affiliation(s)
- Zeynep Çağlayan
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey
| | - Yağmur Demircan Yalçın
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- Mikro Biyosistemler Electronics Inc., Ankara 06530, Turkey
| | - Haluk Külah
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey
- Mikro Biyosistemler Electronics Inc., Ankara 06530, Turkey
| |
Collapse
|
12
|
B.I. MZA, Tirth V, Yousuff CM, Shukla NK, Islam S, Irshad K, Aarif KOM. Simulation Guided Microfluidic Design for Multitarget Separation Using Dielectrophoretic Principle. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4406-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Dixon C, Lamanna J, Wheeler AR. Direct loading of blood for plasma separation and diagnostic assays on a digital microfluidic device. LAB ON A CHIP 2020; 20:1845-1855. [PMID: 32338260 DOI: 10.1039/d0lc00302f] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Finger-stick blood sampling is convenient for point of care diagnostics, but whole blood samples are problematic for many assays because of severe matrix effects associated with blood cells and cell debris. We introduce a new digital microfluidic (DMF) diagnostic platform with integrated porous membranes for blood-plasma separation from finger-stick blood volumes, capable of performing complex, multi-step, diagnostic assays. Importantly, the samples can be directly loaded onto the device by a finger "dab" for user-friendly operation. We characterize the platform by comparison to plasma generated via the "gold standard" centrifugation technique, and demonstrate a 21-step rubella virus (RV) IgG immunoassay yielding a detection limit of 1.9 IU mL-1, below the diagnostic cut-off. We propose that this work represents a critical next step in DMF based portable diagnostic assays-allowing the analysis of whole blood samples without pre-processing.
Collapse
Affiliation(s)
- Christopher Dixon
- Department of Chemistry, University of Toronto, 80. St. George Street, Toronto, Ontario M5S 3H6, Canada.
| | | | | |
Collapse
|
14
|
Su X, Zhang J, Zhang D, Wang Y, Chen M, Weng Z, Wang J, Zeng J, Zhang Y, Zhang S, Ge S, Zhang J, Xia N. High-Efficiency Plasma Separator Based on Immunocapture and Filtration. MICROMACHINES 2020; 11:mi11040352. [PMID: 32231068 PMCID: PMC7231172 DOI: 10.3390/mi11040352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
The shortcomings of standard plasma-separation methods limit the point-of-care application of microfluidics in clinical facilities and at the patient's bedside. To overcome the limitations of this inconvenient, laborious, and costly technique, a new plasma-separation technique and device were developed. This new separation method relies on immunological capture and filtration to exclude cells from plasma, and is convenient, easy to use, and cost-effective. Most of the RBCs can be captured and immobilized by antibody which coated in separation matrix, and residue cells can be totally removed from the sample by a commercially plasma purification membranes. A 400 µL anti-coagulated whole blood sample with 65% hematocrit (Hct) can be separated by the device in 5 min with only one pipette. Up to 97% of the plasma can be recovered from the raw blood sample with a separation efficiency at 100%. The recovery rate of small molecule compounds, proteins, and nucleic acid biomarkers is evaluated; there are no obvious differences from the centrifuge method. The results demonstrate that this method is an excellent replacement for traditional plasma preparation protocols.
