1
|
Erxleben DA, Rivas F, Smith I, Poddar S, DeAngelis PL, Rahbar E, Hall AR. High-fidelity and iterative affinity extraction of hyaluronan. PROTEOGLYCAN RESEARCH 2024; 2:e70008. [PMID: 39650564 PMCID: PMC11623434 DOI: 10.1002/pgr2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 12/11/2024]
Abstract
The glycosaminoglycan hyaluronan (HA) serves a variety of crucial physiological functions in vertebrates. Synthesized at the plasma membrane and secreted into the extracellular environment, HA polymers span a wide range of molecular weights (MW) that define their activity through a notable size-function relationship. Analytical technologies for determining HA MW distributions typically require selective extraction from complex biofluids or tissues. A common method for achieving this is immunoprecipitation-like pull-down using specific HA-binding proteins bound to magnetic beads. Here, we present a systematic investigation of experimental variables involved in this process, leading to an affinity extraction protocol that enables iterative bead reuse and reagent lifetime maximization, thereby enhancing the efficiency of the HA extraction process. Our methods provide a framework for general optimization of immunoprecipitation in other contexts with heterogenous analyte sizes.
Collapse
Affiliation(s)
- Dorothea A. Erxleben
- Virginia Tech‐Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Felipe Rivas
- Virginia Tech‐Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Ian Smith
- Department of BiologyWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Suruchi Poddar
- Virginia Tech‐Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Paul L. DeAngelis
- Department of Biochemistry and PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Elaheh Rahbar
- Departments of Biomedical Engineering and Veterinary Physiology and PharmacologyTexas A&M UniversityCollege StationTexasUSA
| | - Adam R. Hall
- Virginia Tech‐Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Comprehensive Cancer Center, Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
2
|
Recent Development of Microfluidic Technology for Cell Trapping in Single Cell Analysis: A Review. Processes (Basel) 2020. [DOI: 10.3390/pr8101253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Microfluidic technology has emerged from the MEMS (Micro-Electro-Mechanical System)-technology as an important research field. During the last decade, various microfluidic technologies have been developed to open up a new era for biological studies. To understand the function of single cells, it is very important to monitor the dynamic behavior of a single cell in a living environment. Cell trapping in single cell analysis is urgently demanded There have been some review papers focusing on drug screen and cell analysis. However, cell trapping in single cell analysis has rarely been covered in the previous reviews. The present paper focuses on recent developments of cell trapping and highlights the mechanisms, governing equations and key parameters affecting the cell trapping efficiency by contact-based and contactless approach. The applications of the cell trapping method are discussed according to their basic research areas, such as biology and tissue engineering. Finally, the paper highlights the most promising cell trapping method for this research area.
Collapse
|
3
|
Chen Y, Liu Y, Shi Y, Ping J, Wu J, Chen H. Magnetic particles for integrated nucleic acid purification, amplification and detection without pipetting. Trends Analyt Chem 2020; 127:115912. [PMID: 32382202 PMCID: PMC7202819 DOI: 10.1016/j.trac.2020.115912] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleic acid amplification based detection plays an important role in food safety, environmental monitoring and clinical diagnosis. However, traditional nucleic acid detection process involves transferring liquid from one tube to another by pipetting. It requires trained persons, equipped labs and consumes lots of time. The ideal nucleic acid detection is integrated, closed, simplified and automated. Magnetic particles actuated by magnetic fields can efficiently adsorb nucleic acids and promote integrated nucleic acid assays without pipetting driven by pumps and centrifuges. We will comprehensively review magnetic particles assisted integrated system for nucleic acid detection and hope it can inspire further related study.
