1
|
Cheng Y, Li RZ, Xu XY, Lu L. Density functional theory study of the reaction between VO− and water. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
McMahon AJ, Jarrold CC. Using anion photoelectron spectroscopy of cluster models to gain insights into mechanisms of catalyst-mediated H 2 production from water. Phys Chem Chem Phys 2020; 22:27936-27948. [PMID: 33201956 DOI: 10.1039/d0cp05055e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metal oxide cluster models of catalyst materials offer a powerful platform for probing the molecular-scale features and interactions that govern catalysis. This perspective gives an overview of studies implementing the combination of anion photoelectron (PE) spectroscopy and density functional theory calculations toward exploring cluster models of metal oxides and metal-oxide supported Pt that catalytically drive the hydrogen evolution reaction (HER) or the water-gas shift reaction. The utility in the combination of these experimental and computational techniques lies in our ability to unambiguously determine electronic and molecular structures, which can then connect to results of reactivity studies. In particular, we focus on the activity of oxygen vacancies modeled by suboxide clusters, the critical mechanistic step of forming proximal metal hydride and hydroxide groups as a prerequisite for H2 production, and the structural features that lead to trapped dihydroxide groups. The pronounced asymmetric oxidation found in heterometallic group 6 oxides and near-neighbor group 5/group 6 results in higher activity toward water, while group 7/group 6 oxides form very specific stoichiometries that suggest facile regeneration. Studies on the trans-periodic combination of cerium oxide and platinum as a model for ceria supported Pt atoms and nanoparticles reveal striking negative charge accumulation by Pt, which, combined with the ionic conductivity of ceria, suggests a mechanism for the exceptionally high activity of this system towards the water-gas shift reaction.
Collapse
Affiliation(s)
- Abbey J McMahon
- Indiana University, Department of Chemistry, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| | | |
Collapse
|
3
|
Mason JL, Gupta AK, McMahon AJ, Folluo CN, Raghavachari K, Jarrold CC. The striking influence of oxophilicity differences in heterometallic Mo–Mn oxide cluster reactions with water. J Chem Phys 2020; 152:054301. [DOI: 10.1063/1.5142398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jarrett L. Mason
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Ankur K. Gupta
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Abbey J. McMahon
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Carley N. Folluo
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| |
Collapse
|
4
|
Topolski JE, Kafader JO, Marrero-Colon V, Iyengar SS, Hratchian HP, Jarrold CC. Exotic electronic structures of SmxCe3−xOy (x = 0-3; y = 2-4) clusters and the effect of high neutral density of low-lying states on photodetachment transition intensities. J Chem Phys 2018; 149:054305. [DOI: 10.1063/1.5043490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Josey E. Topolski
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, USA
| | - Jared O. Kafader
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, USA
| | - Vicmarie Marrero-Colon
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, USA
| | - Srinivasan S. Iyengar
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, USA
| | - Hrant P. Hratchian
- Department of Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, USA
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, USA
| |
Collapse
|
5
|
Schaugaard RN, Topolski JE, Ray M, Raghavachari K, Jarrold CC. Insight into ethylene interactions with molybdenum suboxide cluster anions from photoelectron spectra of chemifragments. J Chem Phys 2018; 148:054308. [DOI: 10.1063/1.5008264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Richard N. Schaugaard
- Indiana University Department of Chemistry, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Josey E. Topolski
- Indiana University Department of Chemistry, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Manisha Ray
- Indiana University Department of Chemistry, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Krishnan Raghavachari
- Indiana University Department of Chemistry, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Caroline Chick Jarrold
- Indiana University Department of Chemistry, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| |
Collapse
|
6
|
Ray M, Schaugaard RN, Topolski JE, Kafader JO, Raghavachari K, Jarrold CC. Molybdenum Oxide Cluster Anion Reactions with C2H4 and H2O: Cooperativity and Chemifragmentation. J Phys Chem A 2017; 122:41-52. [DOI: 10.1021/acs.jpca.7b10798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manisha Ray
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Richard N. Schaugaard
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Josey E. Topolski
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jared O. Kafader
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Ray M, Waller SE, Jarrold CC. Effect of Alkyl Group on MxOy(-) + ROH (M = Mo, W; R = Me, Et) Reaction Rates. J Phys Chem A 2016; 120:1508-19. [PMID: 26878402 DOI: 10.1021/acs.jpca.6b00102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A systematic comparison of MxOy(-) + ROH (M = Mo vs W; R = Me vs Et) reaction rate coefficients and product distributions combined with results of calculations on weakly bound MxOy(-)·ROH complexes suggest that the overall reaction mechanism has three distinct steps, consistent with recently reported results on analogous MxOy(-) + H2O reactivity studies. MxOy(-) + ROH → MxOy+1(-) + RH oxidation reactions are observed for the least oxidized clusters, and MxOy(-) + ROH → MxOyROH(-) addition reactions are observed for clusters in intermediate oxidation states, as observed previously in MxOy(-) + H2O reactions. The first step is weakly bound complex formation, the rate of which is governed by the relative stability of the MxOy(-)·ROH charge-dipole complexes and the Lewis acid-base complexes. Calculations predict that MoxOy(-) clusters form more stable Lewis acid-base complexes than WxOy(-), and the stability of EtOH complexes is enhanced relative to MeOH. Consistent with this result, MoxOy(-) + ROH rate coefficients are higher than analogous WxOy(-) clusters. Rate coefficients range from 2.7 × 10(-13) cm(3) s(-1) for W3O8(-) + MeOH to 3.4 × 10(-11) cm(3) s(-1) for Mo2O4(-) + EtOH. Second, a covalently bound complex is formed, and anion photoelectron spectra of the several MxOyROH(-) addition products observed are consistent with hydroxyl-alkoxy structures that are formed readily from the Lewis acid-base complexes. Calculations indicate that addition products are trapped intermediates in the MxOy(-) + ROH → MxOy+1(-) + RH reaction, and the third step is rearrangement of the hydroxyl group to a metal hydride group to facilitate RH release. Trapped intermediates are more prevalent in MoxOy(-) reaction product distributions, indicating that the rate of this step is higher for WxOy+1RH(-) than for MoxOy+1RH(-). This result is consistent with previous computational studies on analogous MxOy(-) + H2O reactions predicting that barriers along the pathway in the rearrangement step are higher for MoxOy(-) reactions than for WxOy(-).
Collapse
Affiliation(s)
- Manisha Ray
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Sarah E Waller
- Department of Chemistry, SUNY Stony Brook , Stony Brook, New York 11794-3400, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
8
|
Kafader JO, Ray M, Raghavachari K, Jarrold CC. Role of weakly bound complexes in temperature-dependence and relative rates of MxOy− + H2O (M = Mo, W) reactions. J Chem Phys 2016; 144:074307. [DOI: 10.1063/1.4941829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Jared O. Kafader
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, USA
| | - Manisha Ray
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, USA
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, USA
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, USA
| |
Collapse
|
9
|
Zhao YX, Liu QY, Zhang MQ, He SG. Reactions of metal cluster anions with inorganic and organic molecules in the gas phase. Dalton Trans 2016; 45:11471-95. [DOI: 10.1039/c6dt01246a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Progress on the activation and transformation of important inorganic and organic molecules by negatively charged bare metal clusters as well as ligated systems with oxygen, carbon, and nitrogen, among others.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Qing-Yu Liu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Mei-Qi Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Sheng-Gui He
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|