Collapse
Affiliation(s)
- Xiaosong Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102,China; (X.S.); (J.Z.); (D.Z.); (Y.W.); (M.C.); (Z.W.); (J.W.); (J.Z.); (Y.Z.); (S.G.); (J.Z.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102,China; (X.S.); (J.Z.); (D.Z.); (Y.W.); (M.C.); (Z.W.); (J.W.); (J.Z.); (Y.Z.); (S.G.); (J.Z.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dongxu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102,China; (X.S.); (J.Z.); (D.Z.); (Y.W.); (M.C.); (Z.W.); (J.W.); (J.Z.); (Y.Z.); (S.G.); (J.Z.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102,China; (X.S.); (J.Z.); (D.Z.); (Y.W.); (M.C.); (Z.W.); (J.W.); (J.Z.); (Y.Z.); (S.G.); (J.Z.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Mengyuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102,China; (X.S.); (J.Z.); (D.Z.); (Y.W.); (M.C.); (Z.W.); (J.W.); (J.Z.); (Y.Z.); (S.G.); (J.Z.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhenyu Weng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102,China; (X.S.); (J.Z.); (D.Z.); (Y.W.); (M.C.); (Z.W.); (J.W.); (J.Z.); (Y.Z.); (S.G.); (J.Z.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102,China; (X.S.); (J.Z.); (D.Z.); (Y.W.); (M.C.); (Z.W.); (J.W.); (J.Z.); (Y.Z.); (S.G.); (J.Z.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Juntian Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102,China; (X.S.); (J.Z.); (D.Z.); (Y.W.); (M.C.); (Z.W.); (J.W.); (J.Z.); (Y.Z.); (S.G.); (J.Z.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ya Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102,China; (X.S.); (J.Z.); (D.Z.); (Y.W.); (M.C.); (Z.W.); (J.W.); (J.Z.); (Y.Z.); (S.G.); (J.Z.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shiyin Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102,China; (X.S.); (J.Z.); (D.Z.); (Y.W.); (M.C.); (Z.W.); (J.W.); (J.Z.); (Y.Z.); (S.G.); (J.Z.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
- School of Public Health, Xiamen University, Xiamen 361102, China
- Correspondence:
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102,China; (X.S.); (J.Z.); (D.Z.); (Y.W.); (M.C.); (Z.W.); (J.W.); (J.Z.); (Y.Z.); (S.G.); (J.Z.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102,China; (X.S.); (J.Z.); (D.Z.); (Y.W.); (M.C.); (Z.W.); (J.W.); (J.Z.); (Y.Z.); (S.G.); (J.Z.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102,China; (X.S.); (J.Z.); (D.Z.); (Y.W.); (M.C.); (Z.W.); (J.W.); (J.Z.); (Y.Z.); (S.G.); (J.Z.); (N.X.)
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
- School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
15
|
Rickard JJS, Di-Pietro V, Smith DJ, Davies DJ, Belli A, Oppenheimer PG. Rapid optofluidic detection of biomarkers for traumatic brain injury via surface-enhanced Raman spectroscopy. Nat Biomed Eng 2020; 4:610-623. [DOI: 10.1038/s41551-019-0510-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
|
16
|
Huertas CS, Calvo-Lozano O, Mitchell A, Lechuga LM. Advanced Evanescent-Wave Optical Biosensors for the Detection of Nucleic Acids: An Analytic Perspective. Front Chem 2019; 7:724. [PMID: 31709240 PMCID: PMC6823211 DOI: 10.3389/fchem.2019.00724] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Evanescent-wave optical biosensors have become an attractive alternative for the screening of nucleic acids in the clinical context. They possess highly sensitive transducers able to perform detection of a wide range of nucleic acid-based biomarkers without the need of any label or marker. These optical biosensor platforms are very versatile, allowing the incorporation of an almost limitless range of biorecognition probes precisely and robustly adhered to the sensor surface by covalent surface chemistry approaches. In addition, their application can be further enhanced by their combination with different processes, thanks to their integration with complex and automated microfluidic systems, facilitating the development of multiplexed and user-friendly platforms. The objective of this work is to provide a comprehensive synopsis of cutting-edge analytical strategies based on these label-free optical biosensors able to deal with the drawbacks related to DNA and RNA detection, from single point mutations assays and epigenetic alterations, to bacterial infections. Several plasmonic and silicon photonic-based biosensors are described together with their most recent applications in this area. We also identify and analyse the main challenges faced when attempting to harness this technology and how several innovative approaches introduced in the last years manage those issues, including the use of new biorecognition probes, surface functionalization approaches, signal amplification and enhancement strategies, as well as, sophisticated microfluidic solutions.
