1
|
Fureraj I, Budkina DS, Vauthey E. Torsional disorder and planarization dynamics: 9,10-bis(phenylethynyl)anthracene as a case study. Phys Chem Chem Phys 2022; 24:25979-25989. [PMID: 36263805 PMCID: PMC9627944 DOI: 10.1039/d2cp03909e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/04/2022] [Indexed: 06/14/2023]
Abstract
Conjugated molecules with phenylethynyl building blocks are usually characterised by torsional disorder at room temperature. They are much more rigid in the electronic excited state due to conjugation. As a consequence, the electronic absorption and emission spectra do not present a mirror-image relationship. Here, we investigate how torsional disorder affects the excited state dynamics of 9,10-bis(phenylethynyl)anthracene in solvents of different viscosities and in polymers, using both stationary and ultrafast electronic spectroscopies. Temperature-dependent measurements reveal inhomogeneous broadening of the absorption spectrum at room temperature. This is confirmed by ultrafast spectroscopic measurements at different excitation wavelengths. Red-edge irradiation excites planar molecules that return to the ground state without significant structural dynamics. In this case, however, re-equilibration of the torsional disorder in the ground state can be observed. Higher-energy irradiation excites torsionally disordered molecules, which then planarise, leading to important spectral dynamics. The latter is found to occur partially via viscosity-independent inertial motion, whereas it is purely diffusive in the ground state. This dissimilarity is explained in terms of the steepness of the potential along the torsional coordinate.
Collapse
Affiliation(s)
- Ina Fureraj
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Darya S Budkina
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
2
|
Mewes L, Ingle RA, Al Haddad A, Chergui M. Broadband visible two-dimensional spectroscopy of molecular dyes. J Chem Phys 2021; 155:034201. [PMID: 34293898 DOI: 10.1063/5.0053554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-dimensional Fourier transform spectroscopy is a promising technique to study ultrafast molecular dynamics. Similar to transient absorption spectroscopy, a more complete picture of the dynamics requires broadband laser pulses to observe transient changes over a large enough bandwidth, exceeding the inhomogeneous width of electronic transitions, as well as the separation between the electronic or vibronic transitions of interest. Here, we present visible broadband 2D spectra of a series of dye molecules and report vibrational coherences with frequencies up to ∼1400 cm-1 that were obtained after improvements to our existing two-dimensional Fourier transform setup [Al Haddad et al., Opt. Lett. 40, 312-315 (2015)]. The experiment uses white light from a hollow core fiber, allowing us to acquire 2D spectra with a bandwidth of 200 nm, in a range between 500 and 800 nm, and with a temporal resolution of 10-15 fs. 2D spectra of nile blue, rhodamine 800, terylene diimide, and pinacyanol iodide show vibronic spectral features with at least one vibrational mode and reveal information about structural motion via coherent oscillations of the 2D signals during the population time. For the case of pinacyanol iodide, these observations are complemented by its Raman spectrum, as well as the calculated Raman activity at the ground- and excited-state geometry.
Collapse
Affiliation(s)
- Lars Mewes
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - Rebecca A Ingle
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - Andre Al Haddad
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide and LACUS, Ecole Polytechnique Fédérale de Lausanne, ISIC, FSB-BSP, CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Ghosh A, Ghosh S, Ghosh G, Patra A. Implications of relaxation dynamics of collapsed conjugated polymeric nanoparticles for light-harvesting applications. Phys Chem Chem Phys 2021; 23:14549-14563. [DOI: 10.1039/d1cp01618k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mechanism of the formation of nanoparticles (collapsed state) from the extended state of polymers and their ultrafast excited state relaxation dynamics are illustrated.
Collapse
Affiliation(s)
- Arnab Ghosh
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Srijon Ghosh
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Goutam Ghosh
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Amitava Patra
- School of Materials Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
- Institute of Nano Science and Technology
| |
Collapse
|
4
|
Wolf M, Lungerich D, Bauroth S, Popp M, Platzer B, Clark T, Anderson HL, Jux N, Guldi DM. Panchromatic light funneling through the synergy in hexabenzocoronene-(metallo)porphyrin-fullerene assemblies to realize the separation of charges. Chem Sci 2020; 11:7123-7132. [PMID: 34122999 PMCID: PMC8159381 DOI: 10.1039/d0sc02028a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/16/2020] [Indexed: 11/25/2022] Open
Abstract
Here, we present a novel butadiyne-linked HBC-ethynyl-porphyrin dimer, which exhibits in the ground state strong absorption cross sections throughout the UV and visible ranges of the solar spectrum. In short, a unidirectional flow of excited state energy from the HBC termini to the (metallo)porphyrin focal points enables concentrating light at the latter. Control over excitonic interactions within, for example, the electron-donating porphyrin dimers was realized by complexation of bidentate ligands to set up panchromatic absorption that extends all the way into the near-infrared range. The bidentate binding motif was then exploited to create a supramolecular electron donor-acceptor assembly based on a HBC-ethynyl-porphyrin dimer and an electron accepting bis(aminoalkyl)-substituted fullerene. Of great relevance is the fact that charge separation from the photoexcited HBC-ethynyl-porphyrin dimer to the bis(aminoalkyl)-substituted fullerene is activated not only upon photoexciting the HBCs in the UV as well as the (metallo)porphyrins in the visible but also in the NIR. Implicit is the synergetic interplay of energy and charge transfer in a photosynthetic mimicking manner. The dimer and bis-HBC-ethynyl-porphyrin monomers, which serve as references, were probed by means of steady-state as well as time-resolved optical spectroscopies, including global target analyses of the time-resolved transient absorption data.
