1
|
Arribas EV, Ibele LM, Lauvergnat D, Maitra NT, Agostini F. Significance of Energy Conservation in Coupled-Trajectory Approaches to Nonadiabatic Dynamics. J Chem Theory Comput 2023; 19:7787-7800. [PMID: 37853509 DOI: 10.1021/acs.jctc.3c00845] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Through approximating electron-nuclear correlation terms in the exact factorization approach, trajectory-based methods have been derived and successfully applied to the dynamics of a variety of light-induced molecular processes, capturing quantum (de)coherence effects rigorously. These terms account for the coupling among the trajectories, recovering the nonlocal nature of quantum nuclear dynamics that is completely overlooked in traditional independent-trajectory algorithms. Nevertheless, some of the approximations introduced in the derivation of some of these methods do not conserve the total energy. We analyze energy conservation in the coupled-trajectory mixed quantum-classical (CTMQC) algorithm and explore the performance of a modified algorithm, CTMQC-E, where some of the terms are redefined to restore energy conservation. A set of molecular models is used as a test, namely, 2-cis-penta-2,4-dienimium cation, bis(methylene) adamantyl radical cation, butatriene cation, uracil radical cation, and neutral pyrazine.
Collapse
Affiliation(s)
| | - Lea M Ibele
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| | - David Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405 Orsay, France
| |
Collapse
|
2
|
Lin K, Peng J, Xu C, Gu FL, Lan Z. Trajectory Propagation of Symmetrical Quasi-classical Dynamics with Meyer-Miller Mapping Hamiltonian Using Machine Learning. J Phys Chem Lett 2022; 13:11678-11688. [PMID: 36511563 DOI: 10.1021/acs.jpclett.2c02159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The long short-term memory recurrent neural network (LSTM-RNN) approach is applied to realize the trajectory-based nonadiabatic dynamics within the framework of the symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian (MM-SQC). After construction, the LSTM-RNN model allows us to propagate the entire trajectory evolutions of all involved degrees of freedoms (DOFs) from initial conditions. The proposed idea is proven to be reliable and accurate in the simulations of the dynamics of several site-exciton electron-phonon coupling models and three Tully's scattering models. It indicates that the LSTM-RNN model perfectly captures the dynamical information on the trajectory evolution in the MM-SQC dynamics. Our work proposes a novel machine learning approach in the simulation of trajectory-based nonadiabatic dynamic of complex systems with a large number of DOFs.
Collapse
Affiliation(s)
- Kunni Lin
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiawei Peng
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
3
|
He X, Wu B, Shang Y, Li B, Cheng X, Liu J. New phase space formulations and quantum dynamics approaches. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xin He
- Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Baihua Wu
- Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Youhao Shang
- Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Bingqi Li
- Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Xiangsong Cheng
- Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing China
| |
Collapse
|
4
|
Saller MAC, Lai Y, Geva E. An Accurate Linearized Semiclassical Approach for Calculating Cavity-Modified Charge Transfer Rate Constants. J Phys Chem Lett 2022; 13:2330-2337. [PMID: 35245071 DOI: 10.1021/acs.jpclett.2c00122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We show that combining the linearized semiclasscial approximation with Fermi's golden rule (FGR) rate theory gives rise to a general-purpose cost-effective and scalable computational framework that can accurately capture the cavity-induced rate enhancement of charge transfer reactions that occurs when the molecular system is placed inside a microcavity. Both partial linearization with respect to the nuclear and photonic degrees of freedom and full linerization with respect to nuclear, photonic, and electronic degrees of freedom (the latter within the mapping Hamiltonian approach) are shown to be highly accurate, provided that the Wigner transforms of the product (WoP) of operators at the initial time is not replaced by the product of their Wigner transforms. We also show that the partial linearization method yields the quantum-mechanically exact cavity-modified FGR rate constant for a model system in which the donor and acceptor potential energy surfaces are harmonic and identical except for a shift in the equilibrium energy and geometry, if WoP is applied.
Collapse
Affiliation(s)
- Maximilian A C Saller
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yifan Lai
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Hu D, Xie Y, Peng J, Lan Z. On-the-Fly Symmetrical Quasi-Classical Dynamics with Meyer-Miller Mapping Hamiltonian for the Treatment of Nonadiabatic Dynamics at Conical Intersections. J Chem Theory Comput 2021; 17:3267-3279. [PMID: 34028268 DOI: 10.1021/acs.jctc.0c01249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The on-the-fly version of the symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian (SQC/MM) is implemented to study the nonadiabatic dynamics at conical intersections of polyatomic systems. The current on-the-fly implementation of the SQC/MM method is based on the adiabatic representation and the dressed momentum. To include the zero-point energy (ZPE) correction of the electronic mapping variables, we employ both the γ-adjusted and γ-fixed approaches. Nonadiabatic dynamics of the methaniminium cation (CH2NH2+) and azomethane are simulated using the on-the-fly SQC/MM method. For CH2NH2+, both ZPE correction approaches give reasonable and consistent results. However, for azomethane, the γ-adjusted version of the SQC/MM dynamics behaves much better than the γ-fixed version. Further analysis indicates that it is always recommended to use the γ-adjusted SQC/MM dynamics in the on-the-fly simulation of photoinduced dynamics of polyatomic systems, particularly when the excited state is well separated from the ground state in the Franck-Condon region. This work indicates that the on-the-fly SQC/MM method is a powerful simulation protocol to deal with the nonadiabatic dynamics of realistic polyatomic systems.