Collapse
Affiliation(s)
- Cesar S. Huertas
- Integrated Photonics and Applications Centre, School of Engineering, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Olalla Calvo-Lozano
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, CIBER-BBN, Barcelona, Spain
| | - Arnan Mitchell
- Integrated Photonics and Applications Centre, School of Engineering, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, CIBER-BBN, Barcelona, Spain
| |
Collapse
|
17
|
Eluru G, Nagendra P, Gorthi SS. Microfluidic In-Flow Decantation Technique Using Stepped Pillar Arrays and Hydraulic Resistance Tuners. MICROMACHINES 2019; 10:mi10070471. [PMID: 31311077 PMCID: PMC6680991 DOI: 10.3390/mi10070471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/23/2022]
Abstract
Separating the particles from the liquid component of sample solutions is important for several microfluidic-based sample preparations and/or sample handling techniques, such as plasma separation from whole blood, sheath-free flow focusing, particle enrichment etc. This paper presents a microfluidic in-flow decantation technique that provides the separation of particles from particle-free fluid while in-flow. The design involves the expansion of sample fluid channel in lateral and depth directions, thereby producing a particle-free layer towards the walls of the channel, followed by gradual extraction of this particle-free fluid through a series of tiny openings located towards one-end of the depth-direction. The latter part of this design is quite crucial in the functionality of this decantation technique and is based on the principle called wee-extraction. The design, theory, and simulations were presented to explain the principle-of-operation. To demonstrate the proof-of-principle, the experimental characterization was performed on beads, platelets, and blood samples at various hematocrits (2.5%–45%). The experiments revealed clog-free separation of particle-free fluid for at least an hour of operation of the device and demonstrated purities close to 100% and yields as high as 14%. The avenues to improve the yield are discussed along with several potential applications.
Collapse
Affiliation(s)
- Gangadhar Eluru
- Optics and Microfluidics Instrumentation Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - Pavan Nagendra
- Optics and Microfluidics Instrumentation Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - Sai Siva Gorthi
- Optics and Microfluidics Instrumentation Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
18
|
A Microfluidic Device for Simultaneous Extraction of Plasma, Red Blood Cells, and On-Chip White Blood Cell Trapping. Sci Rep 2018; 8:15345. [PMID: 30337656 PMCID: PMC6194116 DOI: 10.1038/s41598-018-33738-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 10/07/2018] [Indexed: 12/30/2022] Open
Abstract
This study reports a microfluidic device for whole blood processing. The device uses the bifurcation law, cross-flow method, and hydrodynamic flow for simultaneous extraction of plasma, red blood cells, and on-chip white blood cell trapping. The results demonstrate successful plasma and red blood cell collection with a minimum dilution factor (0.76x) and low haemolysis effect. The extracted red blood cells can also be applied for blood type tests. Moreover, the device can trap up to ~1,800 white blood cells in 20 minutes. The three components can be collected simultaneously using only 6 μL of whole blood without any sample preparation processes. Based on these features, the microfluidic device enables low-cost, rapid, and efficient whole blood processing functionality that could potentially be applied for blood analysis in resource-limited environments or point-of-care settings.
Collapse
|
19
|
Thurgood P, Zhu JY, Nguyen N, Nahavandi S, Jex AR, Pirogova E, Baratchi S, Khoshmanesh K. A self-sufficient pressure pump using latex balloons for microfluidic applications. LAB ON A CHIP 2018; 18:2730-2740. [PMID: 30063234 DOI: 10.1039/c8lc00471d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Here, we demonstrate a self-sufficient, inexpensive and disposable pressure pump using commercially available latex balloons. The versatility of the pump is demonstrated against various microfluidic structures, liquid viscosities, and ambient temperatures. The flow rate of the pump can be controlled by varying the size and thickness of the balloon. Importantly, the soft structure of the balloon allows for almost instantaneous change of the flow rate upon manual squeezing of the balloon. This feature has been used for dynamically changing the flow ratio of parallel streams in a T-shaped channel or varying the size of droplets in a droplet generation system. The self-sufficiency, simplicity of fabrication and operation, along with the low-cost of the balloon pump facilitate the widespread application of microfluidic technologies for various research, education, and in situ monitoring purposes.