Collapse
Affiliation(s)
- Maximilian Wolf
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Interdisciplinary Center for Molecular Materials (ICMM) Egerlandstraße 3 91058 Erlangen Germany
| | - Dominik Lungerich
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Interdisciplinary Center for Molecular Materials (ICMM) Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Stefan Bauroth
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Interdisciplinary Center for Molecular Materials (ICMM) Egerlandstraße 3 91058 Erlangen Germany
- Department of Chemistry and Pharmacy, Computer Chemistry Centre (CCC), Friedrich-Alexander-University Germany
| | - Maximilian Popp
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Interdisciplinary Center for Molecular Materials (ICMM) Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Benedikt Platzer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Interdisciplinary Center for Molecular Materials (ICMM) Egerlandstraße 3 91058 Erlangen Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Computer Chemistry Centre (CCC), Friedrich-Alexander-University Germany
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Norbert Jux
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Interdisciplinary Center for Molecular Materials (ICMM) Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Interdisciplinary Center for Molecular Materials (ICMM) Egerlandstraße 3 91058 Erlangen Germany
| |
Collapse
|
5
|
Kowalska P, Peeks MD, Roliński T, Anderson HL, Waluk J. Detection of a weak ring current in a nonaromatic porphyrin nanoring using magnetic circular dichroism. Phys Chem Chem Phys 2017; 19:32556-32565. [PMID: 29188834 DOI: 10.1039/c7cp07348h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We compare the absorption and magnetic circular dichroism (MCD) spectra of a series of porphyrin oligomers - dimer, tetramer, and hexamer - bound in a linear or cyclic fashion. The MCD signal is extremely weak for low energy transitions in the linear oligomers, but it is amplified when the cyclic porphyrin hexamer binds a template, restricting rotational freedom. The appearance of Faraday A terms in the MCD spectra demonstrates the presence of a magnetic moment, and thus, uncompensated electronic current. The value of the excited state magnetic moment estimated from the A term is very low compared with those of monomeric porphyrins, which confirms the nonaromatic character of the cyclic array and the lack of a global ring current in the ground state of the neutral nanoring. DFT calculations predict the absorption and MCD patterns reasonably well, but fail to reproduce the MCD sign inversion observed in substituted monomeric zinc porphyrins ("soft" chromophores). Interestingly, a correct sign pattern is predicted by INDO/S calculations. Analysis of the MCD spectra of the monomeric porphyrin unit allowed us to distinguish between two close-lying lowest energy transitions, which some previous assignments placed further apart. The present results prove the usefulness of MCD not only for deconvolution and assignment of electronic transitions, but also as a sensitive tool for detecting electronic ring currents.
Collapse
Affiliation(s)
- Patrycja Kowalska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
6
|
Morisue M, Hoshino Y, Nakamura M, Yumura T, Machida S, Ooyama Y, Shimizu M, Ohshita J. Group 14 Dithienometallole-Linked Ethynylene-Conjugated Porphyrin Dimers. Inorg Chem 2016; 55:7432-41. [DOI: 10.1021/acs.inorgchem.6b00667] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Masashi Nakamura
- Department of Applied
Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | | | | | - Yousuke Ooyama
- Department of Applied
Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | | | - Joji Ohshita
- Department of Applied
Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
7
|
Camargo FVA, Hall CR, Anderson HL, Meech SR, Heisler IA. Time resolved structural dynamics of butadiyne-linked porphyrin dimers. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:023608. [PMID: 26798839 PMCID: PMC4714993 DOI: 10.1063/1.4940222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
In this work, the timescales and mechanisms associated with the structural dynamics of butadiyne-linked porphyrin dimers are investigated through time resolved narrowband pump/broadband probe transient absorption spectroscopy. Our results confirm previous findings that the broadening is partly due to a distribution of structures with different (dihedral) angular conformations. Comparison of measurements with excitations on the red and blue sides of the Q-band unravel the ground and excited state conformational re-equilibration timescales. Further comparison to a planarized dimer, through the addition of a ligand, provides conclusive evidence for the twisting motion performed by the porphyrin dimer in solution.
Collapse
Affiliation(s)
| | - Christopher R Hall
- School of Chemistry, Norwich Research Park, University of East Anglia , Norwich NR4 7TJ, United Kingdom
| | - Harry L Anderson
- Department of Chemistry, University of Oxford , Chemistry Research Laboratory, Oxford OX1 3TA, United Kingdom
| | - Stephen R Meech
- School of Chemistry, Norwich Research Park, University of East Anglia , Norwich NR4 7TJ, United Kingdom
| | - Ismael A Heisler
- School of Chemistry, Norwich Research Park, University of East Anglia , Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
8
|
Johnson SL. Preface to Special Topic: Invited Papers of the 3rd International Conference on Ultrafast Structural Dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:023401. [PMID: 27191008 PMCID: PMC4851626 DOI: 10.1063/1.4947078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
The ability to visualize the real-time dynamics of atomic, magnetic, and electronic structure is widely recognized in many fields as a key element underpinning many important processes in chemistry, materials science, and biology. The need for an improved understanding of such processes becomes acute as energy conversion processes on fast time scales become increasingly relevant to problems in science and technology. This special issue, containing invited papers from participants at the 3rd International Conference on Ultrafast Structural Dynamics held June 10-12, 2015 in Zurich, Switzerland, discusses several recent developments in this area.
Collapse
Affiliation(s)
- S L Johnson
- Institute for Quantum Electronics , Eidgenössische Technische Hochschule (ETH) Zurich, 8093 Zürich, Switzerland
| |
Collapse
|