Collapse
Affiliation(s)
- Deping Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yu Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
6
|
Saller MAC, Kelly A, Geva E. Benchmarking Quasiclassical Mapping Hamiltonian Methods for Simulating Cavity-Modified Molecular Dynamics. J Phys Chem Lett 2021; 12:3163-3170. [PMID: 33755487 DOI: 10.1021/acs.jpclett.1c00158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent experimental realizations of strong coupling between optical cavity modes and molecular matter placed inside the cavity have opened exciting new routes for controlling chemical processes. Simulating the cavity-modified dynamics of complex chemical systems calls for the development of accurate, flexible, and cost-effective approximate numerical methods that scale favorably with system size and complexity. In this Letter, we test the ability of quasiclassical mapping Hamiltonian methods to serve this purpose. We simulated the spontaneous emission dynamics of an atom confined to a microcavity via five different variations of the linearized semiclassical (LSC) method. Our main finding is that recently proposed LSC-based methods which use a modified form of the identity operator are reasonably accurate and perform significantly better than the Ehrenfest and standard LSC methods, without significantly increasing computational costs. These methods are therefore highly promising as a general purpose tool for simulating cavity-modified dynamics of complex chemical systems.
Collapse
Affiliation(s)
- Maximilian A C Saller
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aaron Kelly
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Dalhousie University, B3H 4R2 Halifax, Canada
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Gao X, Geva E. Improving the Accuracy of Quasiclassical Mapping Hamiltonian Methods by Treating the Window Function Width as an Adjustable Parameter. J Phys Chem A 2020; 124:11006-11016. [DOI: 10.1021/acs.jpca.0c09750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xing Gao
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518100, China
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Mannouch JR, Richardson JO. A partially linearized spin-mapping approach for nonadiabatic dynamics. I. Derivation of the theory. J Chem Phys 2020; 153:194109. [DOI: 10.1063/5.0031168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Gao X, Lai Y, Geva E. Simulating Absorption Spectra of Multiexcitonic Systems via Quasiclassical Mapping Hamiltonian Methods. J Chem Theory Comput 2020; 16:6465-6480. [DOI: 10.1021/acs.jctc.0c00709] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xing Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yifan Lai
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Gao X, Geva E. A Nonperturbative Methodology for Simulating Multidimensional Spectra of Multiexcitonic Molecular Systems via Quasiclassical Mapping Hamiltonian Methods. J Chem Theory Comput 2020; 16:6491-6502. [DOI: 10.1021/acs.jctc.0c00843] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xing Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Liu Y, Gao X, Lai Y, Mulvihill E, Geva E. Electronic Dynamics through Conical Intersections via Quasiclassical Mapping Hamiltonian Methods. J Chem Theory Comput 2020; 16:4479-4488. [DOI: 10.1021/acs.jctc.0c00177] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yudan Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xing Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yifan Lai
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ellen Mulvihill
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Gao X, Saller MAC, Liu Y, Kelly A, Richardson JO, Geva E. Benchmarking Quasiclassical Mapping Hamiltonian Methods for Simulating Electronically Nonadiabatic Molecular Dynamics. J Chem Theory Comput 2020; 16:2883-2895. [DOI: 10.1021/acs.jctc.9b01267] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xing Gao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Yudan Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aaron Kelly
- Department of Chemistry, Dalhousie University, 15000 Halifax, Nova Scotia, Canada
| | | | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Zheng J, Xie Y, Jiang S, Long Y, Ning X, Lan Z. Initial sampling in symmetrical quasiclassical dynamics based on Li-Miller mapping Hamiltonian. Phys Chem Chem Phys 2019; 21:26502-26514. [PMID: 31777888 DOI: 10.1039/c9cp03975a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A symmetrical quasiclassical (SQC) dynamics approach based on the Li-Miller (LM) mapping Hamiltonian (SQC-LM) was employed to describe nonadiabatic dynamics. In principle, the different initial sampling procedures may be applied in the SQC-LM dynamics, and the results may be dependent on different initial sampling. We provided various initial sampling approaches and checked their influence. We selected two groups of models including site-exciton models for exciton dynamics and linear vibronic coupling models for conical intersections to test the performance of SQC-LM dynamics with the different initial sampling methods. The results were examined with respect to those of the accurate multiconfigurational time-dependent Hartree (MCTDH) quantum dynamics. For both the models, the SQC-LM method more-or-less gives a reasonable description of the population dynamics, while the influence of the initial sampling approaches on the final results is noticeable. It seems that the suitable initial sampling methods should be determined by the system under study. This indicates that the combination of the SQC-LM method with a suitable sampling approach may be a potential method in the description of nonadiabatic dynamics.