Collapse
Affiliation(s)
- Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wuethrich A, Quirino JP. A decade of microchip electrophoresis for clinical diagnostics - A review of 2008-2017. Anal Chim Acta 2018; 1045:42-66. [PMID: 30454573 DOI: 10.1016/j.aca.2018.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/30/2018] [Accepted: 08/03/2018] [Indexed: 01/10/2023]
Abstract
A core element in clinical diagnostics is the data interpretation obtained through the analysis of patient samples. To obtain relevant and reliable information, a methodological approach of sample preparation, separation, and detection is required. Traditionally, these steps are performed independently and stepwise. Microchip capillary electrophoresis (MCE) can provide rapid and high-resolution separation with the capability to integrate a streamlined and complete diagnostic workflow suitable for the point-of-care setting. Whilst standard clinical diagnostics methods normally require hours to days to retrieve specific patient data, MCE can reduce the time to minutes, hastening the delivery of treatment options for the patients. This review covers the advances in MCE for disease detection from 2008 to 2017. Miniaturised diagnostic approaches that required an electrophoretic separation step prior to the detection of the biological samples are reviewed. In the two main sections, the discussion is focused on the technical set-up used to suit MCE for disease detection and on the strategies that have been applied to study various diseases. Throughout these discussions MCE is compared to other techniques to create context of the potential and challenges of MCE. A comprehensive table categorised based on the studied disease using MCE is provided. We also comment on future challenges that remain to be addressed.
Collapse
Affiliation(s)
- Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Building 75, Brisbane, QLD, 4072, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, TAS, 7001, Australia.
| |
Collapse
|
21
|
Szydzik C, Brazilek RJ, Khoshmanesh K, Akbaridoust F, Knoerzer M, Thurgood P, Muir I, Marusic I, Nandurkar H, Mitchell A, Nesbitt WS. Elastomeric microvalve geometry affects haemocompatibility. LAB ON A CHIP 2018; 18:1778-1792. [PMID: 29789838 DOI: 10.1039/c7lc01320e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper reports on the parameters that determine the haemocompatibility of elastomeric microvalves for blood handling in microfluidic systems. Using a comprehensive investigation of blood function, we describe a hierarchy of haemocompatibility as a function of microvalve geometry and identify a "normally-closed" v-gate pneumatic microvalve design that minimally affects blood plasma fibrinogen and von Willebrand factor composition, minimises effects on erythrocyte structure and function, and limits effects on platelet activation and aggregation, while facilitating rapid switching control for blood sample delivery. We propose that the haemodynamic profile of valve gate geometries is a significant determinant of platelet-dependent biofouling and haemocompatibility. Overall our findings suggest that modification of microvalve gate geometry and consequently haemodynamic profile can improve haemocompatibility, while minimising the requirement for chemical or protein modification of microfluidic surfaces. This biological insight and approach may be harnessed to inform future haemocompatible microfluidic valve and component design, and is an advance towards lab-on-chip automation for blood based diagnostic systems.
Collapse
Affiliation(s)
- Crispin Szydzik
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lee Y, Kim DM, Li Z, Kim DE, Kim SJ. Pulsatile plasma filtration and cell-free DNA amplification using a water-head-driven point-of-care testing chip. LAB ON A CHIP 2018; 18:915-922. [PMID: 29445802 DOI: 10.1039/c7lc01328k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate a microfiltration chip that separates blood plasma by using water-head-driven pulsatile pressures rather than any external equipment and use it for on-chip amplification of nucleic acids. The chip generates pulsatile pressures to significantly reduce filter clogging without hemolysis, and consists of an oscillator, a plasma-extraction pump, and filter units. The oscillator autonomously converts constant water-head pressure to pulsatile pressure, and the pump uses the pulsatile pressure to extract plasma through the filter. Because the pulsatile pressure can periodically clear blood cells from the filter surface, filter clogging can be effectively reduced. In this way, we achieve plasma extraction with 100% purity and 90% plasma recovery at 15% hematocrit. During a 10 min period, the volume of plasma extracted was 43 μL out of a 243 μL extraction volume at 15% hematocrit. We also studied the influence of the pore size and diameter of the filter, blood loading volume, oscillation period, and hematocrit level on the filtration performance. To demonstrate the utility of our chip for point-of-care testing (POCT) applications, we successfully implemented on-chip amplification of a nucleic acid (miDNA21) in plasma filtered from blood. We expect our chip to be useful not only for POCT applications but also for other bench-top analysis tools using blood plasma.