Collapse
Key Words
- ATP, adenosine triphosphate
- DLS, dynamic light scattering
- FMR, ferromagnetic resonance
- GTC, guanidinium thiocyanate
- ICP-AES, inductively coupled plasma atomic emission spectroscopy
- IFAST, immiscible filtration assisted by surface tension
- Immiscible interface
- Integrated detection
- LAMP, loop-mediated isothermal amplification
- Magnetic particles
- Nucleic acid
- PCR, polymerase chain reaction
- PEG, polyethylene glycol
- POCT, point-of-care testing
- RPA, recombinase polymerase amplification
- SQUID, superconducting quantum interference device magnetometer
- TEM, transmission electron microscopy
- XRD, X-Ray diffraction
- qPCR, quantitative PCR
Collapse
Affiliation(s)
- Yanju Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yang Liu
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Ya Shi
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of on Site Processing Equipment for Agricultural Products, Ministry of Agriculture, Hangzhou, 310058, China
| | - Huan Chen
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, China
| |
Collapse
|
4
|
Shanko ES, van de Burgt Y, Anderson PD, den Toonder JMJ. Microfluidic Magnetic Mixing at Low Reynolds Numbers and in Stagnant Fluids. MICROMACHINES 2019; 10:E731. [PMID: 31671753 PMCID: PMC6915455 DOI: 10.3390/mi10110731] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
Microfluidic mixing becomes a necessity when thorough sample homogenization is required in small volumes of fluid, such as in lab-on-a-chip devices. For example, efficient mixing is extraordinarily challenging in capillary-filling microfluidic devices and in microchambers with stagnant fluids. To address this issue, specifically designed geometrical features can enhance the effect of diffusion and provide efficient mixing by inducing chaotic fluid flow. This scheme is known as "passive" mixing. In addition, when rapid and global mixing is essential, "active" mixing can be applied by exploiting an external source. In particular, magnetic mixing (where a magnetic field acts to stimulate mixing) shows great potential for high mixing efficiency. This method generally involves magnetic beads and external (or integrated) magnets for the creation of chaotic motion in the device. However, there is still plenty of room for exploiting the potential of magnetic beads for mixing applications. Therefore, this review article focuses on the advantages of magnetic bead mixing along with recommendations on improving mixing in low Reynolds number flows (Re ≤ 1) and in stagnant fluids.
Collapse
Affiliation(s)
- Eriola-Sophia Shanko
- Department of Mechanical Engineering, Microsystems Research Section, and Institute for Complex Molecular Systems (ICMS), Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Yoeri van de Burgt
- Department of Mechanical Engineering, Microsystems Research Section, and Institute for Complex Molecular Systems (ICMS), Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Patrick D Anderson
- Department of Mechanical Engineering, Polymer Technology Research Section, and Institute for Complex Molecular Systems (ICMS), Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Jaap M J den Toonder
- Department of Mechanical Engineering, Microsystems Research Section, and Institute for Complex Molecular Systems (ICMS), Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
5
|
Shen L, Ding HM, Ma YQ. Computational Design of a Functionalized Substrate for Capturing Nanoparticles with Specific Size and Shape. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9829-9835. [PMID: 30056705 DOI: 10.1021/acs.langmuir.8b01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The efficient capture of nanoscopic particulates plays a key role in many scientific fields like filtration and fabrication of nanocomposites as well as biosensors. In this work, we design two types of nanosubstrates to capture the nanoparticle with specific property by using Brownian dynamics simulations. It is found that the substrate coated with copolymers (composed of nonspecific block and specific block) can be used to capture the nanoparticle with different sizes but its capture efficiency of nanoparticles with different shapes is very low. To overcome such problem, the other substrate containing shaped holes is also designed. By conducting a serial of control simulations, we find that the nonspecific polymers at the bottom and on the rim of the hole have great impact on the sensitive capture. The present study may provide some physical insights into the experimental design of nanodevices in real applications.