Collapse
Affiliation(s)
- Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles Clothing, Qingdao University, Qingdao 266071, China.
| | | | | | | | | | | |
Collapse
|
14
|
He X, Liu J. A new perspective for nonadiabatic dynamics with phase space mapping models. J Chem Phys 2019; 151:024105. [DOI: 10.1063/1.5108736] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xin He
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Martens CC. Surface Hopping without Momentum Jumps: A Quantum-Trajectory-Based Approach to Nonadiabatic Dynamics. J Phys Chem A 2019; 123:1110-1128. [DOI: 10.1021/acs.jpca.8b10487] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Craig C. Martens
- University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
16
|
Xie Y, Zheng J, Lan Z. Performance evaluation of the symmetrical quasi-classical dynamics method based on Meyer-Miller mapping Hamiltonian in the treatment of site-exciton models. J Chem Phys 2018; 149:174105. [DOI: 10.1063/1.5047002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yu Xie
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- The Environmental Research Institute; MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jie Zheng
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Zhenggang Lan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- The Environmental Research Institute; MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
17
|
Liu X, Liu J. Path integral molecular dynamics for exact quantum statistics of multi-electronic-state systems. J Chem Phys 2018; 148:102319. [PMID: 29544327 DOI: 10.1063/1.5005059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An exact approach to compute physical properties for general multi-electronic-state (MES) systems in thermal equilibrium is presented. The approach is extended from our recent progress on path integral molecular dynamics (PIMD), Liu et al. [J. Chem. Phys. 145, 024103 (2016)] and Zhang et al. [J. Chem. Phys. 147, 034109 (2017)], for quantum statistical mechanics when a single potential energy surface is involved. We first define an effective potential function that is numerically favorable for MES-PIMD and then derive corresponding estimators in MES-PIMD for evaluating various physical properties. Its application to several representative one-dimensional and multi-dimensional models demonstrates that MES-PIMD in principle offers a practical tool in either of the diabatic and adiabatic representations for studying exact quantum statistics of complex/large MES systems when the Born-Oppenheimer approximation, Condon approximation, and harmonic bath approximation are broken.
Collapse
Affiliation(s)
- Xinzijian Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Zheng J, Xie Y, Jiang SS, Long YZ, Ning X, Lan ZG. Ultrafast Electron Transfer with Symmetrical Quasi-classical Dynamics based on Mapping Hamiltonian and Quantum Dynamics based on ML-MCTDH. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1711210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles Clothing, Qingdao University, Qingdao 266071, China
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Yu Xie
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-shi Jiang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-ze Long
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles Clothing, Qingdao University, Qingdao 266071, China
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles Clothing, Qingdao University, Qingdao 266071, China
| | - Zheng-gang Lan
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Tao G. Multi-state trajectory approach to non-adiabatic dynamics: General formalism and the active state trajectory approximation. J Chem Phys 2017; 147:044107. [DOI: 10.1063/1.4985898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Guohua Tao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China and Shenzhen Key Laboratory of New Energy Materials by Design, Peking University, Shenzhen 518055, China
| |
Collapse
|
20
|
Tao G. Coherence-Controlled Nonadiabatic Dynamics via State-Space Decomposition: A Consistent Way To Incorporate Ehrenfest and Born-Oppenheimer-Like Treatments of Nuclear Motion. J Phys Chem Lett 2016; 7:4335-4339. [PMID: 27750012 DOI: 10.1021/acs.jpclett.6b01857] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Accurately describing nuclear motion is crucial in electronically nonadiabatic dynamics simulations. In this work, a coherence-controlled (CC) approach is proposed based on the mapping between the classical state space and the full electronic matrix and that between the decomposed state space and different nuclear dynamics that allows nuclear motion to properly follow either Ehrenfest dynamics in the coherence domain or Born-Oppenheimer-like dynamics in the single-state domain in a consistent manner. This new method is applied to several benchmark models involving nonadiabatic transitions in two-state or three-state systems, and the obtained results are in excellent agreement with exact quantum calculations. As a generalization of the recently developed symmetrical quasiclassical approach and the augmented image (AI) version of the multistate trajectory approach, the proposed method is extremely efficient and numerically stable. Therefore, it has great potential for implementation in nonadiabatic molecular dynamics simulations for realistic complex systems, such as materials and biological molecules.
Collapse
Affiliation(s)
- Guohua Tao
- School of Advanced Materials, Peking University Shenzhen Graduate School , Shenzhen 518055, China
- Shenzhen Key Laboratory of New Energy Materials by Design, Peking University , Shenzhen 518055, China
| |
Collapse
|