Collapse
Affiliation(s)
- Yonghun Lee
- Department of Mechanical Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | | | | | | | | |
Collapse
|
23
|
Sibbitts J, Sellens KA, Jia S, Klasner SA, Culbertson CT. Cellular Analysis Using Microfluidics. Anal Chem 2017; 90:65-85. [DOI: 10.1021/acs.analchem.7b04519] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jay Sibbitts
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Kathleen A. Sellens
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Shu Jia
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Scott A. Klasner
- 12966
South
State Highway 94, Marthasville, Missouri 63357, United States
| | | |
Collapse
|
24
|
Sang FN, Chen Z, Wang YD, Xu JH. Dynamic formation and scaling law of hollow droplet with gas/oil/water system in dual-coaxial microfluidic devices. AIChE J 2017. [DOI: 10.1002/aic.15930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Fu-Ning Sang
- The State Key Laboratory of Chemical Engineering, Dept. of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Dept. of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Yun-Dong Wang
- The State Key Laboratory of Chemical Engineering, Dept. of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Jian-Hong Xu
- The State Key Laboratory of Chemical Engineering, Dept. of Chemical Engineering; Tsinghua University; Beijing 100084 China
| |
Collapse
|
25
|
Zehnle S, Rombach M, Zengerle R, von Stetten F, Paust N. Network simulation-based optimization of centrifugo-pneumatic blood plasma separation. BIOMICROFLUIDICS 2017; 11:024114. [PMID: 28798850 PMCID: PMC5533477 DOI: 10.1063/1.4979044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/08/2017] [Indexed: 05/12/2023]
Abstract
Automated and robust separation of 14 μl of plasma from 40 μl of whole blood at a purity of 99.81% ± 0.11% within 43 s is demonstrated for the hematocrit range of 20%-60% in a centrifugal microfluidic polymer disk. At high rotational frequency, red blood cells (RBCs) within whole blood are concentrated in a radial outer RBC collection chamber. Simultaneously, plasma is concentrated in a radial inner pneumatic chamber, where a defined air volume is enclosed and compressed. Subsequent reduction of the rotational frequency to not lower than 25 Hz enables rapid transfer of supernatant plasma into a plasma collection chamber, with highly suppressed resuspension of red blood cells. Disk design and the rotational protocol are optimized to make the process fast, robust, and insusceptible for undesired cell resuspension. Numerical network simulation with lumped model elements is used to predict and optimize the fluidic characteristics. Lysis of the remaining red blood cells in the purified plasma, followed by measurement of the hemoglobin concentration, was used to determine plasma purity. Due to the pneumatic actuation, no surface treatment of the fluidic cartridge or any additional external means are required, offering the possibility for low-cost mass fabrication technologies, such as injection molding or thermoforming.
Collapse
Affiliation(s)
- S Zehnle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - M Rombach
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | | | | | | |
Collapse
|
26
|
Robinson M, Marks H, Hinsdale T, Maitland K, Coté G. Rapid isolation of blood plasma using a cascaded inertial microfluidic device. BIOMICROFLUIDICS 2017; 11:024109. [PMID: 28405258 PMCID: PMC5367146 DOI: 10.1063/1.4979198] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/14/2017] [Indexed: 05/21/2023]
Abstract
Blood, saliva, mucus, sweat, sputum, and other biological fluids are often hindered in their ability to be used in point-of-care (POC) diagnostics because their assays require some form of off-site sample pre-preparation to effectively separate biomarkers from larger components such as cells. The rapid isolation, identification, and quantification of proteins and other small molecules circulating in the blood plasma from larger interfering molecules are therefore particularly important factors for optical blood diagnostic tests, in particular, when using optical approaches that incur spectroscopic interference from hemoglobin-rich red blood cells (RBCs). In this work, a sequential spiral polydimethylsiloxane (PDMS) microfluidic device for rapid (∼1 min) on-chip blood cell separation is presented. The chip utilizes Dean-force induced migration via two 5-loop Archimedean spirals in series. The chip was characterized in its ability to filter solutions containing fluorescent beads and silver nanoparticles and further using blood solutions doped with a fluorescent protein. Through these experiments, both cellular and small molecule behaviors in the chip were assessed. The results exhibit an average RBC separation efficiency of ∼99% at a rate of 5.2 × 106 cells per second while retaining 95% of plasma components. This chip is uniquely suited for integration within a larger point-of-care diagnostic system for the testing of blood plasma, and the use of multiple filtering spirals allows for the tuning of filtering steps, making this device and the underlying technique applicable for a wide range of separation applications.