Collapse
Affiliation(s)
- Lin Shen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology , Soochow University , Suzhou 215006 , China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology , Soochow University , Suzhou 215006 , China
| | - Yu-Qiang Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology , Soochow University , Suzhou 215006 , China
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| |
Collapse
|
6
|
Munaz A, Shiddiky MJA, Nguyen NT. Recent advances and current challenges in magnetophoresis based micro magnetofluidics. BIOMICROFLUIDICS 2018; 12:031501. [PMID: 29983837 PMCID: PMC6013300 DOI: 10.1063/1.5035388] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 06/11/2018] [Indexed: 05/12/2023]
Abstract
The combination of magnetism and microscale fluid flow has opened up a new era for handling and manipulation of samples in microfluidics. In particular, magnetophoresis, the migration of particles in a magnetic field, is extremely attractive for microfluidic handling due to its contactless nature, independence of ionic concentration, and lack of induced heating. The present paper focuses on recent advances and current challenges of magnetophoresis and highlights the key parameters affecting the manipulation of particles by magnetophoresis. The magnetic field is discussed according to their relative motion to the sample as stationary and dynamic fields. The migration of particles is categorized as positive and negative magnetophoresis. The applications of magnetophoresis are discussed according to the basic manipulation tasks such as mixing, separation, and trapping of particles or cells. Finally, the paper highlights the limitations of current approaches and provides the future perspective for this research area.
Collapse
Affiliation(s)
- Ahmed Munaz
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | | | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
7
|
Ngo HT, Freedman E, Odion RA, Strobbia P, De Silva Indrasekara AS, Vohra P, Taylor SM, Vo-Dinh T. Direct Detection of Unamplified Pathogen RNA in Blood Lysate using an Integrated Lab-in-a-Stick Device and Ultrabright SERS Nanorattles. Sci Rep 2018; 8:4075. [PMID: 29511216 PMCID: PMC5840326 DOI: 10.1038/s41598-018-21615-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/23/2018] [Indexed: 12/19/2022] Open
Abstract
Direct detection of genetic biomarkers in body fluid lysate without target amplification will revolutionize nucleic acid-based diagnostics. However, the low concentration of target sequences makes this goal challenging. We report a method for direct detection of pathogen RNA in blood lysate using a bioassay using surface-enhanced Raman spectroscopy (SERS)-based detection integrated in a "lab-in-a-stick" portable device. Two levels of signal enhancement were employed to achieve the sensitivity required for direct detection. Each target sequence was tagged with an ultrabright SERS-encoded nanorattle with ultrahigh SERS signals, and these tagged target sequences were concentrated into a focused spot for detection using hybridization sandwiches with magnetic microbeads. Furthermore, the washing process was automated by integration into a "lab-in-a-stick" portable device. We could directly detect synthetic target with a limit of detection of 200 fM. More importantly, we detected plasmodium falciparum malaria parasite RNA directly in infected red blood cells lysate. To our knowledge, this is the first report of SERS-based direct detection of pathogen nucleic acid in blood lysate without nucleic acid extraction or target amplification. The results show the potential of our integrated bioassay for field use and point-of-care diagnostics.
Collapse
Affiliation(s)
- Hoan T Ngo
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Biomedical Engineering Department, International University, Vietnam National University-Ho Chi Minh City (VNU-HCMC), Ho Chi Minh City, Vietnam
| | - Elizabeth Freedman
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA
- Department of Medicine & Duke Global Health Institute, Duke University, Durham, NC, 27708, USA
| | - Ren Abelard Odion
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Pietro Strobbia
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Agampodi Swarnapali De Silva Indrasekara
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Priya Vohra
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Division of Head and Neck Surgery and Communication Sciences, Duke University, Durham, NC, 27708, USA
| | - Steve M Taylor
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA
- Department of Medicine & Duke Global Health Institute, Duke University, Durham, NC, 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC, 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
- Department of Chemistry, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
8
|
Scherr TF, Markwalter CF, Bauer WS, Gasperino D, Wright DW, Haselton FR. Application of mass transfer theory to biomarker capture by surface functionalized magnetic beads in microcentrifuge tubes. Adv Colloid Interface Sci 2017; 246:275-288. [PMID: 28595937 DOI: 10.1016/j.cis.2017.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 12/11/2022]
Abstract
In many diagnostic assays, specific biomarker extraction and purification from a patient sample is performed in microcentrifuge tubes using surface-functionalized magnetic beads. Although assay binding times are known to be highly dependent on sample viscosity, sample volume, capture reagent, and fluid mixing, the theoretical mass transport framework that has been developed and validated in engineering has yet to be applied in this context. In this work, we adapt this existing framework for simultaneous mass transfer and surface reaction and apply it to the binding of biomarkers in clinical samples to surface-functionalized magnetic beads. We discuss the fundamental fluid dynamics of vortex mixing within microcentrifuge tubes as well as describe how particles and biomolecules interact with the fluid. The model is solved over a wide range of parameters, and we present scenarios when a simplified analytical expression would be most accurate. Next, we review of some relevant techniques for model parameter estimation. Finally, we apply the mass transfer theory to practical use-case scenarios of immediate use to clinicians and assay developers. Throughout, we highlight where further characterization is necessary to bridge the gap between theory and practical application.
