1
|
Bley M, Dzubiella J, Moncho-Jordá A. Active binary switching of soft colloids: stability and structural properties. SOFT MATTER 2021; 17:7682-7696. [PMID: 34342324 DOI: 10.1039/d1sm00670c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We employ reactive dynamical density functional theory (R-DDFT) and reactive Brownian dynamics (R-BD) simulations to study the non-equilibrium structure and phase behavior of an active dispersion of soft Gaussian colloids with binary interaction switching, i.e., we consider a one-component colloidal system in which every particle can individually switch stochastically between two interaction states (here, sizes 'big' and 'small') at predefined rates. We consider the influence of switching activity on the inhomogeneous density profiles of the colloids confined by various external potentials, as well as on their pair structure and phase behavior in bulk solutions. For the latter, we extend the R-DDFT method to incorporate the Percus test-particle route. Our results demonstrate that switching activity strongly modifies the steady-state density profiles and structural (pair) correlations. In particular, the switching rate interpolates from a near-equilibrium binary colloidal mixture of two states at very low rates to a non-equilibrium, 'one-state liquid' at very high rates characterized by one, average interaction size. The latter limit can be described by an equivalent effective one-component (EOC) equilibrium system, for which the exact analytical expression for the effective pair potential is a diffusion-weighted superposition of the active systems' pair potentials. This leads to the interesting fact that under certain conditions an interacting switching system can behave like a non-interacting (ideal) gas in the limit of high switching rates. Moreover, for colloids that are unstable (i.e., demix) near equilibrium, we demonstrate that phase separation and micro-clustering in both confinement and bulk can be dynamically controlled by the switching rate, and vanish for high rates. All R-DDFT results are in excellent agreement with our R-BD simulations.
Collapse
Affiliation(s)
- Michael Bley
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
2
|
Yi J, Zhan S, Chen L, Tian Q, Wang N, Li J, Xu W, Zhang B, Ahlquist MSG. Electrostatic Interactions Accelerating Water Oxidation Catalysis via Intercatalyst O-O Coupling. J Am Chem Soc 2021; 143:2484-2490. [PMID: 33538597 DOI: 10.1021/jacs.0c07103] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Intercatalyst coupling has been widely applied in the functional mimics for binuclear synergy in natural metal enzymes. Herein, we introduce two facile and effective design strategies, which facilitate the coupling of two catalytic units via electrostatic interactions. The first system is based on a catalyst molecule functionalized with both a positively charged and a negatively charged group in the structure being able to pair with each other in an antiparallel manner arranged by electrostatic interactions. The other system consists of a mixture of two different of catalysts modified with either positively or negatively charged groups to generate intermolecular electrostatic interactions. Applying these designs to Ru(bda) (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water-oxidation catalysts improved the catalytic performance by more than an order of magnitude. The intermolecular electrostatic interactions in these two systems were fully identified by 1H NMR, TEM, SAXS, and electrical conductivity experiments. Molecular dynamics simulations further verified that electrostatic interactions contribute to the formation of prereactive dimers, which were found to play a key role in dramatically improving the catalytic performance. The successful strategies demonstrated here can be used in designing other intercatalyst coupling systems for activation and formation of small molecules and organic synthesis.
Collapse
Affiliation(s)
- Jiajia Yi
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Shaoqi Zhan
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Lin Chen
- State Key Laboratory of Environment-Friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Qiang Tian
- State Key Laboratory of Environment-Friendly Energy Material, School of Materials Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Biaobiao Zhang
- Department of Chemistry, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Mårten S G Ahlquist
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| |
Collapse
|
3
|
Roa R, Kim WK, Kanduč M, Dzubiella J, Angioletti-Uberti S. Catalyzed Bimolecular Reactions in Responsive Nanoreactors. ACS Catal 2017; 7:5604-5611. [PMID: 28966839 PMCID: PMC5617329 DOI: 10.1021/acscatal.7b01701] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/12/2017] [Indexed: 11/28/2022]
Abstract
We describe a general theory for surface-catalyzed bimolecular reactions in responsive nanoreactors, catalytically active nanoparticles coated by a stimuli-responsive "gating" shell, whose permeability controls the activity of the process. We address two archetypal scenarios encountered in this system: the first, where two species diffusing from a bulk solution react at the catalyst's surface, and the second, where only one of the reactants diffuses from the bulk while the other is produced at the nanoparticle surface, e.g., by light conversion. We find that in both scenarios the total catalytic rate has the same mathematical structure, once diffusion rates are properly redefined. Moreover, the diffusional fluxes of the different reactants are strongly coupled, providing a behavior richer than that arising in unimolecular reactions. We also show that, in stark contrast to bulk reactions, the identification of a limiting reactant is not simply determined by the relative bulk concentrations but is controlled by the nanoreactor shell permeability. Finally, we describe an application of our theory by analyzing experimental data on the reaction between hexacyanoferrate(III) and borohydride ions in responsive hydrogel-based core-shell nanoreactors.
Collapse
Affiliation(s)
- Rafael Roa
- Institut für
Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Won Kyu Kim
- Institut für
Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Matej Kanduč
- Institut für
Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Joachim Dzubiella
- Institut für
Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
- Institut
für Physik, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Stefano Angioletti-Uberti
- Department of Materials, Imperial College London, London SW7 2AZ, U.K.
- Beijing Advanced
Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, People’s Republic of China
| |
Collapse
|