Collapse
Affiliation(s)
- M Robinson
- Department of Biomedical Engineering, Texas A&M University , College Station, Texas 77843, USA
| | - H Marks
- Department of Biomedical Engineering, Texas A&M University , College Station, Texas 77843, USA
| | - T Hinsdale
- Department of Biomedical Engineering, Texas A&M University , College Station, Texas 77843, USA
| | | | | |
Collapse
|
27
|
Namgung B, Tan JKS, Wong PA, Park SY, Leo HL, Kim S. Biomimetic Precapillary Flow Patterns for Enhancing Blood Plasma Separation: A Preliminary Study. SENSORS (BASEL, SWITZERLAND) 2016; 16:E1543. [PMID: 27657090 PMCID: PMC5038815 DOI: 10.3390/s16091543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 12/03/2022]
Abstract
In this study, a biomimetic microfluidic plasma separation device is discussed. The design of the device drew inspiration from in vivo observations of enhanced cell-free layer (CFL) formation downstream of vascular bifurcations. The working principle for the plasma separation was based on the plasma skimming effect in an arteriolar bifurcation, which is modulated by CFL formation. The enhancement of the CFL width was achieved by a local hematocrit reduction near the collection channel by creating an uneven hematocrit distribution at the bifurcation of the channel. The device demonstrated a high purity of separation (~99.9%) at physiological levels of hematocrit (~40%).
Collapse
Affiliation(s)
- Bumseok Namgung
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Justin Kok Soon Tan
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Peter Agustinus Wong
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Sung-Yong Park
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore.
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Sangho Kim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
| |
Collapse
|
28
|
Mielczarek WS, Obaje EA, Bachmann TT, Kersaudy-Kerhoas M. Microfluidic blood plasma separation for medical diagnostics: is it worth it? LAB ON A CHIP 2016; 16:3441-8. [PMID: 27502438 DOI: 10.1039/c6lc00833j] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Circulating biomarkers are on the verge of becoming powerful diagnostic tools for various human diseases. However, the complex sample composition makes it difficult to detect biomarkers directly from blood at the bench or at the point-of-care. Blood cells are often a source of variability of the biomarker signal. While the interference of hemoglobin is a long known source of variability, the release of nucleic acids and other cellular components from hemocytes is a new concern for measurement and detection of circulating extracellular markers. Research into miniaturised blood plasma separation has been thriving in the last 10 years (2006-2016). Most point-of-care systems need microscale blood plasma separation, but developed solutions differ in complexity and sample volume range. But could blood plasma separation be avoided completely? This focused review weights the advantages and limits of miniaturised blood plasma separation and highlights the most interesting advances in direct capture as well as smart blood plasma separation.