Collapse
|
9
|
Munaz A, Kamble H, Shiddiky MJA, Nguyen NT. Magnetofluidic micromixer based on a complex rotating magnetic field. RSC Adv 2017. [DOI: 10.1039/c7ra08073e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report a magnetically actuated micromixer for mixing non-magnetic microparticles in a microfluidic system.
Collapse
Affiliation(s)
- Ahmed Munaz
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Brisbane
- Australia
| | - Harshad Kamble
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Brisbane
- Australia
| | - Muhammad J. A. Shiddiky
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Brisbane
- Australia
- School of Natural Sciences
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Brisbane
- Australia
| |
Collapse
|
10
|
Microfluidic Mixing and Analog On-Chip Concentration Control Using Fluidic Dielectrophoresis. MICROMACHINES 2016; 7:mi7110214. [PMID: 30404385 PMCID: PMC6190360 DOI: 10.3390/mi7110214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 11/17/2022]
Abstract
Microfluidic platforms capable of complex on-chip processing and liquid handling enable a wide variety of sensing, cellular, and material-related applications across a spectrum of disciplines in engineering and biology. However, there is a general lack of available active microscale mixing methods capable of dynamically controlling on-chip solute concentrations in real-time. Hence, multiple microfluidic fluid handling steps are often needed for applications that require buffers at varying on-chip concentrations. Here, we present a novel electrokinetic method for actively mixing laminar fluids and controlling on-chip concentrations in microfluidic channels using fluidic dielectrophoresis. Using a microfluidic channel junction, we co-flow three electrolyte streams side-by-side so that two outer conductive streams enclose a low conductive central stream. The tri-laminar flow is driven through an array of electrodes where the outer streams are electrokinetically deflected and forced to mix with the central flow field. This newly mixed central flow is then sent continuously downstream to serve as a concentration boundary condition for a microfluidic gradient chamber. We demonstrate that by actively mixing the upstream fluids, a variable concentration gradient can be formed dynamically downstream with single a fixed inlet concentration. This novel mixing approach offers a useful method for producing variable on-chip concentrations from a single inlet source.
Collapse
|
11
|
Hejazian M, Nguyen NT. Magnetofluidic concentration and separation of non-magnetic particles using two magnet arrays. BIOMICROFLUIDICS 2016; 10:044103. [PMID: 27478527 PMCID: PMC4947043 DOI: 10.1063/1.4955421] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/24/2016] [Indexed: 05/11/2023]
Abstract
The present paper reports the use of diluted ferrofluid and two arrays of permanent magnets for the size-selective concentration of non-magnetic particles. The micro magnetofluidic device consists of a straight channels sandwiched between two arrays of permanent magnets. The permanent magnets create multiple capture zones with minimum magnetic field strength along the channel. The complex interaction between magnetic forces and hydrodynamic force allows the device to operate in different regimes suitable for concentration of non-magnetic particles with small difference in size. Our experimental results show that non-magnetic particles with diameters of 3.1 μm and 4.8 μm can be discriminated and separated with this method. The results from this study could be used as a guide for the design of size-sensitive separation devices for particle and cell based on negative magnetophoresis.
Collapse
Affiliation(s)
- Majid Hejazian
- Queensland Micro and Nanotechnology Centre, Griffith University , Brisbane, Queensland 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University , Brisbane, Queensland 4111, Australia
| |
Collapse
|