Collapse
Affiliation(s)
- W S Mielczarek
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | | | | | | |
Collapse
|
29
|
Chen PC, Chen CC, Young KC. Characterization of thermoplastic microfiltration chip for the separation of blood plasma from human blood. BIOMICROFLUIDICS 2016; 10:054112. [PMID: 27733893 PMCID: PMC5055531 DOI: 10.1063/1.4964388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/23/2016] [Indexed: 05/09/2023]
Abstract
In this study, we developed a fully thermoplastic microfiltration chip for the separation of blood plasma from human blood. Spiral microchannels were manufactured on a PMMA substrate using a micromilling machine, and a commercial polycarbonate membrane was bonded between two thermoplastic substrates. To achieve an excellent bonding between the commercial membrane and the thermoplastic substrates, we used a two-step injection and curing procedure of UV adhesive into a ring-shaped structure around the microchannel to efficiently prevent leakage during blood filtration. We performed multiple filtration experiments using human blood to compare the influence of three factors on separation efficiency: hematocrit level (40%, 23.2%, and 10.9%), membrane pore size (5 μm, 2 μm, and 1 μm), and flow rate (0.02 ml/min, 0.06 ml/min, 0.1 ml/min). To prevent hemolysis, the pressure within the microchannel was kept below 0.5 bars throughout all filtration experiments. The experimental results clearly demonstrated the following: (1) The proposed microfiltration chip is able to separate white blood cells and red blood cells from whole human blood with a separation efficiency that exceeds 95%; (2) no leakage occurred during any of the experiments, thereby demonstrating the effectiveness of bonding a commercial membrane with a thermoplastic substrate using UV adhesive in a ring-shaped structure; (3) separation efficiency can be increased by using a membrane with smaller pore size, by using diluted blood with lower hematocrit, or by injecting blood into the microfiltration chip at a lower flow rate.
Collapse
Affiliation(s)
- Pin-Chuan Chen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology , Taipei, Taiwan
| | - Chih-Chun Chen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology , Taipei, Taiwan
| | - Kung-Chia Young
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University , Tainan, Taiwan
| |
Collapse
|
30
|
Maria MS, Rakesh PE, Chandra TS, Sen AK. Capillary flow of blood in a microchannel with differential wetting for blood plasma separation and on-chip glucose detection. BIOMICROFLUIDICS 2016; 10:054108. [PMID: 27703594 PMCID: PMC5035299 DOI: 10.1063/1.4962874] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/03/2016] [Indexed: 05/08/2023]
Abstract
We report capillary flow of blood in a microchannel with differential wetting for the separation of a plasma from sample blood and subsequent on-chip detection of glucose present in a plasma. A rectangular polydimethylsiloxane microchannel with hydrophilic walls (on three sides) achieved by using oxygen plasma exposure enables capillary flow of blood introduced at the device inlet through the microchannel. A hydrophobic region (on all four sides) in the microchannel impedes the flow of sample blood, and the accumulated blood cells at the region form a filter to facilitate the separation of a plasma. The modified wetting property of the walls and hence the device performance could be retained for a few weeks by covering the channels with deionised water. The effects of the channel cross-section, exposure time, waiting time, and location and length of the hydrophobic region on the volume of the collected plasma are studied. Using a channel cross-section of 1000 × 400 μm, an exposure time of 2 min, a waiting time of 10 min, and a hydrophobic region of width 1.0 cm located at 10 mm from the device inlet, 450 nl of plasma was obtained within 15 min. The performance of the device was found to be unaffected (provides 450 nl of plasma in 15 min) even after 15 days. The purification efficiency and plasma recovery of the device were measured and found to be comparable with that obtained using the conventional centrifugation process. Detection of glucose at different concentrations in whole blood of normal and diabetic patients was performed (using 5 μl of sample blood within 15 min) to demonstrate the compatibility of the device with integrated detection modules.
Collapse
Affiliation(s)
| | - P E Rakesh
- Department of Mechanical Engineering, Indian Institute of Technology Madras , Chennai 600036, India
| | - T S Chandra
- Department of Biotechnology, Indian Institute of Technology Madras , Chennai 600036, India
| | - A K Sen
- Department of Mechanical Engineering, Indian Institute of Technology Madras , Chennai 600036, India
| |
Collapse
|
31
|
Derkus B. Applying the miniaturization technologies for biosensor design. Biosens Bioelectron 2016; 79:901-13. [DOI: 10.1016/j.bios.2016.01.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/11/2022]
|
32
|
Soffe R, Baratchi S, Tang SY, Mitchell A, McIntyre P, Khoshmanesh K. Concurrent shear stress and chemical stimulation of mechano-sensitive cells by discontinuous dielectrophoresis. BIOMICROFLUIDICS 2016; 10:024117. [PMID: 27099646 PMCID: PMC4826375 DOI: 10.1063/1.4945309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/17/2016] [Indexed: 05/02/2023]
Abstract
Microfluidic platforms enable a variety of physical or chemical stimulation of single or multiple cells to be examined and monitored in real-time. To date, intracellular calcium signalling research is, however, predominantly focused on observing the response of cells to a single mode of stimulation; consequently, the sensitising/desensitising of cell responses under concurrent stimuli is not well studied. In this paper, we provide an extended Discontinuous Dielectrophoresis procedure to investigate the sensitising of chemical stimulation, over an extensive range of shear stress, up to 63 dyn/cm(2), which encompasses shear stresses experienced in the arterial and venus systems (10 to 60 dyn/cm(2)). Furthermore, the TRPV4-selective agonist GSK1016790A, a form of chemical stimulation, did not influence the ability of the cells' to remain immobilised under high levels of shear stress; thus, enabling us to investigate shear stress stimulation on agonism. Our experiments revealed that shear stress sensitises GSK1016790A-evoked intracellular calcium signalling of cells in a shear-stimulus dependent manner, as observed through a reduction in the cellular response time and an increase in the pharmacological efficacy. Consequently, suggesting that the role of TRPV4 may be underestimated in endothelial cells-which experience high levels of shear stress. This study highlights the importance of conducting studies at high levels of shear stress. Additionally, our approach will be valuable for examining the effect of high levels of shear on different cell types under different conditions, as presented here for agonist activation.
Collapse
Affiliation(s)
- Rebecca Soffe
- School of Engineering, RMIT University , Victoria 3001, Australia
| | - Sara Baratchi
- School of Medical and Biomedical Science, RMIT University , Victoria 3083, Australia
| | - Shi-Yang Tang
- School of Engineering, RMIT University , Victoria 3001, Australia
| | - Arnan Mitchell
- School of Engineering, RMIT University , Victoria 3001, Australia
| | - Peter McIntyre
- School of Medical and Biomedical Science, RMIT University , Victoria 3083, Australia
| | | |
Collapse
|
33
|
Szydzik C, Khoshmanesh K, Mitchell A, Karnutsch C. Microfluidic platform for separation and extraction of plasma from whole blood using dielectrophoresis. BIOMICROFLUIDICS 2015; 9:064120. [PMID: 26759637 PMCID: PMC4698116 DOI: 10.1063/1.4938391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/09/2015] [Indexed: 05/02/2023]
Abstract
Microfluidic based blood plasma extraction is a fundamental necessity that will facilitate many future lab-on-a-chip based point-of-care diagnostic systems. However, current approaches for providing this analyte are hampered by the requirement to provide external pumping or dilution of blood, which result in low effective yield, lower concentration of target constituents, and complicated functionality. This paper presents a capillary-driven, dielectrophoresis-enabled microfluidic system capable of separating and extracting cell-free plasma from small amounts of whole human blood. This process takes place directly on-chip, and without the requirement of dilution, thus eliminating the prerequisite of pre-processed blood samples and external liquid handling systems. The microfluidic chip takes advantage of a capillary pump for driving whole blood through the main channel and a cross flow filtration system for extracting plasma from whole blood. This filter is actively unblocked through negative dielectrophoresis forces, dramatically enhancing the volume of extracted plasma. Experiments using whole human blood yield volumes of around 180 nl of cell-free, undiluted plasma. We believe that implementation of various integrated biosensing techniques into this plasma extraction system could enable multiplexed detection of various biomarkers.
Collapse
Affiliation(s)
| | - Khashayar Khoshmanesh
- School of Electrical and Computer Engineering, RMIT University , Melbourne, Victoria 3001, Australia
| | - Arnan Mitchell
- School of Electrical and Computer Engineering, RMIT University , Melbourne, Victoria 3001, Australia
| | - Christian Karnutsch
- Institute for Optofluidics and Nanophotonics (IONAS), University of Applied Sciences Karlsruhe , 76133 Karlsruhe, Germany
| |
Collapse
|